2018年福建省中考数学试卷(精华版)

合集下载

(完整word版)2018年福建省中考数学试题及答案(A卷)

(完整word版)2018年福建省中考数学试题及答案(A卷)
Lv -2 > 0
15.W个同样人小的含45。角的三角尺按如图所示的方式放置•其中一个三角尺的
M顶点与>1一个的Mil顶点0(合丁点4. H.另三个锐角顶点H.CJ)在同一直 线I:.-1/f = x/2 JfHJ C/) =.
16.如图■直线尸x+m MXZltll线尸 斗郴交于儿〃网点冲:〃*轴9AC//y轴•则
随机啪件的是
A.阿枚骰子向上一面的点数之和大于I
B.两枚叔子向IL而的点数之和等于I
C.两枚骰子向I:一而的点数之和大于12
D.两枚燉子向上一面的点数之和尊T12
7.已知■則以下対m的佔算正确的是
A.2 <m< 3IL3 <ni< 4C.4 <m <5I). 5 < /n < 6
&我ih打代数学”作《脚法统宗》记载••绳索竝对问题八一条竿子一条索•索比罕子氏一托.折冋索子却 址竿•却比竿子短一托「兀大盘为:现仃-•恨竿和一条绳索•用绳索公址竿他索比罕长5心如果将绳索对 半折后井£站竿•就比竿知5尺.设绷索长寓尺•竿长y尺•则符合题盘的方那细是
21•(卜小题满分8分)
如图■在RlA 1HC<|\Z.C = 9()\/IK=IO,/IC=8.线段1〃 山线段M绕点.4按 逆时针方向旋转90。得到•△处G lhA/lflC沿CB方向平移得到•且比线卜:卜、过点I).
(丨)求乙〃〃尸的大小;
(2)求CY;的长.
22•(本小题满分1()分)
叭乙两家快递公用揽件员(揽收快件的员工)的口工资方案如下:

二、填空题:本题共6小题,每小题4分,共24分.
ll.il尊:俘卜=-
12.杲8种食品所禽的热肚值分别120.134J20J 19.126.120 J18J24,WJ这组数据的 众数为・

2018年福建省中考数学试卷(A卷Word解析版)

2018年福建省中考数学试卷(A卷Word解析版)

2018年福建省中考数学试卷( A卷)(解析版)第I卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数|-3|,-2,0,π中,最小的数是A.|-3|B.-2C.0D.π【考点】绝对值,负数、0、正数大小的比较.【分析】利用非负数的绝对值取本身,负数<0<正数,易得到正确答案.【解答】B2.某几何体的三视图如图所示,则该几何体是A.圆柱B.三棱柱C.长方体D.四棱锥【考点】几何体与几何体的三视图互相转化【分析】由于几何体的主视图、左视图是长方形,俯视图都是正方形,可知几何体是长方体。

【解答】C3.下列各组数中,能作为一个三角形三边边长的是A.1,1,2B.1,2,4C.2,3,4D.2,3,5【考点】三角形任意两边之和大于第三边.【分析】只要用最小的两条边之和与最大边相比,若满足两边之和大于第三边,则可组成三角形,反之则不能组成三角形。

A选项1+1=2,B选项1+2<4,C选项2+3>4,D选项2+3=5,故C符合要求.【解答】C4.一个n边形的内角和为360°,则n等于A.3B.4C.5D.6【考点】多边形的内角和公式.【分析】由题意得,180(n-2)=360,解方程得n=4.【解答】B5.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于A.15°B.30°C.45°D.60°【考点】等腰三角形的“三线合一”性质,等边对等角性质,等边三角形的角,角的和差计算.【分析】由等边三角形BC边上的高,得AD是边BC的中垂线,得BE=CE,从而推出∠ECB=∠EBC=45°,又等边三角形的角∠ACB=60°,于是∠ACE=∠ACB-∠EBC=15°.【解答】A6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.则下列事件为随机事件的是A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【考点】随机事件、必然事件与不可能事件的区分.【分析】两枚骰子向上一面的点数之和最小是2,最大是12,故A选项为必然事件,B、C选项均为不可能事件,当两个点数均为6时,它们的和是12,故选项D为随机事件.【解答】D7.已知43+=m,则以下对m的估算正确的是A.23m<< B. 34m<<C. 45m<< D. 56m<<【考点】算术平方根的估算【分析】431<<,即231<<,故2221+<<+m【解答】B8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩【考点】二元一次方程组的应用【分析】“对半折”的意思就是“等于原来的一半”,故可得两个相等关系:x比y大5,且x的一半比y小5.【解答】A9.如图,AB是⊙O的直径,BC与⊙O相切于点B,A C交⊙O于点D.若∠ACB=50°,则∠BOD等于A.40°B.50°C.60°D.80°【考点】圆的切线的性质,圆的半径相等,三角形的外角的性质【分析】由圆的切线得,直径AB与切线BC垂直,所以∠ABC=90°,又∠ACB=50°,可求出∠B AC=40°,而同一个圆的半径相等,有OA=OD,故∠B AC=∠ADC=40°,从而∠BOD=∠B AC+∠ADC=80°【解答】D10.已知一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等实数根,则下面选项正确的是A. 1一定不是方程x2+bx+a=0的根B.0一定不是方程x2+bx+a=0的根C.1和-1都是方程x2+bx+a=0的根D.1和-1不都是方程x2+bx+a=0的根【考点】一元二次方程及解的定义,一元二次方程根的判别式【分析】由一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等实数根,得△=0)1(4)2(22=+-a b解得①01=++a b 或②01=--a b ,A 选项将x =1代入方程x 2+bx +a =0,得1+b +a =0符合①,故说法错误,B 选项将x =0代入方程x 2+bx +a =0,得a =0,此时b=1或-1,原方程为x 2+2x +1=0或x 2-2x +1=0,它们符合要求,C 选项将x =1与x =1都代入方程x 2+bx +a =0,得⎩⎨⎧=+-=++0101a b a b ,而①01=++a b 或②01=--a b 只能二选一,即不能同时成立,若同时成立,则解得⎩⎨⎧=-=01b a这会导致题干中的前提“一元二次方程”不成立,原方程变为一元一次方程,D 选项,“不都是”代表不能同时是,与①01=++a b 或②01=--a b 相符,故选D.【解答】D第Ⅱ卷二、填空题:本题共6小题,每题4分共24分.11.计算:1220-⎪⎪⎭⎫⎝⎛=______. 【考点】0指数幂的运算 【分析】当0≠a 时,有10=a 【解答】答案是0,0111220=-=-⎪⎪⎭⎫⎝⎛12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为______. 【考点】众数【分析】一组数据中出现次数最多的数是这组数的众数.众数可能不只一个.【解答】答案是120.这组数据中,120出现了三次,其他数出现的次数都少于三次.13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = _______.【考点】直角三角形斜边上的中线【分析】直角三角形斜边上的中线等于斜边的一半 【解答】答案是3.由已知AB 是Rt △ABC 的斜边,CD 是AB 边上的中线,其长度为AB 的一半.14.不等式组⎩⎨⎧>-+>+02313x x x 的解集为_______.【考点】解不等式组【分析】一般情况下,可用口诀:大大取大,小小取小,大小小大中间找,大大小小无解了.【解答】答案是2>x .解不等式组得⎩⎨⎧>>21x x ,根据同大取大,故2>x15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角 板的锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =_______. 【考点】特殊角直角三角形相关计算【分析】如图,熟练掌握两块直角三角板的图形规律和性质可快速解题.【解答】答案是13-.过点A 作AF ⊥BC 于点F ,则由等腰直角三角形的性质易得AF=BF=CF=1,从而AD=BC=2,再由勾股定理得DF=322=-AFAD,故CD=13-=-CF DF16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________. 【考点】双曲线与直线的交点,最值. 【分析】可先用含m 的代数式表示S △ABC ,然后确定其最值.也可利用图象的变化,求取得最值时所处的特殊位置,确定出m. 【解答】答案是6. 解法一:如图,不妨设),(11y x A ,),(22y x B ,(其中1212,y y x x <<)则),(11y x A ,),(22y x B 是方程组⎪⎩⎪⎨⎧=+=x y m x y 3的两个根.消去y ,得032=-+mx x(*)若学过根与系数关系(韦达定理), 则有3,2121-=∙-=+x x m x x所以S △ABC =BC AC ⨯21=))((212121x x y y --66212)(21)(21))((212212212212121≥+=-+=-=---+=mx x x x x x x x m x m x故面积最小值是6.若不会用根与系数关系(韦达定理) 则由求根公式得2122+±-=m m x∴212,2122221+--=++-=m m x m m x∴S △ABC =BC AC ⨯21=))((212121x x y y --6621)12(21)212212(21)(21))((212222222212121≥+=+=+---++-=-=---+=m mm m m m x x x x m x m x故面积最小值是6.解法二:如图,由题意,因为BC ∥x 轴,AC ∥y 轴,而直线解析式y =x +m ,得∠ABC=∠ACB=45°,所以△ABC 是等腰直角三角形,从而 S △ABC=2412121ABAB AB =⨯⨯所以当线段AB 最小时,三角形ABC 的面积就取得最小值,由双曲线和直线的对称性质知,当AB 经过原点时,线段AB 的长度最小,此时m=0 因而直线解析式是y =x,联立y =x 与xy 3=,解得3±=x ,从而()()3,3,3,3--B AS △ABC=()632)32(4141222=+==][AB三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解方程组: ②①⎩⎨⎧=+=+1041y x y x【考点】二元一次方程组【分析】代入法或加减法,目的是消元. 【解答】②-①得3,93=∴=x x把3=x 代入①得,13=+y⎩⎨⎧-==∴-=∴232y x y18.(本小题满分8分)如图,□ABCD 对角线AC 与BD 相交于点O ,EF 过点O 且与AD ,BC 分别交于点E ,F . 求证:OE =OF ,【考点】平行四边形的性质,全等三角形的判定与性质【分析】先证OE 与OF 所在的两个三角形全等,再由全等三角形的性质得对应边相等【解答】∵□ABCD 对角线AC 与BD 相交于点O ∴OA=OC ,AD ∥BC,∴∠EAO=∠FCO ,∠OEA=∠CFC ∴△AOE ≌△COF ∴OE=OF19.(本小题满分8分)先化简再,求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m【考点】分式的运算,因式分解,二次根式的运算【分析】按照分式混合运算的运算顺序,通过约分、通分等手段化简,注意因式分解的运用 【解答】11)1)(1(11122-=-+∙+=-⨯⎪⎭⎫⎝⎛-+=m m m mm m m m m m m m 原式当13+=m 时,原式=1131-+=3320.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据給出的△ABC 及线段A'B'.∠A' (∠A'=∠A ),以线段A'B'为一边,在给出的图形上用尺规作出△A'B'C',使得△A'B'C'∽△ABC ,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知,求证和证明过程.【考点】尺规作图,相似三角形的判定与性质,几何推论的推理证明【分析】先利用“两角对应相等,两三角形相似”转化为作图的指导方法,已知 ∠A'=∠A ,只要利用尺规再作出∠B '=∠B ,可得两个相似三角形,然后画出对应边上的一组中线,利用相似三角形的性质,得到对应边成比例,再证明新的两个三角形相似,最后通过等量代换证明结论成立.转化思想过程:相似三角形→对应角相等、对应边成比例→等量变形→新三角形的对应角相等、对应边成比例→新三角形相似→新三角形对应边成比例→与原三角形对应边作比较→等量代换【解答】①作图如图所示②已知:如图,△A'B'C'∽△ABC ,k CAA C BCC B ABB A ==='''''',C ’D ’与CD 分别是边A ’B ’、AB 上的中线求证:k CDD C =''证明:∵△A'B'C'∽△ABC ∴A A ∠=∠',k CAA C BC CB ABB A ===''''''∵C ’D ’与CD 分别是边A ’B ’、AB 上的中线 ∴AB AD B A D A 21,''21''==∴kACC A ABB A ABB A ADD A ====''''21''21''又A A ∠=∠'∴ADC C D A ∽△△''' ∴k ACC A CDD C ==''''21.(本小题满分8分)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8.线段AD 由线段AB 绕点A 按逆时针旋转90°得到,△EFG 由△ABC 沿CB 方向平移得到,直线EF 过点D . (1)求∠BDF 的大小; (2)求CG 长.【考点】图形的平移与旋转的性质,等腰直角三角形的判定与性质,平行线的性质,相似三角形的判定与性质,解直角三角形.【分析】(1)要求∠BDF ,考虑到平移变换中的对应线段平行(或在同一直线上)且相等,可以得到EF ∥AB ,根据平行线的性质,将问题转化为求∠ABD的大小,又由旋转的性质,易得△ABD 是等腰直角三角形,从而∠BDF=∠ABD=45°.(2)由平移性质,要求CG 长,只要求AE 的长,问题转化为△ADE 边长AE 的求法.再观察图形,不难找到图形中存在着相似三角形的可能.由平移性质得到的EF ∥AB 可得推出∠AED=∠EAB ,另一组平行线AE ∥CG 可以推出∠ABC=∠EAB ,这样,∠AED=∠ABC ,另外,旋转得到△ABD 是等腰直角三角形,加上平移得到EF ∥AB ,可以推出∠ADE=∠ACB=90°,然后就能证明△AED 与△ABC 相似,最后通过相似三角形对应边成比例,列出相关等式(方程)使问题得解.也可以考虑用等积法求CG 的长,即由平移性质得到平行四边形ABFE ,且CG=BF ,EG=AC=8,再利用平行四边形的面积的两种求法列方程,即BF ×EG=AB ×AD ,由旋转性质可知,AD=AB ,故EGAD AB BF ⨯=.【解答】(1)∵线段AD 是由线段AB 旋转90°得到的,AB=10∴AD=AB=10,∠BAD=90° ∴∠ABD=∠ADB=45°又∵△EFG 由△ABC 沿CB 方向平移得到 ∴EF ∥AB∴∠BDF=∠ABD=45° (2)解法一(证相似):由(1)解法得,AD=AB=10,∠ABD=∠ADB=45° ∴∠ADE=∠C =90°∵△EFG 由△ABC 沿CB 方向平移得到 ∴EF ∥AB ,AE ∥CF∴∠AED=∠EAB ,∠ABC=∠EAB ∴∠AED=∠ABC这样,△AED 与△ABC 中, ∠ADE=∠C =90°,∠AED=∠ABC ∴△AED ∽△ABC∴AC AD AB AE =又AB =10,AD=AC =8∴81010=AE∴CG=AE=2258100=解法二(等积法):∵△EFG 由△ABC 沿CB 方向平移得到 ∴EF ∥AB ,AE ∥CF ,且CG=BF ∴四边形ABFE 是平行四边形∵线段AD 是由线段AB 旋转90°得到的,AB=10 ∴AD=AB=10,∠BAD=90° 又Rt △ABC 中,∠C =90°,EG=AC =8 ∴□ABFE 的面积S=AB ×AD=BF ×EG 即10×10=BF ×8从而EG=BF=22581010=⨯22.(本小题满分10分)甲乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公同揽件员人均揽件数超过40(不含40)的概率; (2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收人的角度考虑,请利用所学的统计知识帮他选择,并说明理由.【考点】概率,加权平均数,条形统计图,数据处理与分析 【分析】利用概率公式所有等可能结果总数包含的可能结果数事件A A P =)(,可求(1),(2)中第一问计算加权平均数,用加权平均数计算公式nf x f x f x x kk +⋯++=2211(其中n f f f k =+⋯++21),第二问算法类似,只要分别求出两家公司的日平均工资,再做比较. 【解答】(1)由条形图得,甲公同揽件员人均揽件数超过40(不含40)的共有4天,而四月份共30天,故P (人均揽件数超过40)=152304=(2)①以四月份的数据估计,设甲公司各揽件员的日平均揽件数为x ,则39140301231409)1(13)2(40301423414409391338=-=⨯+⨯+⨯+⨯-+⨯-+=⨯+⨯+⨯+⨯+⨯=x②设小明到甲公司日均工资为1w 元,到乙公司日均工资为2w 元,则148239701=⨯+=w (元))(4.159306)3251(4)340540840739738(2元=⨯⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯=w∵148<159.4∴仅从工资收入的角度考虑,小明应到乙公司应聘.23. (本小题满分10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中A D M N ≤.已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a = 20,所围成的矩形菜园的面积为450平方米求所利用旧墙AD 的长;(2)求矩形菜园ABCD 面积的最大值.【考点】一元二次方程,二次函数及其最值,分类讨论,数形结合【分析】(1)矩形面积=AD ×AB ,根据已知条件,假设适当的未知数(比如AD 的长)可列方程求解,注意AD ≤MN 这已知条件,解必须检验.(2)设AD 的长为x 米后,则可求矩形面积的解析式是关于x 的二次函数,再根据二次函数图象的增减性,分类讨论,由a 的取值范围,求其最值.【解答】(1)设AD=x 米,则2100x AB -=米,依题意得4502)100(=-x x 解得90,1021==x x∵20=a ,MN AD ≤∴a x ≤∴902=x 不合题意,舍去答:所利用旧墙AD 的长为10米.(2)设矩形菜园ABCD 面积S ,AD=x 米,则a x ≤<0.依题意得1250)50(2150212)100(22+--=+-=-=x x x x x S所以二次函数图象开口向下,对称轴是直线50=x故(ⅰ)若50≥a ,则当50=x 时,1250=最大S(ⅱ)若500<<a ,则当a x ≤<0时,S 随x 的增大而增大,此时,当a x =时S 最大a a S 50212+-=最大24.(本小题满分12分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB垂足为点E.(1)延长DE交⊙O于点F,延长DC、FB交于点P,如图1,求证:PC = PB;(2)过点B作BG⊥AD于点G,BG交DE于H,且点O和点A都在DE的左侧,如图2.若AB=3,DH=1,∠OHD=80°,求∠BDE的度数.【考点】圆的有关性质,等腰三角形的判定与性质,平行线的判定与性质,平行四边形的判定与性质,三角形外角的性质,解直角三角形,几何综合运算与推理.【分析】(1)要证PC = PB只要证∠PBC=∠PCB,由图形∠PCB与∠DCB互补,由内接四边形BCDF,∠DFB与∠DCB也互补,∠PCB=∠DFB,再利用“直径所对的圆周角是直角”得∠ABC是直角,利用垂直定义得∠ADE直角,故∠ABC=∠ADE,得BC与DF平行,得∠PBC=∠DFB,从而∠PCB=∠PCB(2)欲求∠BDE,可将∠BDE进行转化,在完成(1)的基础上,能够得到一个平行四边形BCDH,从而BC=DH=1,且∠BDE=∠DBC=∠OAD(平行线性质、同弧所对的圆周角相等),连接OD,则OD=DH=OA=1,又∠OHD=80°,能够求出∠ODH=20°,利用圆中直径AC所对的圆周角是直角,解直角三角形ABC,可得∠A CB=60°,设DH交AC于点M。

