最新等差数列前n项和的性质课件PPT
合集下载
等差数列前n项和公式课件
6
例1 如图,一个堆放铅笔的 V形
架的最下面一层放一支铅笔,往 上每一层都比它下面一层多一支, 最上面一层放120支。这个V形架 上共放着多少支铅笔?
解:由题意可知,这个V形架上共放着120层铅
笔,且自下而上各层的铅笔数成等差数列,记
为{an},其中 a1=1 , a120=120.根据等差数列前n项 和的公式,得
120 (1120)
S120
2
7 260
答:V形架上共放着 7 260支铅笔。
7
例2 等差数列 10,6,2,2,…前多少项的和是54?
解:设题中的等差数列为{an},前n项和是 Sn,
则a1= 10,d= 6(10) 4,设 Sn=54, 根据等差数列前 n项和公式,得
10n n(n 1) 4 54 n2 6n 27 0
100个101
所以 2x 101100, x=5050.
这个问题,可看成是求等差数列 1,2,3,…, n,…的前100项的和。
3
下面将对等差数列的前n项和公式进行推导
设等差数列a1,a2,a3,… 它的前n 项和是 Sn=a1+a2+…+an-1+an (1) 若把次序颠倒是Sn=an+an-1+…+a2+a1 (2) 由等差数列的性质 a1+an=a2+an-1=a3+an-2=… 由(1)+(2) 得 2sn=(a1+an)+(a1+an)+(a1+an)+..
(m,n,p,q∈N),那么: an+am=ap+aq
2
问题1:1+2+3+…+100=?
第七章第二节等差数列及其前n项和课件
2.(2020·全国卷Ⅱ)记 Sn 为等差数列{an}的前 n 项和.若 a1=-2,a2+ a6=2,则 S10=________.
解析: 通解:设等差数列{an}的公差为 d,则由 a2+a6=2,得 a1+d +a1+5d=2,即-4+6d=2,解得 d=1,所以 S10=10×(-2)+10× 2 9 ×1 =25.
an+2.( ) (4)等差数列{an}的单调性是由公差 d 决定的.( ) (5)等差数列的前 n 项和公式是常数项为 0 的二次函数.( ) 答案: (1)× (2)√ (3)√ (4)√ (5)×
2.(必修 5P44 例 2 改编)已知 Sn 为等差数列{an}的前 n 项和,a2=2,S4
(2)关于非零等差数列奇数项和与偶数项和的性质
①若项数为 2n,则 S 偶-S 奇=nd,SS奇 偶
= an an+1
.
②若项数为 2n-1,则 S 偶=(n-1)an,S 奇=nan,S 奇-S 偶=an,SS奇 偶 =n-n 1 .
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若一个数列从第 2 项起,每一项与它的前一项的差都是常数,则这 个数列是等差数列.( ) (2)已知数列{an}的通项公式是 an=pn+q(其中 p,q 为常数),则数列 {an}一定是等差数列.( ) (3)数列{an}为等差数列的充要条件是对任意 n∈N*,都有 2an+1=an+
3.能在具体的问题情境中,发现数 三种题型都有可能出现.
列的等差关系,并解决相应的问题. 学科素养: 数学运算、逻辑推理.
4.体会等差数列与一次函数的关系.知识·分落实⊲学生用书 P104
1.等差数列的有关概念
(1)定义:如果一个数列从__第__2_项_起,每一项与它的前一项的差__都等于同
等差数列前n项和的性质ppt课件
解析: 方法一:设 an=a1+(n-1)d,bn=b1+(n-1)e.
取 n=1,则ab11=TS11=12,所以 b1=2a1.所Βιβλιοθήκη 以Sn Tn=
na1+nn- 2 1d nb1+nn- 2 1e
=
a1+n-2 1d b1+n-2 1e
=
a1+n2d-d2 2a1+n2e-2e
=
3n2+n 1,
一个等差数列的前10项之和为100,前100项之和为10,求 前110项之和.
由题目可获取以下主要信息: ①S10=100,S100=10;②此数列为等差数列. 解答本题可充分利用等差数列前n项和的有关性质解答.
[解题过程] 方法一:设等差数列{an}的公差为 d,前 n 项和为 Sn,则 Sn=na1+nn-2 1d.
3.设等差数列{an}的前n项和为Sn.若S9=72,则a2+a4+a9 =________.
解析: 由等差数列的性质S9=9a5=72,a5=8,a2+a4+a9 =a1+a5+a9=3a5=24,故填24.
答案: 24
4.(1)等差数列{an}中,a2+a7+a12=24,求 S13. (2)等差数列{an}的公差 d=12,且 S100=145, 求 a1+a3+a5+…+a99. 解析: (1)∵a2+a12=a1+a13=2a7, 又 a2+a7+a12=24,∴a7=8. ∴S13=13a12+a13=13×8=104. (2)∵S100=(a1+a3+…+a99)+(a2+a4+…+a100) =2(a1+a3+…+a99)+50d=145, 又 d=12,∴a1+a3+…+a99=60.
an=Sn-Sn-1=n2-3n+1-[(n-1)2-3(n-1)+1] =2n-4,
等差数列前n项和(公开课)PPT课件
几何等领域。
组合数学
等差数列的前n项和公式可以应 用于组合数学中,解决一些组合 问题,如计算组合数的公式等。
数列求和
等差数列的前n项和公式是数列 求和的一种重要方法,可以用于
解决等差数列的求和问题。
在物理中的应用
力学
在物理学中,等差数列的 前n项和公式可以应用于求 解一些力学问题,如计算 多自由度振动的周期等。
简化计算
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、解决生产计划问题等。
对于一些较大的等差数列,使用前n 项和公式可以大大简化计算过程,提 高计算效率。
验证答案
使用前n项和公式可以快速验证一些 等差数列求和问题的答案,确保计算 的准确性。
实例解析
简单实例
例如,一个等差数列1, 4, 7, 10... ,使用前n项和公式可以快速求出
统计学
在统计学中,等差数列的 前n项和公式可以用于计算 平均值、中位数等统计指 标。
信号处理
在信号处理中,等差数列 的前n项和可以用于计算信 号的频谱、滤波等操作。
在计算机科学中的应用
数据结构
在计算机科学中,等差数列的前n项和公式可以应用于一些数据结 构的设计,如数组、链表等。
算法设计
等差数列的前n项和公式可以用于设计一些算法,如排序算法、查 找算法等。
详细描述
等差数列是一种特殊的数列,其中任意两个相邻的项之间的 差是一个固定的值,这个值被称为公差。等差数列的通项公 式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是首项 ,d 是公差。
性质
总结词
等差数列具有一些重要的性质,包括对称性、中项性质和等差中项性质等。
组合数学
等差数列的前n项和公式可以应 用于组合数学中,解决一些组合 问题,如计算组合数的公式等。
数列求和
等差数列的前n项和公式是数列 求和的一种重要方法,可以用于
解决等差数列的求和问题。
在物理中的应用
力学
在物理学中,等差数列的 前n项和公式可以应用于求 解一些力学问题,如计算 多自由度振动的周期等。
简化计算
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、解决生产计划问题等。
对于一些较大的等差数列,使用前n 项和公式可以大大简化计算过程,提 高计算效率。
验证答案
使用前n项和公式可以快速验证一些 等差数列求和问题的答案,确保计算 的准确性。
实例解析
简单实例
例如,一个等差数列1, 4, 7, 10... ,使用前n项和公式可以快速求出
统计学
在统计学中,等差数列的 前n项和公式可以用于计算 平均值、中位数等统计指 标。
信号处理
在信号处理中,等差数列 的前n项和可以用于计算信 号的频谱、滤波等操作。
在计算机科学中的应用
数据结构
在计算机科学中,等差数列的前n项和公式可以应用于一些数据结 构的设计,如数组、链表等。
算法设计
等差数列的前n项和公式可以用于设计一些算法,如排序算法、查 找算法等。
详细描述
等差数列是一种特殊的数列,其中任意两个相邻的项之间的 差是一个固定的值,这个值被称为公差。等差数列的通项公 式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是首项 ,d 是公差。
性质
总结词
等差数列具有一些重要的性质,包括对称性、中项性质和等差中项性质等。
等差数列的前n项和公式的性质及应用 课件
因为 S2k=2ka1+12×2k(2k-1)d=8a1+42,
所以 8a1+42=54,故 a1=32,
所以此数列的首项是32,公差是32,项数为 8.