2018年福建省中考数学A卷试卷(含详细答案)

2018年福建省中考数学A卷试卷(含详细答案)

数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数3-,2-,0,π中,最小的数是( )A .3-B .2-C .0D .π 2.某几何体的三视图如图所示,则该几何体是( )A .圆柱B .三棱柱C .长方体D .四棱锥3.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,5 4.一个n 边形的内角和为360°,则n 等于( )A .3B .4C .5D .65.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,则ACE ∠等于( )A .15°B .30°C .45°D .60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 7.已知m =m 的估算正确的( )A .23m <<B .34m <<C .45m <<D .56m <<8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩9.如图,AB 是O 的直径,BC 与O 相切于点B ,AC 交O 于点D ,若50ACB ∠=︒°,则BOD ∠等于( )A .40°B .50°C .60°D .80°10.已知关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于s x 的方程20x bx a ++=的根毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,满分24分,请把答案填在题中的横线上)11.计算:01-=⎝⎭.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 .13.如图,Rt ABC △中,90ACB ∠=︒,6AB =,D 是AB 的中点,则CD = .14.不等式组31320x x x ++⎧⎨-⎩>>的解集为 .15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB CD = .16.如图,直线y x m =+与双曲线3y x=相交于A ,B 两点,BC x ∥轴,AC y ∥轴,则ABC △面积的最小值为 .三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:1,410.x y x y +=⎧⎨+=⎩18.(本小题满分8分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD ,BC 分别相交于点E ,F .求证:OE OF =.19.(本小题满分8分)先化简,再求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中1m =.20.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:(1)根据给出的ABC △及线段A B '',A A A ∠'∠'=∠(),以线段A B ''为一边,在给出的图形上用尺规作出A B C '''△,使得A B C '''△∽ABC △,不写作法,保留作图痕迹;(2)在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.数学试卷 第5页(共34页) 数学试卷 第6页(共34页)21.(本小题满分8分)如图,在Rt ABC △中,90C ∠=︒,10AB =,8AC =.线段AD 由线段AB 绕点A按逆时针方向旋转90°得到,EFG △由ABC △沿CB 方向平移得到,且直线EF 过点D .(1)求BDF ∠的大小; (2)求CG 的长.22.(本小题满分10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元; 乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.如图是2018年4月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从2018年4月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以2018年4月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题: ①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23.(本小题满分10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD MN ≤.已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若20a =,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; (2)求矩形菜园ABCD 面积的最大值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共34页) 数学试卷 第8页(共34页)24.(本小题满分12分)已知四边形ABCD 是O 的内接四边形,AC 是O 的直径,DE AB ⊥,垂足为E . (1)延长DE 交O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC PB =; (2)过点B 作BC AD ⊥,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若AB 1DH =,80OHD ∠=︒,求BDE ∠的大小.25.(本小题满分14分)已知抛物线2y ax bx c =++过点(02)A ,. (1)若点(0)也在该抛物线上,求a ,b 满足的关系式;(2)若该抛物线上任意不同两点11M x y (,),22N x y (,)都满足:当1x <2x <0时,12120x x y y (-)(-)>;当120x x <<时,12120x x y y (-)(-)<.以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且ABC △有一个内角为60°. ①求抛物线的解析式;②若点P 与点O 关于点A 对称,且O ,M ,N 三点共线,求证:PA 平分MPN ∠.5 / 17福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】解:在实数3-,-2,0,π中,33-=,则203π--<<<,故最小的数是:2-.故选:B. 分析:直接利用绝对值的性质化简,进而比较大小得出答案. 2.【答案】C【解析】解:A 、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B 、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C 、长方体的主视图、左视图及俯视图都是矩形,符合题意;D 、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意.故选:C. 分析:根据常见几何体的三视图逐一判断即可得. 3.【答案】C【解析】解:A 、112+=,不满足三边关系,故错误;B 、124+<,不满足三边关系,故错误;C 、234+>,满足三边关系,故正确;D 、235+=,不满足三边关系,故错误.故选:C. 分析:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解. 4.【答案】B【解析】解:根据n 边形的内角和公式,得:2180360n =(-),解得4n =.分析:n 边形的内角和是2180n (-),如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n .故选:B. 5.【答案】A.【解析】解:∵等边三角形ABC 中,AD BC ⊥, ∴BD CD =,即:AD 是BC 的垂直平分线, ∵点E 在AD 上, ∴BE CE =, ∴EBC ECB ∠=∠,数学试卷 第11页(共34页)数学试卷 第12页(共34页)∵45EBC ∠=︒, ∴45ECB ∠=︒, ∵ABC △是等边三角形, ∴60ACB ∠=︒,∴15ACE ACB ECB ∠=∠-∠=︒. 故选:A.分析:先判断出AD 是BC 的垂直平分线,进而求出45EBC ∠=︒,即可得出结论. 6.【答案】D【解析】解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.分析:根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可. 7.【答案】B【解析】解:∵2m12,∴34m <<.故选:B.. 8.【答案】A【解析】解:设索长为x 尺,竿子长为y 尺,根据题意得:5,1 5.2x y x y =+⎧⎪⎨=-⎪⎩故选:A.分析:设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 9.【答案】D【解析】解:∵BC 是O 的切线, ∴90ABC ∠=︒,∴9040A ACB ∠=︒-∠=︒,由圆周角定理得,280BOD A ∠=∠=︒,7 / 17故选:D.分析:根据切线的性质得到90ABC ∠=︒,根据直角三角形的性质求出A ∠,根据圆周角定理计算即可. 10.【答案】D.【解析】解:∵关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,∴2210(2)4(1)0a b a +≠⎧⎨∆=-+=⎩,,∴1b a =+或(1)b a =-+.当1b a =+时,有10a b +=-,此时1-是方程20x bx a ++=的根; 当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根. ∵10a +≠, ∴1(1)a a +≠-+,∴1和1-不都是关于x 的方程20x bx a ++=的根. 故选:D.分析:根据方程有两个相等的实数根可得出1b a =+或(1)b a =-+,当1b a =+时,1-是方程20x bx a ++=的根;当(1)b a =-+时,1是方程20x bx a ++=的根.再结合1(1)a a +≠-+,可得出1和1-不都是关于x 的方程20x bx a ++=的根.第Ⅱ卷二、填空题11.【答案】0【解析】解:原式110==-,故答案为:0. 分析:根据零指数幂:01(0)a a =≠进行计算即可. 12.【答案】120【解析】解:∵这组数据中120出现次数最多,有3次, ∴这组数据的众数为120. 故答案为:120.数学试卷 第15页(共34页)数学试卷 第16页(共34页)分析:根据众数的定义:一组数据中出现次数最多的数据即为众数. 13.【答案】3【解析】解:∵90ACB ∠=︒,D 为AB 的中点, ∴116322CD AB ==⨯=. 故答案为:3.分析:根据直角三角形斜边上的中线等于斜边的一半解答. 14.【答案】2x >【解析】解:313,2x x x ++⎧⎨-⎩>①>0,②∵解不等式①得:1x >,解不等式②得:2x >, ∴不等式组的解集为2x >,分析:先求出每个不等式的解集,再求出不等式组的解集即可. 15.1【解析】解:如图,过点A 作AF BC ⊥于F ,在Rt ABC △中,45B ∠=︒,∴2BC =,1BF AF AB ===, ∵两个同样大小的含45︒角的三角尺, ∴2AD BC ==,在Rt ADF △中,根据勾股定理得,DF =∴121CD BF DF BC =+==-,分析:先利用等腰直角三角形的性质求出2BC =,1BF AF ==,再利用勾股定理求出DF ,即可得出结论. 16.【答案】69 / 17【解析】解:设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,得3x m x+=, 整理,得230x mx +=-, 则a b m +=-,3ab =-,∴222))((412a b a b ab m -+=+=-. ∵1•2ABC S AC BC =△ 222133=()213()••()21()21(12)2162a b a b b a a b ab a b m m ⎛⎫-- ⎪⎝⎭-=-=-=+=+ ∴当0m =时,ABC △的面积有最小值6. 分析:根据双曲线3y x =过A ,B 两点,可设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,整理得230x mx +=-,由于直线y x m =+与双曲线3y x =相交于A ,B 两点,所以a 、b 是方程230x mx +=-的两个根,根据根与系数的关系得出a b m +=-,3ab =-,那么222))((412a b a b ab m -+=+=-.再根据三角形的面积公式得出211•622ABC S AC BC m ==+△,利用二次函数的性质即可求出当0m =时,ABC △的面积有最小值6.17.【答案】解:1,410,x y x y +=⎧⎨+=⎩①②②-①得:39x =, 解得:3x =,把3x =代入①得:2y =-,则方程组的解为3,2.x y =⎧⎨=-⎩【解析】分析:方程组利用加减消元法求出解即可.数学试卷 第19页(共34页)数学试卷 第20页(共34页)18.【答案】证明:∵四边形ABCD 是平行四边形, ∴OA OC =,AD BC ∥, ∴OAE OCF ∠=∠, 在OAE △和OCF △中,,,,OAE OCF OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE COF △≌△(ASA ), ∴OE OF =.【解析】分析:由四边形ABCD 是平行四边形,可得OA OC =,AD BC ∥,继而可证得AOE COF△≌△(ASA ),则可证得结论.19.【答案】解:22111m m m m +-⎛⎫-÷⎪⎝⎭()()2111m m mm m m +-=+-()()111m mm m m +=+-11m =-当1m=时,原式==. 【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将m 的值代入即可解答本题. 20.【答案】(1)解:如图所示,A B C '''△即为所求;(2)已知,如图,ABC A B C '''△∽△,k AB BC A B CA B C A C =='''''=',D 是AB 的中点,D '是A B ''的中点, 求证:DC kD C ''=.证明:∵D 是AB 的中点D '是A B ''的中点, ∴12AD AB =,12A D A B ''='',∴1212A B AB AB A D A B AD ''''=='', ∵ABC A B C '''△∽△,∴A A CB AB AC ='''','A A ∠=∠, ∵A A A D AD CC ''''=,'A A ∠=∠, ∴A CD ACD '''△∽△, ∴k CD D C A C CA ''''==. 【解析】分析:(1)作=A B C ABC '''∠∠,即可得到A B C '''△; (2)依据D 是AB 的中点,D '是A B ''的中点,即可得到=,根据ABC A B C '''△∽△,即可得到A A CB AB AC ='''','A A ∠=∠,进而得出A CD ACD '''△∽△,可得k CD D C A C CA ''''==.21.【答案】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90︒得到, ∴90DAB ∠=︒,10AD AB ==, ∴45ABD ∠=︒,∵EFG △是ABC △沿CB 方向平移得到, ∴AB EF ∥,∴45BDF ABD ∠=∠=︒;(2)由平移的性质得,AE CG ∥,AB EF ∥, ∴DEA DFC ABC ∠=∠=∠,180ADE DAB ∠+∠=︒, ∵90DAB ∠=︒, ∴90ADE ∠=︒, ∵90ACB ∠=︒,∴ADE ACB ∠=∠, ∴ADE ACB △∽△, ∴AD AEAC AB=, ∵8AB =,10AB AD ==, ∴12.5AE =,由平移的性质得,12.5CG AE ==.【解析】分析:(1)由旋转的性质得,10AD AB ==,45ABD ∠=︒,再由平移的性质即可得出结论; (2)先判断出ADE ACB ∠=∠,进而得出ADE ACB △∽△,得出比例式求出AE ,即可得出结论. 22.【答案】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为42=3015; (2)①甲公司各揽件员的日平均件数为3813399404413421=3930⨯+⨯+⨯+⨯+⨯件;②甲公司揽件员的日平均工资为70392148+⨯=元,乙公司揽件员的日平均工资为()()3873974085341523630⎡⨯+⨯+⨯++⎤⨯+⨯+⨯⨯⎣⎦ ()()27171523=40463030⎡-⨯+-⨯⎤⨯+⨯+⨯+⨯⎢⎥⎣⎦=159.4元,因为159.4148>,所以仅从工资收入的角度考虑,小明应到乙公司应聘. 【解析】分析:(1)根据概率公式计算可得; (2)分别根据平均数的定义及其意义解答可得.23.【答案】解:(1)设m AB x =,则()1002m BC x =-, 根据题意得()1002450x x =-,解得15x =,245x =, 当5x =时,10029020x =->,不合题意舍去; 当45x =时,100210x =-, 答:AD 的长为10 m ; (2)设m AD x =, ∴()()21110050125022S x x x ==--+-, 当50a ≥时,则50x =时,S 的最大值为1250;当050a <<时,则当0x a <≤时,S 随x 的增大而增大,当x a =时,S 的最大值为21502a a -, 综上所述,当50a ≥时,S 的最大值为1250;当050a <<时,S 的最大值为21502a a -.【解析】分析:(1)设m AB x =,则()1002m BC x =-,利用矩形的面积公式得到()1002450x x =-,解方程得15x =,245x =,然后计算1002x -后与20进行大小比较即可得到AD 的长; (2)设m A D x =,利用矩形面积得到()11002S x x =-,配方得到()215012502S x =--+,讨论:当50a ≥时,根据二次函数的性质得S 的最大值为1250;当050a <<时,则当0x a <≤时,根据二次函数的性质得S 的最大值为21502a a -.24.【答案】解:(1)如图1,∵AC 是O 的直径,∴90ABC ∠=︒, ∵DE AB ⊥, ∴90DEA ∠=︒, ∴DEA ABC ∠=∠, ∴BC DF ∥, ∴F PBC ∠=∠,∵四边形BCDF 是圆内接四边形, ∴180F DCB ∠+∠=︒, ∵180PCB DCB ∠+∠=︒, ∴F PCB ∠=∠, ∴PBC PCB ∠=∠, ∴PC PB =;(2)如图2,连接OD ,∵AC 是O 的直径,∴90ADC ∠=︒, ∵BG AD ⊥, ∴90AGB ∠=︒, ∴ADC AGB ∠=∠, ∴BG DC ∥, ∵BC DE ∥,∴四边形DHBC 是平行四边形, ∴1BC DH ==,在Rt ABC △中,AB =tan ABACB BC∠=, ∴60ACB ∠=︒, ∴12BC AC OD ==, ∴DH OD =,在等腰三角形DOH 中,80DOH OHD ∠=∠=︒, ∴20ODH ∠=︒, 设DE 交AC 于N , ∵BC DE ∥,∴60ONH ACB ∠=∠=︒,∴()18040NOH ONH OHD ∠=︒∠+∠=︒-, ∴40DOC DOH NOH ∠=∠∠=︒-, ∵OA OD =,∴1202OAD DOC ∠=∠=︒, ∴20CBD OAD ∠=∠=︒, ∵BC DE ∥,∴20BDE CBD ∠=∠=︒.【解析】分析:(1)先判断出BC DF ∥,再利用同角的补角相等判断出F PCB ∠=∠,即可得出结论; (2)先判断出四边形DHBC 是平行四边形,得出1BC DH ==,再用锐角三角函数求出60ACB ∠=︒,进而判断出DH OD =,求出20ODH ∠=︒,即可得出结论.25.【答案】解:(1)∵抛物线2y ax bx c =++过点2(0)A ,, ∴2c =.又∵点(0)也在该抛物线上,∴2((0a b c +=+,∴220(0)a a +=≠.(2)①∵当120x x <<时,1212()()0x x y y -->, ∴120x x -<,120y y -<,∴当0x <时,y 随x 的增大而增大; 同理:当0x >时,y 随x 的增大而减小, ∴抛物线的对称轴为y 轴,开口向下, ∴0b =.∵OA 为半径的圆与拋物线的另两个交点为B 、C , ∴ABC △为等腰三角形, 又∵ABC △有一个内角为60°, ∴ABC △为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又∵2OB OC OA ===,∴•cos30CD OC =︒=,•sin301OD OC =︒=.不妨设点C 在y 轴右侧,则点C 的坐标为1)-. ∵点C 在抛物线上,且2c =,0b =, ∴321a +=-, ∴1a =-,∴抛物线的解析式为22y x =+-.②证明:由①可知,点M 的坐标为211(2)x x -+,,点N 的坐标为222(2)x x -+,. 直线OM 的解析式为11(0)y k x k =≠. ∵O 、M 、N 三点共线,∴10x ≠,20x ≠,且22121222x x x x -+-+=, ∴121222x x x x -+=-+, ∴1212122()x x x x x x =---, ∴122x x =-,即212x x =-, ∴点N 的坐标为211242x x ⎛⎫-+ ⎪⎝⎭,-. 设点N 关于y 轴的对称点为点N ',则点N '的坐标为211242x x ⎛⎫+ ⎪⎝⎭,-. ∵点P 是点O 关于点A 的对称点, ∴24OP OA ==,∴点P 的坐标为(04),. 设直线PM 的解析式为24y k x =+, ∵点M 的坐标为21(2)x x +,-, ∴212124x k x +=+-,∴21212x k x +=-,∴直线PM 的解析式为21124x y x +=-+.∵22211122111122(2)4244==2x x x x x x x +-++-+-+, ∴点N '在直线PM 上, ∴PA 平分MPN ∠.【解析】分析:(1)由抛物线经过点A 可求出2c =,再代入(0)即可找出220(0)a a +=≠; (2)①根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向下,进而可得出0b =,由抛物线的对称性可得出ABC △为等腰三角形,结合其有一个60︒的内角可得出ABC △为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;②由①的结论可得出点M 的坐标为211(2)x x -+,、点N 的坐标为222(2)x x -+,,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点N '的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点N '在直线PM 上,进而即可证出PA 平分MPN ∠s.。