法二:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 根据题意,得S偶=30,
a2k-a1=221,
12ka1+a2k-1=24, 即12ka2+a2k=30,
和 30,最后一项与第一项之差为221,求此数列的首项、公差以及项数. [解析] 法一:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 由已知得S偶=30,
a2k-a1=221,
S偶-S奇=6, 所以a2k-a1=221,
kd=6,
k=4,
即2k-1d=221, 解得d=32.
②若项数为 2n-1,则 S2n-1=(2n-1)an(an 为中间项)且 S 奇-S 偶= an , n-1
SS偶 奇=___n____.
(3)若 Sn 为数列{an}的前 n 项和,则{an}为等差数列等价于Snn是等差 数列. (4)若{an}、{bn}都为等差数列,Sn、Sn′为它们的前 n 项和,则abmm= SS′2m2- m1-1. (5)项数(下标)的“等和”性质: Sn=na12+an=nam+2an-m+1.
()
A.130
B.65
C.70
D.以上都不对
解析:S13=a1+2 a13×13=a5+2 a9×13=130.
答案:A
3.已知某等差数列共 20 项,其所有项和为 75,偶数项和为 25,则
公差为( )
A.5
B.-5
C.-2.5
D.2.5
等差数列前n项和(公开课)PPT课件
数学建模
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
等差数列的前n项求和公式ppt课件
则 2Sn nn 1
Sn
nn 1
2
4
推导
下面对等差数列前n项公式进行推导
设等差数列 a1,a2,a3,… 它的前n 项和是 Sn=a1+a2+…+an-1+an (1) 若把次序颠倒是 Sn=an+an-1+…+a2+a1 (2) 由(1)+(2) 得 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+.. 由等差数列的性质 a1+an=a2+an-1=a3+an-2=… 由(1)+(2) 得 2Sn=(a1+an)+(a1+an)+(a1+an)+..
高斯的问题,可以看成是求等差数列 1,2,3,…, n,…的前100项的和,求:1+2+3+4+…+n=?
如果令 Sn=1 + 2 + 3 + ... +(n-2)+(n-1)+ n
颠倒顺序得 Sn=n+(n-1)+(n-2)+ ... + 3 + 2 + 1
将两式相加 2Sn=(1+n)+(2+n-1)+...+(n+1)
例2 已知一个等差数列{an}的前10项的和是310,前
20项的和是1220 .求等差数列的前n项和的公式
例3 求集合M={m|m=7n, n是正整数, 且m<100}的元素
个数, 并求这些元素的和.
7
解:将题中的等差数列记为{an},Sn代表该数列的前n项
等差数列前n项和(公开课)PPT课件
所以这个等差数列共有(a+d)×(n-2)/2 +10 =25。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
第二节等差数列及其前n项和课件
若a1=-2,a2+a6=2,则S10=
.
解析:设等差数列{an}的公差为d.因为a1=-2,a2+ a6=2,所以-2+d+(-2)+5d=2,解得d=1.由等 差数列的前n项和公式,得S10=10×(-2)+ 10×(210-1)×1=25.
答案:25
题组二 易错自纠
常见误区:①等差数列概念中的两个易误点,即同
1.已知数列{an}满足a1=-23,an+1=-3a2na+n-43(n∈N*).
(1)证明:数列an+1 1是等差数列;
(2)求{an}的通项公式.
(1)证明:因为an+1+1=
-2an-3 3an+4
+1=
an+1 3an+4
,
所以an+11+1=3aann++14=3+an+1 1,所以an+11+1-an+1 1=
2.等差数列的有关公式
(1)通项公式:an=a1+(n-1)d;an=am+
(n-m)d.
(2)前n项和公式:Sn=na1+
n(n-1)d 2
=
n(a1+an) 2
.
3.等差数列的性质
已知数列{an}是等差数列,Sn是其前n项和.
(1)若m,n,p,q,k是正整数,且m+n=p+q=
2k,则am+an=ap+aq=2ak.
3,所以an+1 1是首项为a1+1 1=3,公差为3的等差数列.
(2)解:由(1)得an+1 1=3n,所以an=31n-1.
2.已知等差数列的前三项依次为a,4,3a,前n项和
为Sn,且Sk=110. (1)求a及k的值;
(2)设数列{bn}的通项公式bn=
Sn n
,证明:数列{bn}
是等差数列,并求其前n项和Tn.