2018年福建省福州市中考数学试卷含答案

2018年福建省福州市中考数学试卷含答案

福建省福州市 2018 年中考数学试卷 <解读版)一 . 选择题 <共 10 小题,每小题 4 分,满分 40 分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1. <2018 福州) 2 的倒数是 < )A .B .﹣C . 2D .﹣ 2考点:倒数.分析:根据倒数的概念求解.解答:解: 2 的倒数是 .故选 A .点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数, 0 没有倒数. b5E2RGbCAP倒数的定义:若两个数的乘积是 1,我们就称这两个数互为倒数.2. <2018 福州)如图, OA ⊥ OB ,若∠ 1=40°,则∠ 2 的度数是 < )A . 20°B . 40°C . 50°D . 60°考点:余角和补角.分析:根据互余两角之和为90°即可求解.解答:解:∵ OA ⊥ OB ,∠1=40 °,∴∠ 2=90°﹣∠ 1=90°﹣40°=50 °.故选 C .点评:本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键. 3. <2018 福州) 2018 年 12 月 13 日,嫦娥二号成功飞抵距地球约 700 万公里远的深空, 7 000 000 用科学记数法表示为 < )p1EanqFDPw5 6 6 D . 7×17A . 7×10B . 7×10C . 70×10 考点:科学记数法 —表示较大的数.分析:科学记数法的表示形式为a ×10n 的形式,其中 1≤|a|<10, n 为整数.确定 n 的值是易错点,由于 7 000 000 有 7 位,所以可以确定 n=7﹣1=6 . DXDiTa9E3d解答:解: 7 000 000=7×106.故选 B .点评:此题考查科学记数法表示较大的数的方法,准确确定a 与 n 值是关键. 4. <2018 福州)下列立体图形中,俯视图是正方形的是 <)A .B .C.D.考点:简单几何体的三视图.分析:俯视图是从上面看所得到的视图,结合选项进行判断即可.解答:解: A .俯视图是带圆心的圆,故本选项错误;1 / 12B .俯视图是一个圆,故本选项错误;C .俯视图是一个圆,故本选项错误;D .俯视图是一个正方形,故本选项正确; 故选 D .点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.5. <2018 福州)下列一元二次方程有两个相等实数根的是 < )2 2 2A . x +3=0B . x +2x=0C . <x+1 ) =0D . <x+3 ) <x ﹣1) =0考点:根的判别式.专题:计算题.分析:根据计算根的判别式,根据判别式的意义可对A 、B 、C 进行判断;由于D 的两根可直接得到,则 可对 D 进行判断. RTCrpUDGiT解答:解: A .△ =0 ﹣ 4×3=﹣ 12< 0,则方程没有实数根,所以A 选项错误;B .△ =4﹣ 4×0=4 >0,则方程有 两个不相等的实数根,所以 B 选项错误;C . x 2 +2x+1=0 , △=4﹣ 4×1=0,则方程有两个相等的实数根,所以 C 选项正确;D . x1=﹣3, x2=1,则方程有两个不相等的实数根,所以 D 选项错误.故选 C .点评:本题考查了一元二次方程ax 2+bx+c=0<a ≠0)的根的判别式 △ =b2﹣ 4ac :当 △ > 0,方程有两个不相 等的实数根;当 △=0,方程有两个相等的实数根;当 △ <0,方程没有实数根.5PCzVD7HxA 6. <2018 福州)不等式 1+x < 0 的解集在数轴上表示正确的是 < )A .B .C .D .考点:在数轴上表示不等式的解集;解一元一次不等式. 专题:计算题.分析:求出不等式的解集,即可作出判断. 解答:解: 1+x < 0,解得: x <﹣ 1,表示在数轴上,如图所示: 故选 A点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来 <>, ≥向右画;<, ≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示; “<”, “> ”要用空心圆点表示.jLBHrnAILg 7. <2018 福州)下列运算正确的是< ) 2 3 2 3 5 C . 3 3 A . a?a =a B . <a ) =a D . a ÷a =a考点:分式的乘除法;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.专题:计算题.分析: A .原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B.原式利用幂的乘方运算法则计算得到结果,即可作出判断;C.原式分子分母分别乘方得到结果,即可作出判断;D.原式利用同底数幂的除法法则计算得到结果,即可作出判断.2 3解答:解: A . a?a =a ,本选项正确;2 / 122 3 6B . <a ) =a ,本选项错误;C . < ) 2= ,本选项错误;3 3D . a ÷a =1,本选项错误, 故选 A点评:此题考查了分式的乘除法,同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. xHAQX74J0X8. <2018 福州)如图,已知 △ ABC ,以点 B 为圆心, AC 长为半径画弧;以点 C 为圆心, AB 长为半径画 弧,两弧交于点 D ,且点 A ,点 D 在 BC 异侧,连结 AD ,量一量线段 AD 的长,约为 < ) LDAYtRyKfEA . 2.5cmB . 3.0cmC . 3.5cmD . 4.0cm考点:平行四边形的判定与性质;作图 —复杂作图.分析:首先根据题意画出图形,知四边形ABCD 是平行四边形,则平行四边形 ABCD 的对角线相等,即 AD=BC .再利用刻度尺进行测量即可.Zzz6ZB2Ltk 解答:解:如图所示,连接 BD 、 BC 、 AD .∵ AC=BD , AB=CD ,∴四边形 ABCD 是平行四边形, ∴ AD=BC .测量可得 BC=AD=3.0cm ,故选: B .点评:此题主要考查了复杂作图,关键是正确理解题意,画出图形.9. <2018 福州)袋中有红球4 个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是 < ) dvzfvkwMI1A . 3 个B .不足 3 个C . 4 个D . 5 个或 5个以上考点:可能性的大小.分析:根据取到白球的可能性交大可以判断出白球的数量大于红球的数量,从而得解.解答:解:∵袋中有红球 4 个,取到白球的可能性较大,∴袋中的白球数量大于红球数量, 即袋中白球的个数可能是 5 个或 5 个以上.故选 D.点评:本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.rqyn14ZNXI3 / 1210. <2018 福州) A, B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A<x+a ,y+b ),B<x , y),下列结论正确的是< ) EmxvxOtOcoA . a> 0B . a< 0 C. b=0 D . ab<0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y 随 x 的增大而增大, y+b< y,x+a< x 得出 b<0,a< 0,即可推出答案. SixE2yXPq5解答:解:∵根据函数的图象可知:y 随 x 的增大而增大,∴ y+b < y, x+a< x,∴ b< 0, a<0,∴选项 A 、 C、 D 都不对,只有选项B 正确,故选 B .点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力.二.填空题 <共 5 小题,每小题 4 分.满分 20 分;请将正确答案填在答题卡相应位置)11.<2018 福州)计算:=.考点:分式的加减法.专题:计算题.分析:因为分式的分母相同,所以分母不变,分子相减即可得出答案.解答:解:原式= = .故答案为.点评:本题比较容易,考查分式的减法运算.12. <2018 福州)矩形的外角和等于度.考点:多边形内角与外角.分析:根据多边形的外角和定理解答即可.解答:解:矩形的外角和等于360 度.故答案为: 360.点评:本题考查了多边形的外角和,多边形的外角和与边数无关,任何多边形的外角和都是360°.13. <2018 福州)某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.考点:加权平均数.分析:根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.解答:解:根据题意得: <13 ×4+14×7+15×4)÷15=14< 岁),故答案为: 14.点评:此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.3 314. <2018 福州)已知实数a, b 满足 a+b=2, a﹣ b=5 ,则 <a+b ) <a﹣ b)的值是.4 / 12考点:幂的乘方与积的乘方. 专题:计算题.分析:所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值. 解答:解:∵ a+b=2,a ﹣ b=5 ,∴原式 =[<a+b )<a ﹣ b ) ]3 =10 3 =1000. 故答案为: 1000点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.15. <2018 福州)如图,由 7 个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ ABC 的顶点都在格点上,则 △ ABC 的面积是. 6ewMyirQFL考点:正多边形和圆.分析:延长 AB ,然后作出 C 所在的直线,一定交于格点 E ,根据 S △ABC =S △ AEC ﹣S △BEC 即可求 解. kavU42VRUs解答:解:延长AB ,然后作出 C 所在的直线,一定交于格点E . 正六边形的边长为 1,则半径是 1,则 CE=4 ,相邻的两个顶点之间的距离是: ,则 △ BCE 的边 EC 上的高是: , △ ACE 边 EC 上的高是: , 则 S △ABC =S △ AEC ﹣S △BEC=×4×<﹣) =2 . 故答案是: 2 .点评:本题考查了正多边形的计算,正确理解 S △ ABC =S △ AEC ﹣ S △BEC 是关键.三 . 解答题 <满分 90 分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑) y6v3ALoS8916. <2018 福州) <1)计算: ;2<2)化简: <a+3 ) +a<4﹣ a )考点:整式的混合运算;实数的运算;零指数幂.分析: <1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项化为最简二次根式,计算即可得到结果; M2ub6vSTnP<2)原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算即可得到结果.解答:解: <1 )原式 =1+4 ﹣ 2=5﹣ 2 ; 2 2<2)原式 =a +6a+9+4a ﹣a =10a+9.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.0YujCfmUCw17. <2018 福州) <1)如图, AB 平分∠ CAD , AC=AD ,求证: BC=BD ;5 / 12<2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3 本,则剩余20 本;如果每人分4本,则还缺 25 本,这个班有多少学生? eUts8ZQVRd考点:全等三角形的判定与性质;一元一次方程的应用.