等差数列前n项和性质上课用ppt课件
等差数列的性质应用:
例、已知一个等差数列的总项数为奇数, 且奇数项之和为77,偶数项之和为 66,求中间项及总项数。
解:由 S奇 S偶 中间项
得中间项为11 又由 S奇 S偶 143 得 n 13
等差数列{an}前n项和的性质的应用
例6.两等差数列{an} 、{bn}的前n项和分
别是Sn和Tn,且 Sn 7n 1
13a1+13×6d<0
24 d 3 7
(2)
∵
Sn
na1
1 2
n(n 1)d
1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
d
3
2d
∴Sn有最大值.
由上得 6 5 12 13 即 6 n 13
A.63 B.45 C.36 D.27
例3.在等差数列{an}中,已知公差d=1/2,且
a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=A( )
A.85 B.145 C.110 D.90
等差数列的性质应用:
例4、已知等差数列an 的前10项之和
为140,其中奇数项之和为125 , 求第6项。
前n项的和分别为Sn和Tn,则
an bn
S2n1 T2 n 1
等差数列的性质应用:
例1、已知一个等差数列前n项和为25, 前2n项的和为100,求前3n项和。
3.等差数列{an}前n项和的性质的应用 例2.设等差数列{an}的前n项和为Sn,若
S3=9,S6=36,则a7+a8+a9=( B)
等差数列的前n项和课件
详细描述
当等差数列的公差d等于0时,数列中的每一项都相等,此时等差数列退化为常 数列。在这种情况下,前n项和公式将简化为求单一数值的和。
当d≠0时,等差数列前n项和的公式简化
总结词:公式简化
详细描述:当公差d不等于0时,等差数列前n项和的公式可以通过求和公式进行简化。具体来说,可以使用等差数列的通项 公式和求和公式来推导出一个更简单的公式,用于计算前n项和。
等差数列前n项和与首末项的和的关 系
等差数列前n项和等于首末项的和乘以项数再除以2。
THANKS
感谢观看
等差数列前n项和公式的变种形式
等差数列前n项和的平方公式
等差数列前n项和的平方等于首项与末项的平方和加上4倍的第二项到倒数第二项的各 项之和。
等差数列前n项和与中间项的和
等差数列前n项和等于中间项与其余各项和的平均值乘以项数。
等差数列前n项和公式的极限形式
等差数列前n项和的极限
当n趋向于无穷大时,等差数列前n项和的极限等于首 项与末项的和除以2。
等差数列的前n项和ppt课件
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的实际应用 • 等差数列前n项和的扩展知识
01
等差数列的定义与性质
等差数列的定义
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
前n项和公式的应用
前n项和公式在数学、物理、工程等 领域有广泛的应用。
前n项和公式可以用于解决等差数列 相关的问题,如求和、比较大小等。 此外,该公式还可以用于解决一些实 际问题,如计算存款利息、评估投数列退化为常数列
总结词
等差数列退化为常数列
当等差数列的公差d等于0时,数列中的每一项都相等,此时等差数列退化为常 数列。在这种情况下,前n项和公式将简化为求单一数值的和。
当d≠0时,等差数列前n项和的公式简化
总结词:公式简化
详细描述:当公差d不等于0时,等差数列前n项和的公式可以通过求和公式进行简化。具体来说,可以使用等差数列的通项 公式和求和公式来推导出一个更简单的公式,用于计算前n项和。
等差数列前n项和与首末项的和的关 系
等差数列前n项和等于首末项的和乘以项数再除以2。
THANKS
感谢观看
等差数列前n项和公式的变种形式
等差数列前n项和的平方公式
等差数列前n项和的平方等于首项与末项的平方和加上4倍的第二项到倒数第二项的各 项之和。
等差数列前n项和与中间项的和
等差数列前n项和等于中间项与其余各项和的平均值乘以项数。
等差数列前n项和公式的极限形式
等差数列前n项和的极限
当n趋向于无穷大时,等差数列前n项和的极限等于首 项与末项的和除以2。
等差数列的前n项和ppt课件
• 等差数列的定义与性质 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的实际应用 • 等差数列前n项和的扩展知识
01
等差数列的定义与性质
等差数列的定义
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
前n项和公式的应用
前n项和公式在数学、物理、工程等 领域有广泛的应用。
前n项和公式可以用于解决等差数列 相关的问题,如求和、比较大小等。 此外,该公式还可以用于解决一些实 际问题,如计算存款利息、评估投数列退化为常数列
总结词
等差数列退化为常数列
等差数列前n项和(公开课)PPT课件
公式2
$S_n = na_1 + frac{n(n-1)}{2}d$。
公式3
$S_n = frac{d}{2}n^2 + (a_1 - frac{d}{2})n$。
公式证明
证明1
利用等差数列的定义和性质,通过数学归纳法证 明。
证明2
利用等差数列的通项公式,通过代数运算证明。
证明3
利用二次函数的性质,通过配方法证明。
险费等经济指标。
Байду номын сангаас
会计
在会计中,等差数列前n项和用 于计算成本、收入、利润等财务
数据。
统计学
在经济统计学中,等差数列前n 项和用于分析经济数据,如计算
GDP、CPI等经济指标。
04 等差数列前n项和的变式与拓展
CHAPTER
变式公式
公式1
$S_n = frac{n}{2} (2a_1 + (n-1)d)$,其中$a_1$是首项,$d$是 公差。
公式推导
01
02
03
定义首项和公差
设等差数列的首项为a1, 公差为d。
计算前n项和
前n项和公式为Sn = n/2 * (2a1 + (n-1)d),其中n 为项数。
推导过程
通过等差数列的性质,将 前n项和表示为首项、公 差和项数的函数,再化简 得到最终公式。
公式应用
解决实际问题
验证结果
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、评估投资回报等。
03 等差数列前n项和的应用
CHAPTER
在数学中的应用
数学证明
等差数列前n项和公式是数学中常 用的工具,用于证明各种数学定 理和性质,如等差数列的性质、 求和公式等。
$S_n = na_1 + frac{n(n-1)}{2}d$。
公式3
$S_n = frac{d}{2}n^2 + (a_1 - frac{d}{2})n$。
公式证明
证明1
利用等差数列的定义和性质,通过数学归纳法证 明。
证明2
利用等差数列的通项公式,通过代数运算证明。
证明3
利用二次函数的性质,通过配方法证明。
险费等经济指标。
Байду номын сангаас
会计
在会计中,等差数列前n项和用 于计算成本、收入、利润等财务
数据。
统计学
在经济统计学中,等差数列前n 项和用于分析经济数据,如计算
GDP、CPI等经济指标。
04 等差数列前n项和的变式与拓展
CHAPTER
变式公式
公式1
$S_n = frac{n}{2} (2a_1 + (n-1)d)$,其中$a_1$是首项,$d$是 公差。
公式推导
01
02
03
定义首项和公差
设等差数列的首项为a1, 公差为d。
计算前n项和
前n项和公式为Sn = n/2 * (2a1 + (n-1)d),其中n 为项数。
推导过程
通过等差数列的性质,将 前n项和表示为首项、公 差和项数的函数,再化简 得到最终公式。
公式应用
解决实际问题
验证结果
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、评估投资回报等。
03 等差数列前n项和的应用
CHAPTER
在数学中的应用
数学证明
等差数列前n项和公式是数学中常 用的工具,用于证明各种数学定 理和性质,如等差数列的性质、 求和公式等。
等差数列的前n项和公式的性质省公开课获奖课件市赛课比赛一等奖课件
公式一:Sn
n(a1 2
an )
公
式
二:Sn
na1
n(n 2
1)
d
议(5分钟)
『知识探究(一)——等差数列与前n项和旳关系』
思索1:若数列{an}旳前n和
Sn
n(a1 2
an )
那么数列{an}是等差数列吗?
{an}是等差数列
Sn
n(a1 2
an )
思索2:将等差数列前n项和公式
Sn
讨论二次函数旳性质
措施2:讨论数列{an} 旳通项,找出正负临界项。 (1)若a1>0,d<0,则Sn有大值,且Sn最大时旳n
满足an≥0且an+1<0; (2)若a1<0,d>0,则Sn有小值,且Sn最小时旳n
满足an≤0且an+1>0;
『变式探究』
1.首项为正数旳等差数列{an},它旳前3项和与前11项 和相等,则此数列前___7_____项和最大?
na1
n(n 1) 2
d
看作是一种有关n旳函数,这个函数有什么特点?
Sn
d 2
n2
(a1
d )n 2
当d≠0时,Sn是常数项为零旳二次函数.