分析: <1)求出∠ CAB= ∠DAB ,根据 SAS 推出△ABC ≌△ ABD 即可;<2)设这个班有x 名学生,根据题意得出方程3x+20=4x ﹣ 25,求出即可.解答: <1)证明:∵ AB 平分∠ CAD ,∴∠ CAB= ∠ DAB ,在△ ABC 和△ ABD 中∴△ ABC ≌△ ABD<SAS ),∴ BC=BD .<2)解:设这个班有x 名学生,根据题意得:3x+20=4x ﹣ 25,解得: x=45,答:这个班有45 名小学生.点评:本题考查了全等三角形的性质和判定,一元一次方程的应用,主要考查学生的推理能力和列方程的能力.18. <2018 福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表<单位: cm)sQsAEJkW5T组别身高A x< 155B155≤x< 160C160≤x< 165D165≤x< 170E x≥170根据图表提供的信息,回答下列问题:<1)样本中,男生的身高众数在组,中位数在组;<2)样本中,女生身高在 E 组的人数有人;<3)已知该校共有男生400 人,女生380 人,请估计身高在160≤x< 170 之间的学生约有多少人?6 / 12考点:频数 <率)分布直方图;用样本估计总体;频数 <率)分布表;扇形统计图;中位数;众数.专题:图表型.分析: < 1)根据众数的定义,以及中位数的定义解答即可;<2)先求出女生身高在 E 组所占的百分比,再求出总人数然后计算即可得解;<3)分别用男、女生的人数乘以 C 、D 两组的频率的和,计算即可得解.解答:解:∵ B 组的人数为 12,最多,∴众数在 B 组,男生总人数为 4+12+10+8+6=40 ,按照从低到高的顺序,第20、 21 两人都在 C 组, ∴中位数在 C 组;<2)女生身高在 E 组的频率为: 1﹣ 17.5%﹣ 37.5%﹣ 25%﹣15%=5% , ∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E 组的人数有 40×5%=2 人;<3) 400× +380×<25%+15% ) =180+152=332< 人).答:估计该校身高在160≤x <170 之间的学生约有 332 人. 故答案为 <1) B ,C ; <2) 2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.GMsIasNXkA 19. <2018 福州)如图,在平面直角坐标系 xOy 中,点 A 的坐标为 <﹣ 2, 0),等边三角形 AOC 经过平移或轴对称或旋转都可以得到 △OBD .TIrRGchYzg<1) △ AOC 沿 x 轴向右平移得到 △ OBD ,则平移的距离是个单位长度;△AOC 与 △BOD 关于直线对 称,则对称轴是; △AOC 绕原点 O 顺时针旋转得到 △ DOB ,则旋转角度可以是度; 7EqZcWLZNX <2)连结 AD ,交 OC 于点 E ,求∠ AEO 的度数.考点:旋转的性质;等边三角形的性质;轴对称的性质;平移的性质.专题:计算题.7 / 12分析: <1)由点 A 的坐标为 <﹣ 2, 0),根据平移的性质得到△ AOC 沿 x 轴向右平移 2 个单位得到△ OBD ,则△ AOC 与△ BOD 关于 y 轴对称;根据等边三角形的性质得∠ AOC= ∠BOD=60 °,则∠ AOD=120 °,根据旋转的定义得△ AOC 绕原点 O 顺时针旋转 120°得到△ DOB ; lzq7IGf02E<2)根据旋转的性质得到OA=OD ,而∠ AOC= ∠BOD=60 °,得到∠ DOC=60 °,所以 OE 为等腰△AOD 的顶角的平分线,根据等腰三角形的性质得到 OE 垂直平分 AD ,则∠AEO=90 °. zvpgeqJ1hk 解答:解: <1 )∵点 A 的坐标为 <﹣2, 0),∴△ AOC 沿 x 轴向右平移 2 个单位得到△ OBD ;∴△ AOC 与△ BOD 关于 y 轴对称;∵△ AOC 为等边三角形,∴∠ AOC= ∠ BOD=60 °,∴∠ AOD=120 °,∴△ AOC 绕原点 O 顺时针旋转120°得到△ DOB .<2)如图,∵等边△AOC 绕原点 O 顺时针旋转120°得到△DOB ,∴OA=OD ,∵∠ AOC= ∠ BOD=60 °,∴∠ DOC=60 °,即OE 为等腰△AOD 的顶角的平分线,∴ OE 垂直平分 AD ,∴∠ AEO=90 °.故答案为2; y 轴; 120.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.NrpoJac3v120. <2018 福州)如图,在△ ABC 中,以 AB 为直径的⊙ O 交 AC 于点 M ,弦 MN ∥ BC 交 AB 于点 E,且 ME=1 , AM=2 , AE= 1nowfTG4KI<1)求证: BC 是⊙ O 的切线;<2)求的长.考点:切线的判定;勾股定理的逆定理;弧长的计算;解直角三角形.分析: <1)欲证明 BC 是⊙ O 的切线,只需证明 OB⊥BC 即可;8 / 12<2)首先,在 Rt △ AEM 中,根据特殊角的三角函数值求得∠ A=30 °;其次,利用圆心角、弧、弦间的关系、圆周角定理求得∠ BON=2 ∠A=60 °,由三角形函数的定义求得 ON==;fjnFLDa5Zo最后,由弧长公式l=计算 的长.解答: <1)证明:如图,∵ ME=1 ,AM=2 ,AE= ,2 2 2∴ME +AE =AM =4 , ∴△ AME 是直角三角形,且∠ AEM=90 °.又∵ MN ∥BC ,∴∠ ABC= ∠ AEM=90 °,即 OB ⊥ BC . 又∵ OB 是⊙ O 的半径,∴ BC 是⊙ O 的切线;<2)解:如图,连接 ON .在 Rt △ AEM 中, sinA= = ,∴∠ A=30 °.∵ AB ⊥ MN ,∴ = , EN=EM=1 ,∴∠ BON=2 ∠ A=60 °.在 Rt △ OEN 中, sin ∠ EON= ,∴ ON= = ,∴ 的长度是: ? = .点评:本题综合考查了切线的判定与性质、勾股定理的逆定理,弧长的计算,解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点 <即为半径),再证垂直即可. tfnNhnE6e521. <2018 福州)如图,等腰梯形 A BCD 中, AD ∥ BC ,∠ B=45 °, P 是 BC 边上一点, △ PAD 的面积为,设 AB=x , AD=y HbmVN777sL<1)求 y 与 x 的函数关系式;<2)若∠ APD=45 °,当 y=1 时,求 PB ?PC 的值; <3)若∠ APD=90 °,求 y 的最小值.9 / 12考点:相似形综合题.专题:综合题.分析: <1)如图 1,过 A 作 AE 垂直于 BC ,在直角三角形 ABE 中,由∠ B=45 °, AB=x ,利用锐角三角函数定义表示出 AE ,三角形 PAD 的面积以 AD 为底, AE 为高,利用三角形面积公式表示出,根据已知的面积即可列出y 与 x 的函数关系式;V7l4jRB8Hs<2)根据∠ APC= ∠APD+ ∠ CPD,以及∠ APC 为三角形 ABP 的外角,利用外角性质得到关系式,等量代换得到∠ BAP= ∠ CPD ,再由四边形ABCD 为等腰梯形,得到一对底角相等及AB=CD ,可得出三角形ABP 与三角形 PDC 相似,由相似得比例,将CD 换为 AB ,由 y 的值求出x 的值,即为AB 的值,即可求出 PB ?PC 的值; 83lcPA59W9<3)取 AD 的中点 F,过 P 作 PH 垂直于 AD ,由直角三角形PF 大于等于 PH,当 PF=PH 时,PF 最小,此时 F 与 H 重合,由三角形APD 为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于 AD 的一半,表示出PF 即为 PH,三角形APD 面积以AD 为底,PH 为高,利用三角形面积公式表示出三角形 APD 面积,由已知的面积求出y 的值,即为最小值.mZkklkzaaP解答:解: <1 )如图 1,过 A 作 AE ⊥ BC 于点 E,在 Rt△ ABE 中,∠ B=45 °, AB=x ,∴ AE=AB ?sinB= x,∵ S△APD = AD ?AE= ,∴?y? x= ,则 y= ;<2)∵∠ APC= ∠ APD+ ∠ CPD= ∠B+ ∠ BAP ,∠ APD= ∠ B=45 °,∴∠ BAP= ∠CPD,∵四边形 ABCD 为等腰梯形,∴∠ B=∠ C,AB=CD ,∴△ ABP ∽△ PCD ,∴= ,∴PB?PC=AB ?DC=AB 2,当 y=1 时,x= ,即 AB= ,则 PB ?PC=<2) =2;<3)如图 2,取 AD 的中点 F,连接 PF,过P 作 PH⊥ AD ,可得 PF≥PH,当 PF=PH 时, PF 有最小值,∵∠ APD=90 °,∴PF= AD= y,∴PH= y,10 / 12∵S △APD = ?AD ?PH= ,∴ ?y? y= ,即 y 2=2,∵ y > 0,∴ y= , 则 y 的最小值为 .点评:此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键. AVktR43bpw222. <2018 福州)我们知道,经过原点的抛物线的解读式可以是y=ax +bx<a ≠0)<1)对于这样的抛物线:当顶点坐标为 <1, 1)时,a=;当顶点坐标为 <m , m ), m ≠0 时, a 与 m 之间的关系式是<2)继续探究,如果 b ≠0,且过原点的抛物线顶点在直线 y=kx<k ≠0)上,请用含 k 的代数式表示 b ;<3)现有一组过原点的抛物线,顶点A 1, A 2, ⋯,A n 在直线 y=x 上,横坐标依次为 1, 2,⋯, n<为正整 数,且 n ≤12),分别过每个顶点作 x 轴的垂线,垂足记为B 1, B 2, ⋯, B n ,以线段 A n B n 为边向右作正方 形 A nBnCnDn ,若这组抛物线中有一条经过 Dn ,求所有满足条件的正方形边长.ORjBnOwcEd 考点:二次函数综合题.分析: <1)利用顶点坐标公式 <﹣ , )填空;<2)首先,利用配方法得到抛物线的解读式y=a<x+ ) 2﹣ ,则易求该抛物线的顶点坐标<﹣ ,﹣);然后,把该顶点坐标代入直线方程 y=kx<k ≠0),即可求得用含 k 的代数式表示 b ;<3)根据题意可设可设 A n<n , n ),点 Dn 所在的抛物线顶点坐标为 <t , t ).由 <1 )<2)可得,点 Dn 所在的抛物线解读式为 2 推知点 D n 的坐标是 <2n , n ),则把点 D n的坐标y= ﹣ x +2x .所以由正方形的性质代入抛物线解读式即可求得4n=3t .然后由 n 、 t 的取值范围来求点 A n 的坐标,即该正方形的边 长. 2MiJTy0dTT解答:解: <1 )∵顶点坐标为 <1,1), ∴,解得,,即当顶点坐标为<1,1)时, a=1;11 / 12当顶点坐标为<m, m), m≠0 时,,解得,则 a 与 m 之间的关系式是:a=﹣或 am+1=0 .故答案是:﹣1; a=﹣或 am+1=0 .<2)∵ a≠0,∴y=ax 2+bx=a<x+ )2﹣,∴顶点坐标是<﹣,﹣).又∵该顶点在直线y=kx<k ≠0)上,∴ k< ﹣) =﹣.∵b≠0,∴b=2k ;<3)∵顶点 A 1,A 2,⋯, A n在直线 y=x 上,∴可设 A n<n, n),点 D n所在的抛物线顶点坐标为<t, t).由 <1) <2)可得,点 D n 所在的抛物线解读式为y=﹣x2+2x .∵四边形 A nBnCnDn 是正方形,∴点 D n的坐标是 <2n, n),2∴﹣<2n ) +22n=n ,∴4n=3t.∵ t、n 是正整数,且t≤12, n≤12,∴n=3 , 6 或 9.∴满足条件的正方形边长是3,6 或 9.点评:本题考查了待定系数法求二次函数的解读式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答<3)题时,要注意n 的取值范围.gIiSpiue7A 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2018年福建省福州市中考数学试卷

2018年福建省福州市中考数学试卷

2018年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,22小题,满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效。

毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-5的相反数是A.-5 B.5 C.15D.-15【答案】B2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯106【答案】B3.某几何体的三视图如图所示,则该几何体是A.三棱柱B.长方体C.圆柱D.圆锥【答案】D4.下列计算正确的是A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【答案】D5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是A.44 B.45 C.46 D.47【答案】C6.下列命题中,假命题是A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360︒【答案】B7.若(m-1)2+2n+=0,则m+n的值是A.-1 B.0 C.1 D.2【答案】A8.某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是A.60045050x x=+B.60045050x x=-C.60045050x x=+D.60045050x x=-【答案】A9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为A.45︒B.55︒C.60︒D.75︒【答案】C10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=kx交于E,F两点,若AB=2EF,则k的值是A.-1 B.1 C.12D.34【答案】D二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.分解因式:ma+mb=.【答案】m(a+b)12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【答案】1 513.计算:(2+1)(2-1)=.【答案】114.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是.【答案】2015.如图,在Rt△ABC中,∠ACB=90︒,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC .若AB=10,则EF的长是.【答案】5三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1912014⎛⎫⎪⎝⎭0+|-1|.【答案】解:原式=3+1+1=5.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1 3 .【答案】解:原式=x2+4x+4+2x-x2=6x+4.当x=13时,原式=6⨯13+4=6.17.(每小题7分,共14分)(1)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .【答案】证明:∵BE =CF , ∴BE +EF =CF +EF 即BF =CE .又∵AB =DC ,∠B =∠C , ∴△ABF ≌△DCE .∴∠A =∠E .(2)如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC 的顶点均在格点上. ①sin B 的值是 ;②画出△ABC 关于直线l 对称的△A 1B 1C 1(A 与A 1,B 与B 1,C 与C 1相对应).连接AA 1,BB 1,并计算梯形AA 1B 1B 的面积.【答案】①35;②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,高是4. ∴11AA B B S 梯形 =12(AA 1+BB 1)⨯4=20.18.(满分12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【答案】解:(1)50,24;(2)如图所示;(3)72;(4)该校D级学生有:2000⨯450=160人.19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B 商品共用了160元.(1)求A,B两种商品每件多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?【答案】解:(1)设A商品每件x元,B商品每件y元.依题意,得290 32160.x yx y+=⎧⎨+=⎩,解得2050. xy=⎧⎨=⎩,答:A商口每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10-a)件.依题意,得2050(10)300 2050(10)350.a aa a+-≥⎧⎨+-≤⎩,解得5≤a≤62 3 .根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20⨯5+50⨯(10-5)=350元;方案二:当a=6时,购买费用为20⨯6+50⨯(10-6)=320元.∵350>320,∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件.其中方案二费用最低.20.(满分11分)如图,在△ABC中,∠B=45︒,∠ACB=60︒,AB=32,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【答案】解:(1)过点A作AE⊥BC,垂足为E.∴∠AEB=∠AEC=90︒.在Rt△ABE中,∵sin B=AE AB,∴AB=AB·sin B=2sin45︒=222=3.∵∠B=45︒,∴∠BAE=45︒.∴BE =AE =3.在Rt △ACE 中,∵tan ∠ACB =AEEC, ∴EC =333tan tan 603AE ACB ===∠︒.∴BC =BE +EC =3+3.(2)由(1)得,在Rt △ACE 中,∵∠EAC =30︒,EC =3, ∴AC =23.解法一:连接AO 并延长交⊙O 于M ,连接CM . ∵AM 为直径, ∴∠ACM =90︒.在Rt △ACM 中,∵∠M =∠D =∠ACB =60︒,sin M =ACAM, ∴AM =sin ACM =23=4. ∴⊙O 的半径为2.解法二:连接OA ,OC ,过点O 作OF ⊥AC ,垂足为F , 则AF =12AC =3. ∵∠D =∠ACB =60︒, ∴∠AOC =120︒. ∴∠AOF =12∠AOC =60︒. 在Rt △OAF 中,sin ∠AOF =AFAO, ∴AO =sin AFAOF∠=2,即⊙O 的半径为2.21.(满分13分)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60︒,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=12秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ·BP=3.【答案】解:(1)1,334;(2)①∵∠A<∠BOC=60︒,∴∠A不可能是直角.②当∠ABP=90︒时,∵∠BOC=60︒,∴∠OPB=30︒.∴OP=2OB,即2t=2.∴t=1.③当∠APB=90︒时,作PD⊥AB,垂足为D,则∠ADP=∠PDB=90︒. ∵OP=2t,∴OD=t,PD=3t,AD=2+t,BD=1-t(△BOP是锐角三角形).解法一:∴BP2=(1-t)2+3t2,AP2=(2+t)2+3t2.∵BP2+AP2=AB2,∴(1-t)2+3t2+(2+t)2+3t2=9,即4t 2+t -2=0.解得t 1t 2= . 解法二:∵∠APD +∠BPD =90︒,∠B +∠BPD =90︒, ∴∠APD =∠B . ∴△APD ∽△PBD . ∴.AD PD PD BD= ∴PD 2=AD ·BD .于是)2=(2+t )(1-t ),即 4t 2+t -2=0.解得t 1t 2= .综上,当△ABP 为直角三角形时,t =1(3)解法一:∵AP =AB , ∴∠APB =∠B .作OE ∥AP ,交BP 于点E , ∴∠OEB =∠APB =∠B . ∵AQ ∥BP , ∴∠QAB +∠B =180︒. 又∵∠3+∠OEB =180︒, ∴∠3=∠QAB .又∵∠AOC =∠2+∠B =∠1+∠QOP , 已知∠B =∠QOP , ∴∠1=∠2. ∴△QAO ∽△OEP . ∴AQ AOEO EP=,即AQ ·EP =EO ·AO . ∵OE ∥AP , ∴△OBE ∽△ABP . ∴13OE BE BO AP BP BA ===. ∴OE =13AP =1,BP =32EP .∴AQ·BP=AQ·32EP=32AO·OE=32⨯2⨯1=3.解法二:连接PQ,设AP与OQ相交于点F. ∵AQ∥BP,∴∠QAP=∠APB.∵AP=AB,∴∠APB=∠B.∴∠QAP=∠B.又∵∠QOP=∠B,∴∠QAP=∠QOP.∵∠QFA=∠PFO,∴△QFA∽△PFO.∴FQ FAFP FO=,即FQ FPFA FO=.又∵∠PFQ=∠OFA,∴△PFQ∽△OFA.∴∠3=∠1.∵∠AOC=∠2+∠B=∠1+∠QOP,已知∠B=∠QOP,∴∠1=∠2.∴∠2=∠3.∴△APQ∽△BPO.∴AQ AP BO BP=.∴AQ·BP=AP·BO=3⨯1=3.22.(满分14分)如图,抛物线y=12(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D了.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【答案】(1)顶点D的坐标为(3,-1).令y=0,得12(x-3)2-1=0,解得x1=32x2=32.∵点A在点B的左侧,∴A点坐标(320),B点坐标(320). (2)过D作DG⊥y轴,垂足为G.则G(0,-1),GD=3.令x=0,则y=72,∴C点坐标为(0,72).∴GC=72-(-1)=92.设对称轴交x轴于点M. ∵OE⊥CD,∴∠GCD+∠COH=90︒.∵∠MOE+∠COH=90︒,∴∠MOE=∠GCD.又∵∠CGD=∠OMN=90︒,∴△DCG∽△EOM.∴9323CG DGOM EM EM==,即.∴EM=2,即点E坐标为(3,2),ED=3.由勾股定理,得AE2=6,AD2=3,∴AE2+AD2=6+3=9=ED2.∴△AED是直角三角形,即∠DAE=90︒.设AE交CD于点F.∴∠ADC+∠AFD=90︒.又∵∠AEO+∠HFE=90︒,∴∠AFD=∠HFE,∴∠AEO=∠ADC.(3)由⊙E的半径为1,根据勾股定理,得PQ2=EP2-1. 要使切线长PQ最小,只需EP长最小,即EP2最小.设P坐标为(x,y),由勾股定理,得EP2=(x-3)2+(y-2)2. ∵y=12(x-3)2-1,∴(x-3)2=2y+2.∴EP2=2y+2+y2-4y+4=(y-1)2+5.当y=1时,EP2最小值为5.把y=1代入y=12(x-3)2-1,得12(x-3)2-1=1,解得x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴点P坐标为(5,1).此时Q点坐标为(3,1)或(1913 55,).。