思索3:一般地,若数列{an}旳前n和Sn=An2+Bn,那 么数列{an}是等差数列吗?若Sn=An2+Bn+C 呢? (1)数列{an}是等差数列 Sn=An2+Bn (2)数列{an} 旳前n项和是Sn=An2+Bn+C ,则:
解析:当n=1时,a1=S1=12-12=11;当n≥2时, an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n. ∵n=1时适合上式,∴{an}旳通项公式为an=13-2n. 由an=13-2n≥0,得n≤ ,
等差数列的前n项和公式(课件)-2024-2025学年高二数学同步课件
问题1 求 S100=1+ 2+3+ … +98+99+100
解:S100=1+2+3+ … +98+99+100 (1) S100=100+99+98+ … +3+ 2+1 (2)
(1)+(2)得 2S100=(1+100) ×100,
S100
100 (1100) 2
5050
设等差数列{an}的前n项和为Sn,公差为d,即
n1 n
Sn n
是公差为
d 2
的等差数列.
知识探究2:等差数列前n项和公式的性质
证明: Sn a1 a2 an
S2n Sn an1 an2 a2n a1 a2 an n2d
S3n S2n a2n1 a2n2 a3n an1 an2 a2n n2d
题型一
1.已知数列{an}是等差数列且an>0,设其前n项和为
Sn.若a1+a9=a,则S9=( C )
A.36
B.27
C.18
D.9
解析:由数列{an}是等差数列且 an>0,
a1+a9=a25,
∴2a5=a25≠0,解得 a5=2.
则 S9=9a1+2 a9=9a5=18.
知三求二
知三求二
S2n Sn Sn S3n S2n S2n Sn n2d
(2)由(1)知 an=2n+1, 所以 bn=a2n-1 1=2n+112-1 =14·nn1+1=14·1n-n+1 1, 所以 Tn=141-12+12-13+…+n1-n+1 1 =141-n+1 1=4nn+1, 即数列{bn}的前 n 项和 Tn=4nn+1.
等差数列的前n项和-概念解析课件PPT
习题三
总结词
了解等差数列前n项和的应用场景
详细描述
等差数列的前n项和在实际问题中有很多应用,如计算存款、贷款、工资等问题。通过 这些实际问题的分析,我们可以更好地理解等差数列前n项和的应用价值和意义。
感谢您的观看
THANKS
首项和末项对前n项和的影响
首项越大,前n项和越大
在等差数列中,首项越大,前n项和也越大。这是因为首项是等差数列的第一 项,它决定了整个数列的大小。
末项越大,前n项和越大
在等差数列中,末项越大,前n项和也越大。这是因为末项是等差数列的最后一 项,它决定了整个数列的大小。
公差对前n项和的影响
公差越大,前n项和越大
在等差数列中,公差越大,前n项和也越大。这是因为公差决 定了等差数列的递增或递减速度,公差越大,整个数列的大 小也越大。
证明方法
设等差数列为{a_n},其中首项为a_1,公差为d。前n项和为 S_n = n/2 * (2a_1 + (n-1)d)。当d > 0时,S_n随着d的增大而 增大;当d < 0时,S_n随着d的减小而增大。
在物理中的应用
01
02
03
物理规律描述
等差数列的前n项和公式 可以用于描述物理规律, 如波的叠加、力的合成与 分解等。
物理实验数据处理
等差数列的前n项和公式 可以用于处理物理实验数 据,如测量重力加速度、 计算热量等。
物理现象预测
等差数列的前n项和公式 可以用于预测某些物理现 象,如预测物体运动轨迹、 计算电流等。
等差数列的前n项和公式在日常生 活和科学研究中有着广泛的应用,
如计算存款利息、评估投资回报 等。
数学问题求解
在数学问题中,等差数列的前n项 和公式可用于求解等差数列的和, 解决数列求和问题。
4.2等差数列前n项和PPT课件(人教版)
等差数列的前n项和(1)
考点
考情分析
2012~202X年 202X年 202X年 202X年 202X年 202X年
合计
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全 国 卷
地 方 卷
全国 卷
地方 卷
等差数列的 5 4 1 0 2 1 3 2 3 3 2 0 16 10
通项与求和
命题分析与 备考建议
1命题热度:该部分属于高考必考内容,属于中低档题。 2.考查方向:主要考查等差数列的通项公式与求和公式的综 合应用。 3.命题的关注点在于等差数列的基本量的求解,通常与求和问 题相结合出现在解答题中,考查数学运算、逻辑推理的核心素 养,高三备考,抓住等差数列中的两个基本量——首项与公差。
思路2(拿出末项,再首尾配对) 原式=(1+2+3+… + 100)+101
思路3 (拿出首项,再首尾配对) 原式=1+(2+3+… + 100+101)
思路……
问题3 倒序相加法
计算: 1 2 3 (n 1) n ①
n + (n-1) + (n-2) +…+ 2 +1 ②
分析:这其 实是求一个 具体的等差 数列前n项和.