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析一、选择题本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在实数|﹣3|,﹣2,0,π中,最小的数是( )A.|﹣3|B.﹣2C.0D.π答案解析:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B. 2.某几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.长方体D.四棱锥答案解析:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2B.1,2,4C.2,3,4D.2,3,5答案解析:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.一个n边形的内角和为360°,则n等于( )A.3B.4C.5D.6答案解析:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15°B.30°C.45°D.60°答案解析:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12答案解析:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.已知m=+,则以下对m的估算正确的( )A.2<m<3B.3<m<4C.4<m<5D.5<m<6答案解析:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.B.C.D.答案解析:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )A.40°B.50°C.60°D.80°答案解析:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根答案解析:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、填空题11.计算:()0﹣1= 0 .答案解析:原式=1﹣1=0,故答案为:0.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 120 .答案解析:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .答案解析:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3. 14.不等式组的解集为 x>2 .答案解析:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .答案解析:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .答案解析:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、解答题本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.解方程组:.答案解析:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.答案解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.先化简,再求值:(﹣1)÷,其中m=+1.答案解析:(﹣1)÷===,当m=+1时,原式=.20.求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.答案解析:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.答案解析:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.答案解析:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.答案解析:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.24.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE 的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.答案解析:(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.25.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N (x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C 的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.答案解析:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•cos30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,∴3a+2=﹣1,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,在Rt△BEM中,tan∠MBE===﹣x1,在Rt△BFN中,tan∠NBF=====﹣x1,∵tan∠MBE=tan∠NBF,∴∠MBE=∠NBF,则BC平分∠MBN;②∵y轴为BC的垂直平分线,∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2,∵x12=2﹣y2,∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1,由①得:﹣1<y1≤2,∴﹣<y0≤0,则△MBC的外心的纵坐标的取值范围是﹣<y0≤0.。

2018年中考数学试卷及答案(pdf解析版)

2018年中考数学试卷及答案(pdf解析版)

2018年福建省南平市中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)(2014•南平)﹣4的相反数( ) A.4B.﹣4C.D.﹣分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选:A.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.3.(4分)(2014•南平)一个袋中只装有3个红球,从中随机摸出一个是红球( ) A.可能性为B.属于不可能事件C.属于随机事件D.属于必然事件考点:随机事件;可能性的大小.分析:根据要求判断事件的类型,再根据必然事件、不可能事件、随机事件的概念选择即可.解答:解:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选:D.点评:本题主要考查必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(4分)(2014•南平)下列计算正确的是( ) A.(2a2)4=8a6B.a3+a=a4C.a2÷a=a D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则,同底数幂的除法,完全平方公式以及幂的乘方的知识求解即可求得答案.解答:解:A、(2a2)4=16a8,故A选项错误;B、a3+a,不是同类项不能计算,故B选项错误;C、a2÷a=a,故C选项正确;D、(a﹣b)2=a2+b2﹣2ab,故D选项错误.故选:C.点评:本题主要考查了合并同类项的法则,同底数幂的除法,完全平方公式以及幂的乘方的知识,解题的关键是熟记法则及公式.5.(4分)(2014•南平)将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是( ) A.45°B.60°C.90°D.180°考点:平行线的性质.分析:利用平行线的性质和对顶角的性质进行解答.解答:解:如图,∵a∥b,∴∠1=∠3,∠2=∠4.又∵∠3=∠5,∠4=∠6,∠5+∠6=90°,∴∠1+∠2=90°.故选:C.点评:本题考查了平行线的性质.正确观察图形,熟练掌握平行线的性质和对顶角相等.6.(4分)(2014•南平)下列说法正确的是( ) A.了解某班同学的身高情况适合用全面调查 B.数据2、3、4、2、3的众数是2 C.数据4、5、5、6、0的平均数是5 D.甲、乙两组数据的平均数相同,方差分别是S=3.2,S=2.9,则甲组数据更稳定考点:方差;全面调查与抽样调查;算术平均数;众数.分析:根据调查方式,可判断A;根据众数的意义可判断B;根据平均数的意义,可判断C;根据方差的性质,可判断D.解答:解:A、了解某班同学的身高情况适合全面调查,故A正确;B、数据2、3、4、2、3的众数是2,3,故B错误;C、数据4、5、5、6、0的平均数是4,故C错误;D、方差越小越稳定,乙的方差小于甲得方差,乙的数据等稳定,故D错误.故选:A.点评:本题考查了方差,方差越小数据越稳定是解题关键.7.(4分)(2014•南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( ) A.1,2,1B.1,2,2C.1,2,3D.1,2,4考点:三角形三边关系.分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.解答:解:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确;故选:B.点评:此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.8.(4分)(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为( ) A.y=10x+30B.y=40x C.y=10+30x D.y=20x考点:函数关系式.分析:根据师生的总费用,可得函数关系式.解答:解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,故选:A.点评:本题考查了函数关系式,师生的总费用的等量关系是解题关键.9.(4分)(2014•南平)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=( ) A.1:2B.2:3C.1:3D.1:4考点:相似三角形的判定与性质;三角形中位线定理.分析:在△ABC中,AD、BE是两条中线,可得DE是△ABC的中位线,即可证得△EDC∽△ABC,然后由相似三角形的面积比等于相似比的平方,即可求得答案.解答:解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=()2=.故选D.点评:此题考查了相似三角形的判定与性质与三角形中位线的性质.此题比较简单,注意中位线的性质的应用,注意掌握相似三角形的面积的比等于相似比的平方定理的应用是解此题的关键.10.(4分)(2014•南平)如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是( ) A.B.C.D.1考点:规律型:数字的变化类;算术平方根.分析:根据观察数列,可得,每三个数一循环,根据有序数对的表示方法,可得有序数对表示的数,根据是数的运算,可得答案.数解答:解;每三个数一循环,1、,(8,2)在数列中是第(1+7)×7÷2+2=30个,30÷3=10,(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是,(2014,2014)在数列中是第(1+2014)×2014÷2=2029105个,2029105÷3=676368…1,(2014,2014)表示的数正好是第676369轮的一个数,即(2014,2014)表示的数是1,1=,故选:B.点评:本题考查了数字的变化类,利用了数字的变化规律.二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)(2014•南平)请你写出一个无理数 π .考点:无理数.专题:开放型.分析:①开方开不尽的数,②无限不循环小数,③含有π的数,由此可写出答案.解答:解:由题意可得,π是无理数.故答案可为:π.点评:此题考查了无理数的定义,关键是掌握无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,难度一般.12.(3分)(2014•南平)已知点P在线段AB的垂直平分线上,PA=6,则PB= 6 .考点:线段垂直平分线的性质.分析:直接根据线段垂直平分线的性质进行解答即可.解答:解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.点评:本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.13.(3分)(2014•南平)五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是 80 .考点:中位数.分析:将这组数据从小到大的顺序排列后,处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80.解答:解:将这组数据从小到大排列,中间的数为80,所以中位数是80.故答案为:80.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.(3分)(2014•南平)点P(5,﹣3)关于原点的对称点的坐标为 (﹣5,3) .考点:关于原点对称的点的坐标.专题:几何图形问题.分析:两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.解答:解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故答案为(﹣5,3).点评:主要考查两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.15.(3分)(2014•南平)同时掷两枚硬币,两枚硬币全部正面朝上的概率为 .考点:概率公式.分析:列举出所有情况,看所求的情况占总情况的多少即可.解答:解:可能出现的情况有:正正,正反,反正,反反,所以全部正面朝上的概率为.点评:此题考查了列举法求概率,解题的关键是找到所有的情况.16.(3分)(2014•南平)分解因式:a3﹣2a2+a= a(a﹣1)2 .考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解答:解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.(3分)(2014•南平)将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′= 65 °.考点:角的计算;翻折变换(折叠问题).分析:根据折叠前后对应部分相等得∠AEB′=∠AEB,再由已知求解.解答:解:∵∠AEB′是△AEB沿AE折叠而得,∴∠AEB′=∠AEB.又∵∠BEC=180°,即∠AEB′+∠AEB+∠CEB′=180°,又∵∠CEB′=50°,∴∠AEB′==65,故答案为:65.点评:本题考查了角的计算以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 18.(3分)(2014•南平)如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.①四边形AO1BO2为菱形;②点D的横坐标是点O2的横坐标的两倍;③∠ADB=60°;④△BCD的外接圆的圆心是线段O1O2的中点.以上结论正确的是 ①③ .(写出所有正确结论的序号)考点:圆的综合题.分析:①连接AO1,AO2,BO1,BO2根据菱形的判定定理即可得出结论;②根据垂径定理即可得出结论;③连接O1O2,AB,BD,根据三角形中位线定理即可得出结论;④先判断出△BCD是等边三角形,再根据等边三角形外心的性质即可得出结论.解答:解:①如图1所示,连接AO1,AO2,B O1,BO2,∵圆⊙O1与⊙O2是等圆,∴AO1=AO2=BO1=BO2,∴四边形AO1BO2为菱形,故此小题正确;②∵AD是⊙O2的弦,∴O2在线段AD的垂直平分线上,∴点D的横坐标不是点O2的横坐标的两倍,故此小题错误;③连接O1O2,AB,BD,∵y轴是⊙O2的切线,∴O1O2⊥y轴,∵AD∥1O2.∵四边形AO1BO2为菱形,∴AB⊥O1O2,O1E=O2E,∴∠BAD=90°,∴BD过点O2,∴O2E是△ABD的中位线,∴AD=O1O2=BD,∴∠ADB=60°;④∵由③知,2AD=BD,∴CD=BD=BC,∴△BCD的外心是各边线段垂直平分线的交点,∵O1O2的中点是△BCD中位线的中点,∴△BCD的外接圆的圆心不是线段O1O2的中点,故此小题错误.故答案为:①③.点评:本题考查的是圆的综合题,涉及到切线的性质、菱形的判定定理及直角三角形的性质,难度适中.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)2.(4分)(2014•南平)如图,几何体的主视图是( ) A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有4个正方形,第二层从左起第二个有一个正方形.故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.19.(14分)(2014•南平)(1)计算:﹣(π﹣3)0+()﹣1+|﹣1|.(2)化简:(﹣)•.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用立方根定义计算,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=2﹣1+2+﹣1=2+;(2)原式=•=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2014•南平)解不等式组:.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再根据不等式的解集找出不等式组的解集即可.解答:解:由①得:x<2,由②得:2﹣(x+1)≥0,2﹣x﹣1≥0,1﹣x≥0,x≤1,即不等式组的解集为x≤1.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能根据找不等式组解集的规律找出不等式组的解集.21.(8分)(2014•南平)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.考点:相似三角形的判定与性质.专题:证明题.分析:利用两个角对应相等的两个三角形相似,证得△ABD∽△ACB,进一步得出,整理得出答案即可.解答:证明:∵∠ABD=∠C,∠A是公共角,∴△ABD∽△ACB,∴,∴AB2=AD•AC.点评:此题考查相似三角形的判定与性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.④平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.⑤相似三角形的对应边成比例,对应角相等.22.(10分)(2014•南平)在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)随机抽查了 50 名学生;(2)补全图中的条形图;(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用一般的人数除以它所占的百分比即可得抽查的学生总数;(2)用抽查的学生总数减去不喜欢、一般、很喜欢的学生人数,得到较喜欢的人数,再补全图中的条形图即可;(3)用全校的学生数乘以学生喜欢(含“较喜欢”和“很喜欢”)足球运动所占的百分比即可.解答:解:(1)10÷20%=50(名),故答案为:50;(2)50﹣5﹣10﹣15=20(名),补全统计图如下:(3)500×(1﹣10%﹣20%)=350(名).答:全校约有350名学生喜欢足球运动.点评:本题主要考查了条形统计图,用样本估计总体及扇形统计图,解题的关键是把条形统计图和扇形统计图中的数据正确的结合起来求解.23.(10分)(2014•南平)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线.(2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)考点:切线的判定;解直角三角形.分析:(1)连接OC,根据等腰三角形的性质求出OC⊥AB,根据切线的判定得出即可;(2)解直角三角形求出OC,即可求出答案.解答:(1)证明:连接OC,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线.(2)解:∵由(1)得OC⊥AB,∴∠ACO=90°,∴OC=AC▪tan34°=6×tan34°≈4.047,∴⊙O的周长=2π▪OC=2×3.142×4.047≈25.43.点评:本题考查了等腰三角形的性质,切线的判定,解直角三角形的性质,主要考查学生的计算和推理能力,题目比较好,难度适中.24.(10分)(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.考点:反比例函数与一次函数的交点问题.分析:(1)把点A、B的坐标代入反比例函数解析式,求得m、a的值;然后把点A、B的坐标分别代入一次函数解析式来求k、b的值;(2)利用一次函数图象上点的坐标特征求得点C的坐标;然后由S△ACD=S梯形AEOC﹣S△COD﹣S△DEA进行解答.解答:解:(1)∵点A(4,1)在反比例函数上,∴∴k=4×1=4,∴.把B(a,2)代入,得2=,∴a=2,∴B(2,2).∵把A(4,1),B(2,2)代入y=kx+b∴解得,∴一次函数的解析式为;(2)∵点C在直线AB上,∴当x=0时,y=3,∴C(0,3)过A作AE⊥x轴于E.∴S△ACD=S梯形AEOC﹣S△COD﹣S△DEA==5.点评:本题考查了反比例函数与一次函数的交点问题.解题时,注意“数形结合”数学思想的应用.25.(12分)(2014•南平)如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据待定系数法即可求得;(2)把C(m,m﹣1)代入求得点C的坐标,从而求得AH=4,CH=2,BH=1,AB=5,然后根据,∠AHC=∠BHC=90°得出△AHC∽△CHB,根据相似三角形的对应角相等求得∠ACH=∠CBH,因为∠CBH+∠BCH=90°所以∠ACH+∠BCH=90°从而求得∠ACB=90°,先根据有两组对边平行的四边形是平行四边形求得四边形DECF是平行四边形,进而求得□DECF是矩形;(3)根据矩形的对角线相等,求得EF=CD,因为当CD⊥AB时,CD的值最小,此时CD 的值为2,所以EF的最小值是2;解答:(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),由A(﹣1,0)、B(3,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴□DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;点评:本题考查了待定系数法求解析式,抛物线上点的坐标的求法,三角形相似的判定和性质,矩形的判定和性质等,本题是二次函数的综合性题,其难点是三角形相似的判定:两组对应边对应成比例且夹角相等的两个三角形相似;26.(14分)(2014•南平)在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为 60 °.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为 45 °.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为 36 °.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.考点:四边形综合题.分析:(1)①由△ABC与△APE均为正三角形得出相等的角与边,即可得出△ABP≌△ACE.②由△ABP≌△ACE,得出∠ACE=∠B=60°,即可得出∠ECM的度数.(2)①作EN⊥BN,交BM于点N,由△ABP≌△ACE,利用角及边的关系,得出CN=EN,即可得出∠ECM的度数.②作EN⊥BN,交BM于点N,由△ABP≌△ACE,得出角及边的关系,得出CN=EN,即可得出∠ECM的度数.(3)过E作EK∥CD,交BM于点K,由正多边形的性质可得出△ABP≌△PKE,利用角及边的关系,得出CK=KE,即△EKC是等腰三角形,根据多边形的内角即可求出∠ECM的度数.解答:解:(1)①证明:如图1,∵△ABC与△APE均为正三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴∠BAC﹣∠PAC=∠PAE﹣∠PAC即∠BAP=∠CAE,在△ABP和△ACE中,,∴△ABP≌△ACE (SAS).②∵△ABP≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=60°,∠ECM=180°﹣60°﹣60°=60°.故答案为:60.(2)①如图2,作EN⊥BN,交BM于点N∵四边形ABCD和APEF均为正方形,∴AP=PE,∠B=∠ENP=90°,∴∠BAP+∠APB=∠EPM+∠APB=90°,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠ECM=∠CEN=45°②如图3,作EN∥CD交BM于点N,∵五边形ABCDF和APEGH均为正五边方形,∴AP=PE,∠B=∠BCD,∵EN∥CD,∴∠PNE=∠BCD,∴∠B=∠PNE∵∠BAP+∠APB=∠EPM+∠APB=180°﹣∠B,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠NCE=∠NEC,∵∠CNE=∠BCD=108°,∴∠ECM=∠CEN=(180°﹣∠CNE)=×(180°﹣108°)=36°.故答案为:45,36.(3)如图4中,过E作EK∥CD,交BM于点K,∵n边形ABC…和n边形APE…为正n边形,∴AB=BC AP=PE∠ABC=∠BCD=∠APE=∵∠APK=∠ABC+∠BAP,∠APK=∠APE+∠EPK∴∠BAP=∠KPE∵EK∥CD,∴∠BCD=∠PKE∴∠ABP=∠PKE,在△ABP和△PKE中,,∴△ABP≌△PKE(AAS)∴BP=EK,AB=PK,∴BC=PK,∴BC﹣PC=PK﹣PC,∴BP=CK,∴CK=KE,∴∠KCE=∠KEC,∵∠CKE=∠BCD=∴∠ECK=.点评:本题主要考查了四边形综合题,涉及三角形全等的判定及性质,正多边形的内角及等腰三角形的性质,解题的关键是正确作出辅助线,运用三角形全等求出对应边相等.。

2018年全国中考数学真题试题福建中考数学A卷(解析版-精品文档)

2018年全国中考数学真题试题福建中考数学A卷(解析版-精品文档)

2018年福建省中考数学A试题一、选择题:本大题共10小题,每小题4分,共40分.1.(2018福建A卷,1,4)在实数3-、-2、0、π中,最小的数是()A.3- B.-2 C. 0 D. π【答案】B【解析】∵3-=3,根据有理数的大小比较法则(正数大于零,负数都小于零,正数大于一切负数,比较即可.解:∵-2<0<3-<π,∴最小的数是-2.故选C.【知识点】有理数比较大小2.(2018福建A卷,2,4)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱 C.长方体 D.四棱锥【答案】C【解析】思路一:充分发挥空间想象能力,让俯视图根据主视图长高,再利用左视图进行验证即可.思路二:分别根据球,圆柱,圆锥,立方体的三视图作出判断.三棱柱的主视图和左视图都是长方形,俯视图是三角形;四棱锥的主视图和左视图都是三角形,俯视图是有对角线的四形;长方体的三视图都是长方形,由此得这个几何体是长方体,故选C.【知识点】三视图的反向思维3.(2018福建A卷,3,4)下列各组数中,能作为一个三角形三边边长的是( ) A.1,1,2 B.1,2,4C. 2,3,4D.2,3,5【答案】C【解析】三数中,若最小的两数和大于第三数,符合三角形的三边关系,则能成为一个三角形三边长,否则不可能.解:∵1+1=2 ,∴选项A不能;∵1+2<4,∴选项B不可能;∵2+3>4,∴选项C能;∵2+3=5,∴选项D不能.故选C.【知识点】三角形三边的关系4.(2018福建A卷,4,4)一个n边形的内角和是360°,则n等于( )A.3 B.4 C. 5 D. 6【答案】B【解析】先确定该多边形的内角和是360゜,根据多边形的内角和公式,列式计算即可求解.解:∵多边形的内角和是360゜,∴多边形的边数是:360゜=(n-2)×180°,n=4.【知识点】多边形;多边形的内角和5.(2018福建A卷,5,4)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15° B.30° C. 45° D. 60°【答案】A【解析】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD,AD是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB=45°,∴∠ECA=-60°-45°=15°.【知识点】等边三角形性质,三线合一6.(2018福建A卷,6,4)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B. 两枚骰子向上一面的点数之和等于1C. 两枚骰子向上一面的点数之和大于12D. 两枚骰子向上一面的点数之和等于12【答案】D【解析】事先就知道一定能发生的事件是必然事件,所以两枚骰子向上一面的点数之和大于1是必然事件;事先知道它有可能发生,也有可能不发生的事件是随机事件,所以两枚骰子向上一面的点数之和等于12是随机事件;事先知道它一定不会发生的事件是不可能事件,所以两枚骰子向上一面的点数之和等于1、两枚骰子向上一面的点数之和大于12是不可能事件.故选D.【知识点】必然事件;随机事件;不可能事件;m,则以下对m的估算正确的是( )7.(2018福建A卷,7,4)已知43A.23mB. 34m C. 45m D. 56mB【答案】B【解析】本题考查了算术平方根的估算.解:因为1<3<4,所以134<<,即132<<,又∵42,∴34m.故选B.【知识点】算术平方根的概念及求法8.(2018福建A卷,8,4)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是 ( )A.5152x yx yB.5152x yx yC.525x yx yD.525x yx y【答案】A【解析】本题考查了二元一次方程组,解题的关键是找准等量关系.由“绳索比竿长5尺”,可得x=y+5;再根据“将绳索对半折后再去量竿,就比竿短5尺”,可列得方程152x y.所以符合题意的方程组是5152x yx y.【知识点】二元一次方程组的实际应用9.(2018福建A卷,9,4)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于 ( )A.40° B. 50° C. 60° D. 80°【答案】D【解析】根据同弧所对的圆周角等于这条弧所对圆心角的一半,即可求出结果. 解:∵ AB是⊙O 的直径,∴∠ABC=90°,∵∠ACB=50°,∴∠A=90°-∠A C B=40°,∠BOD=2∠A=80°.【知识点】圆;圆的有关性质;圆心角、圆周角定理10.(2018福建A 卷,10,4)已知关于x 的一元二次方程21210a x bx a 有两个相等的实数根,下列判断正确的是 ( ) A .1一定不是关于x 的方程20x bx a 的根 B.0一定不是关于x 的方程20x bx a 的根 C.1和-1都是关于x 的方程20x bx a 的根 D. 1和-1不都是关于x 的方程20x bx a 的根 【答案】D【解析】根据一元二次方程有两个相等的,方程根的判别式等于零,从而建立关于a 、b 的等式,再逐一判断20x bx a 根的情况即可. 解:由关于x 的方程21210a x bx a 有两个相等的实数根,所以△=0,所以错误!未找到引用源。

2018年福建省中考数学试卷(A)及答案

2018年福建省中考数学试卷(A)及答案

2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数3-、π、0、–2中,最小的是( ) .(A) 3- (B) –2 (C) 0 (D)π 2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥 3.下列各组数中,能作为三角形三条边长的是( ) . (A) 1、1、2 (B) 1、2、4 (C) 2、3、4 (D) 2、3、54.一个n 边形的内角和360°,则n 等于( ) . (A)3 (B) 4 (C) 5 (D) 65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上, 若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ( ) .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12 (D) 两枚骰子向上一面的点数之和等于12 7.已知m =34+,则以下对m 的估算正确的是 ( ) .(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <6 8.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) . (A) ⎪⎩⎪⎨⎧-=+=5215y x y x (B)⎪⎩⎪⎨⎧+=-=5215y x y x (C) ⎩⎨⎧-=+=525y x y x (D) ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D , 若∠ACB =50°,则∠BOD = ( ) . (A) 40° (B) 50° (C) 60° (D) 80°,10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) .(A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 二、填空题(24分)11.计算:1220-⎪⎪⎭⎫⎝⎛=___0___. 12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____. 13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____(2题)俯视图 (5题)A(19题)A BCDOA14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为__x >2_____.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三 角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的 锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =___3–1____. 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分)17.(8分)解方程组: ⎩⎨⎧=+=+1041y x y x18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D ,连接BD 、BG .EA A' B'(1)求∠BDF 的度数; (2)求CG 的长.解:构辅助线如图所示:(1)∠BDF =45°(2)AD=AB=10,证△ABC ∽△AED , CG=AE=AD AC AB ⨯=10810⨯=22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不 含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长;(2)求矩形菜园ABCD 面积的最大值.24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F . (1)延长DC 、FB 相交于点P ,求证:PB =PC ; (2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =3,DH =1,∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和1==BF CDPB PC∴PB=PC ; (2)连接OD ,设∠EDB=x ,则∠EBD=90°–x ,易证:四边形BCDH 为□, AC=2 ∴BC=DH=1,∠CAB= 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH ∴∠ODH=180°–2∠OHD=180°–2×80°=20° ∴∠OAD=∠ODA=∠ADB –(∠ODH+ x )=60°–(20°+ x )=40°–x 又∵∠AOD=2∠ABD=120° ∴180°–2(40°–x )=120°,解之得:x =20°25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) . (1)若图象过点(2-,0),求a 与b 满足的关系式;(2) 抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC 中有一个内角为60°. ①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:P A 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2 又图象过(2-,0),∴0= a (2-)2+b (2-)+2∴a =b 22–1 (2)依题知抛物线:y =ax 2+2,AB=AC ,AD ⊥BC . ①又△ABC 中有一个内角为60°,∴△ABC 是正△. 连接OC ,则OC=OA=2, ∴C(3,–1) 从而有y =–x 2+2,(图1)(图2)②设直线MN :y =kx ,则kx =–x 2+2, x 2+ kx –2=0x 1 + x 2 = –k ,x 1 x 2 =–2, x 2 = –k –x 1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4) tan ∠1=PE ME =114y x --=114kx x --=22114x x kx x ⋅--=221214x x kx x x -=221x k +tan ∠2=PF NF=224y x -=224kx x -=11224x x kx x ⋅-=211214x kx x x x -=kx +221∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) .(A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,x =1是方程x 2+bx +a =0的根②a +1≠0,a 可以取0,故x =0是方程x 2+bx +a =0的根 ③当b=a +1时,x =–1是方程x 2+bx +a =0的根但b =–(a +1)和b=a +1不能同时成立,即x =1和x =–1为方程根不能同时成立,故选(D) 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:x3=x +m , x 2+mx –3=0由y =x +m 知:AC=BC=x A –x B =∆=122+m∴ S △ABC =221BC =6)12(2122≥+m。

2018年福建福州中考数学试卷及答案(word解析版)

2018年福建福州中考数学试卷及答案(word解析版)

2018年福建福州中考数学试卷及答案(word解析版)⼆〇⼀三年福州市初中毕业会考、⾼级中等学校招⽣考试数学试卷(全卷共4页,三⼤题,共22⼩题;满分150分;考试时间120分钟)⼀、选择题(共10⼩题,每题4分,满分40分;每⼩题只有⼀个正确的选项,请在答题卡的相应位置填涂)1.(2018福建福州,1,4分) 2的倒数是().A .12B .2C .-12D .-2【答案】A2.(2018福建福州,2,4分)如图,OA ⊥OB ,若∠1=40°,则∠2的度数是().A .20°B .40°C .50°D .60°【答案】C3.(2018福建福州,3,4分)2018年12⽉13⽇,嫦娥⼆号成功飞抵距地球约700万公⾥远的深空.7 000 000⽤科学记数法表⽰为().A .7×105B .7×106C .70×106D .7×107【答案】 B.4.(2018福建福州,4,4分)下列⽴体图形中,俯视图是正⽅形的是().ABCD【答案】D .5.(2018福建福州,5,4分)下列⼀元⼆次⽅程有两个相等实数根的是().A .x 2+3=0B .x 2+2x =0C .(x +1) 2=0D .(x +3)(x -1)=0【答案】C.6.(2018福建福州,6,4分)不等式1+x <0的解集在数轴上表⽰正确的是().12 OACA B C D【答案】A.7.(2018福建福州,7,4分)下列运算正确的是().A .a ·a 2=a 3B .(a 2)3=a 5C .22()a a b b=D .a 3÷a 3=a【答案】A .8.(2018福建福州,8,4分)如图,已知△ABC ,以点B 为圆⼼,AC 长为半径画弧;以点C 为圆⼼,AB 长为半径画弧,两弧交于点D ,且点A 、点D 在BC 异侧,连接AD ,量⼀量线段AD 的长,约为().A .2.5 cmB .3.0 cmC .3.5 cmD .4.0 cm【答案】A.9.(2018福建福州,9,4分)袋中有红球4个,⽩球若⼲个,它们只有颜⾊上的区别.从袋中随机地取出⼀个球,如果取到⽩球的可能性较⼤,那么袋中⽩球的个数可能是().A .3个B .不⾜3个C .4个D .5个或5个以上【答案】D .10.(2018福建福州,10,4分)A 、B 两点在⼀次函数图象上的位置如图所⽰,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是().A .a >0B .a <0C .b =0D .ab <0【答案】B.⼆、填空题(共5⼩题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.(2018福建福州,11,4分)计算:21a a-=_________.【答案】1a; 12.(2018福建福州,12,4分)矩形的外⾓和等于_______度.【答案】360;13.(2018福建福州,13,4分)某校⼥⼦排球队队员的年龄分布如下表:AB C【答案】14;14.(2018福建福州,14,4分)已知实数a 、b 满⾜:a +b =2,a -b =5,则(a +b )3·(a -b )3的值是___________.【答案】1000;15.(2018福建福州,15,4分)如图,由7个形状、⼤⼩完全相同的正六边形组成⽹格,正六边形的顶点成为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的⾯积是____________.【答案】三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线⽤铅笔画完,再⽤⿊⾊签字笔描⿊) 16.(每⼩题7分,共14分)(1)(2018福建福州,16(1),7分)计算:0(1)4-+-- 【答案】解:0(1)4-+-- =1+4-=5-(2)(2018福建福州,16(2),7分)化简:2(3)(4)a a a ++-.【答案】解:2(3)(4)a a a ++- =a 2+6a +9+4a -a 2 =10a +9.17.(每⼩题8分,共16分)(1)(2018福建福州,17(1),8分)如图,AB 平分∠CAD ,AC =AD .求证:BC =BD .【答案】证明⼀:∵AB 平分∠CAD ,∴∠BAC =∠BAD ,在△ABC 和△ABD 中 ,,,AB AB BAC BAD AC AD =??∠=∠??=?∴△ABC ≌△ABD .∴BC =BD .证明⼆:连接CD∵AC =AD ,AB 平分∠CAD ,∴AB 垂直平分CD ,∴BC =BD .(2)列⽅程解应⽤题(2018福建福州,17(2),8分)把⼀些图书分给某班学⽣阅读,如果每⼈分3本,则剩余20本;如果每⼈分4本则还缺25本.这个班有多少学⽣?【答案】解法⼀:设这个班有x 名学⽣,根据题意,得: 3x +20=4x -25 解得:x =45答:这个班共有45名学⽣.解法⼆:设这个班有x 名学⽣,图书⼀共有y 本. 320425y x y x =+??=-? ,解得45,155.x y =??=?答:这个班共有45名学⽣.18.(10分)(2018福建福州,18,10分)为了解某校学⽣的⾝⾼情况,随机抽取该校男⽣、⼥⽣进⾏抽样调查.已知抽取的样本中,男⽣、⼥⽣⼈数相同,利⽤所得数据绘制如下统计图表:⾝⾼情况分组表(单位:cm )男⽣⾝⾼情况直⽅图⼥⽣⾝⾼情况扇形统计图CDBA(1)样本中,男⽣⾝⾼的众数在_______组,中位数在_______组;(2)样本中,⼥⽣⾝⾼在E 组的⼈数有_______⼈;(3)已知该校共有男⽣400⼈、⼥⽣380⼈,请估计⾝⾼在160≤x <170之间的学⽣约有多少⼈?【答案】(1)众数在B 组;中位数在C 组.(2)样本⼥⽣⼈数=样本男⽣⼈数=40; E 组⼥⽣百分⽐=5%E 组⼥⽣⼈数=40×5%=2(⼈)(3)男⽣:400×1840=180(⼈).⼥⽣:380×40%=152(⼈).19.(2018福建福州,19,12分)如图,在平⾯直⾓坐标系xOy 中,点A 的坐标为(-2,0),等边三⾓形AOC 经过平移或轴对称或旋转都可以得到△OBD .(1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是_______个单位长度;△AOC 与△BOD 关于直线对称,则对称轴是_______;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转⾓可以是_______度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数.【答案】(1)平移的距离是2个单位;对称轴是y 轴;旋转⾓等于120°.(2)∵△ACO 、△BOD 是等边三⾓形,∴∠CAO =60°,OA =OD ,∵∠AOD =120°,OA =OD ,∴∠DAO =30°,∴AE 平分∠CAO ,∴AD 垂直平分CO ,∴∠AEO =90°.20.(12分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =1,AM =2,AE.(1)求证:BC 是⊙O 的切线;(2)求BN 的长.第20题图C【答案】(1)证明:∵ME =1,AM =2,AE∴AE 2+ME 2=AM 2,∴∠AEM =90°,∵MN ∥BC ,∴∠B =∠AEM =90°,∵AB 为⊙O 的直径,∴BC 是⊙O 的切线.(2)连接OM ,BM ,∵∠AEM =90°,AB 为⊙O 的直径,∴BN =BM ,∠AMB =90°,∵∠AEM =90°,ME =1,AM =2,∴∠CAB =30°,∴∠BOM =60°,∵∠CAB =30°,AM =2,∴AB∴BM =60180π.∴BN .21.(12分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 上⼀点,△P AD 的⾯积为12,设AB =x ,AD =y .(1)求y 与x 的函数关系式;(2)若∠APD =45°,当y =1时,求PB ·PC 的值;(3)若∠APD =90°,求y 的最⼩值.备⽤图第21题图BCB【答案】(1)如图2,过点A 作AH ⊥BC ,垂⾜为H .在Rt △ABH 中,∠B =45°,AB =x ,所以AH =2x .由S △APD =12AD AH ?,可得11222y x =?.整理,得y x =.(2)当y =1时,x =如图3,如图4,由于∠APC =∠B +∠1,∠APC =∠APD +∠2,当∠APD =∠B =∠C =45°时,∠1=∠2.所以△ABP ∽△PCD .因此AB PCBP CD=.所以PC ·PD =AB ·CD =2.图2 图3 图4(3)如图5,当∠APD =90°时,点P 在以AD 为直径的圆上.如图6,当AD 最⼩时,圆与BC 相切于点P .此时△APD 是等腰直⾓三⾓形.所以AD =2AH ,即2y x =.由(1)知,y x=.于是可以解得此时y =.图5 图622.(14分)我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0)(1)对于这样的抛物线;当顶点坐标为(1,0)时,a =;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kx (k ≠0)上,请⽤含k 的代数式表⽰b ;(3)现有⼀组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x ,横坐标依次为1,2,…,n(n 为正整数,且n 为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂⾜记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正⽅形A n B n C n D n .若这组抛物线中有⼀条经过点D n ,求所有满⾜条件的正⽅形边长.【答案】(1)当顶点坐标为(1,1)时,a =-1;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是1a m=-.(2)设抛物线的顶点的坐标为(m ,km ),那么222()2y a x m km ax amx am km =-+=-++.对照y =ax 2+bx ,可得20,2.am km b am ?+=?=-? 由此得到b =2k .(3)正⽅形的顶点D 1,D 2,…,D n 的坐标分别为(2,1)、(4,2)、(6,3)、(8,4)、(10,5)、(12,6)、(14,7)、(16,8)、(18,9)、(20,10)、(22,11)、(24,12),这些点在直线1 2y x =上.由(1)知,当抛物线的顶点(m ,m )在直线y =x 上时,1a m=-.根据抛物线的对称性,抛物线与x 轴的交点为原点O 和(2m ,0).所以顶点为(m ,m )的抛物线的解析式为1(2)y x x m m=--.联⽴12y x =和1(2)y x x m m =--,可得点D 的坐标为33(,)24m m .当m 分别取正整数4、8、12时,对应的点D 为D 3(6,3)、D 6(12,6)、D 9(18,9),它们所对应的正⽅形的边长分别为3、6、9(如图1所⽰).图1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年福建省中考数学试卷(A 卷)
一、选择题(每题只有一个正确选项,本题共10小题,每题4分,共40分)
1.在实数|﹣3|,﹣2,0,π中,最小的数是( )
A .|﹣3|
B .﹣2
C .0
D .π
2.某几何体的三视图如图所示,则该几何体是( )
A .圆柱
B .三棱柱
C .长方体
D .四棱锥
3.下列各组数中,能作为一个三角形三边边长的是( )
A .1,1,2
B .1,2,4
C .2,3,4
D .2,3,5
4.一个n 边形的内角和为360°,则n 等于( )
A .3
B .4
C .5
D .6
5.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°, 则∠ACE 等于( )
A .15°
B .30°
C .45°
D .60°
6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,
则下列事件为随机事件的是( )
A .两枚骰子向上一面的点数之和大于1
B .两枚骰子向上一面的点数之和等于
C .两枚骰子向上一面的点数之和大于12
D .两枚骰子向上一面的点数之和等于12
7.已知m =34+,则以下对m 的估算正确的( )
A .2<m <3
B .3<m <4
C .4<m <5
D .5<m <6
8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )
A .⎪⎩⎪⎨⎧-=+=5215y x y x
B .⎪⎩⎪⎨⎧+=-=52
15y x y x C .⎩⎨⎧-=+=525y x y x D .⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°, 则∠BOD 等于( )
A .40°
B .50°
C .60°
D .80°
10.已知关于x 的一元二次方程(a+1)x 2+2bx +(a +1)=0有
两个相等的实数根,下列判断正确的是( )
A .1一定不是关于x 的方程x 2+bx+a=0的根
B .0一定不是关于x 的方程x 2+bx+a=0的根
C .1和﹣1都是关于x 的方程x 2+bx+a=0的根
D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根
【解答】解:∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,
∴, ∴b=a+1或b=﹣(a+1).
(第5题图)
(第9题图)
当b=a+1时,有a ﹣b+1=0,此时﹣1是方程x 2+bx+a=0的根;
当b=﹣(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.
∵a+1≠0, ∴a+1≠﹣(a+1),∴1和﹣1不都是关于x 的方程x2+bx+a=0的根.
二、细心填一填(本大题共6小题,每小题4分,满分24分)
11.计算:1)2
2(0-)= . 12.某8种食品所含的热量值分别为:120,134,120,119,126,120,
118,124,则这组数据的众数为 .
13.如图,Rt △ABC 中,∠ACB=90°,AB=6,D 是AB 的中点,则CD= . 14.不等式组⎩
⎨⎧>-+>+02313x x x 的解集为 . 15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD= .
16.如图,直线y=x+m 与双曲线x y 3=
相交于A ,B 两点,BC ∥x 轴,AC ∥y 轴,则△ABC 面积的最小值为 .
【解答】解:设A (a ,a 3),B (b ,b 3),则C (a ,b
3). 将y=x+m 代入x y 3=,得x+m=x
3, 整理,得x 2+mx ﹣3=0,
则a+b=﹣m ,ab=﹣3,
∴(a ﹣b )2=(a+b )2﹣4ab=m 2+12.
∵S △ABC=21AC•BC=21(a 3﹣b 3)(a ﹣b )=21•ab a b )(3-•(a ﹣b )=21(a ﹣b )2 =2
1(m 2+12)=2
1m 2+6, ∴当m=0时,△ABC 的面积有最小值6.
三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)
17.(8分)解方程组:⎩⎨
⎧=+=+1041y x y x .
(第
13题图)。

相关文档
最新文档