基本量:a1, d, an , n, Sn 知三求二
回扣课本 夯实双基
做学案:例1
解:(1)因为 a1 7 ,a50 101 ,
根据公式
Sn
n(a1 2
an )
,可得
S50
50 (7 101) 2
4.2.2等差数列的前n项和公式PPT课件(人教版)
解:由已知可得:a1= -10,d=4
n(n 1)
S n 10n
4
2
2n 12n
2
令 2n 12 n 54
2
解得:n 9 或 n (舍)
3
所以数列前9项的和是54.
课堂小结
等差数列前n项和公式
n(a1 an )
Sn
2
n(n 1)
S n na1
101
算法过程:
由①+②,得
1
( + )
=
=
设 =1+2+3+…+100+101
①,则
=101+100+99+…+2+1 ②
2 = (+)
合作探究
思考2:已知数列{an}是等差数列,如何求
= 1 + 2 + 3 +··· +−1 + 的值?
S n na1
d
2
名师点析:(1)两个公式均为等差数列的求和公式,一共涉及a1,an,Sn,n,d
五个量.通常已知其中三个,可求其余两个,而且方法就是解方程(组),这也
是等差数列的基本问题情势之一.
( + )
(2)当已知首项a1,末项an,项数n时,用公式Sn=
.用此公式时,有时要
A.230
B.420
C.450
D.540
20×19
解:S20=20a1+ 2 d=20×2+20×19=420.
B
)
典型例题
例1 已知数列{an}是等差数列.
(1)若a1=7,a50=101,求S50;
(3)若a1= ,d=- ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:(1)若一个等差数列前3项的和为34,最后3项 的和为146,且所有项的和为390,则该数列有( )项。
A.13
B.12
C.11
D.10
(2)设{an}为等差数列,Sn 为数列{an}的前 n 项和,已知
S7=7,S15=75,Tn 为数列{Snn}的前 n 项和,则 Tn________.
『变式探究』
思考3:
在等差数列{an}中,记奇数项的和为S奇,偶数项
的和为S偶.则S偶-S奇与 S 偶 等于什么? S奇
思考4:设等差数列{an}、{bn}的前n项和分别为Sn、Tn,
则S 2 k 1 等于什么? T 2k 1
ak S 2k 1 bk T2k 1
例4:Sn,Tn分别是等差数列{an}、{bn}的前n项的和,
又∵n∈N*,∴n=10或n=11时,Sn取最小值.
解法 2:同解法 1,由 S9=S12 得 a1=-10d
代入aann=+1=a1+a1+nn-d≥1>d0≤0 得,--1100dd++nnd-≥>10d≤0
∵a1<0,∴d>0, 解得 10<n≤11. ∴n 取 10 或 11 时,Sn 取最小值.
题型4:求等差数列的前n项的绝对值之和
例4:已知数列{an}的前n项和Sn=12n-n2,求数列 {|an|}的前n项和Tn.
解析:当n=1时,a1=S1=12-12=11;当n≥2时,
an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n.
∵n=1时适合上式,∴{an}的通项公式为an=13-2n.
3.设等差数列{an}的前n项和为Sn,若a1=12,S12>0, S13<0. (1)求数列{an}公差d的取值范围;(2)指出 S1, S2, S3, …,S12中哪一个值最大。
4.数列{an}首项为23,公差为整数的等差数列,且第六 项为正,第七项为负. (1)求数列{an}的公差d; (2)求前n项和Sn的最大值; (3)当Sn>0时,求n的最大值;
4. 等差数列{an}的前m项的和为30,前2m项的和为100, 则它的前3m项的和为 ( )
A. 130 B. 170
C. 210 D. 260
5.等差数列{an}中,Sn是其前n项和,a1=-2011,
S2009 2009
S2007 2007
2,则S2011的值为(
)
A.0 B.2011 C.-2011 D.-2011×2011
关系?
S3n=3(S2n-Sn)
思考2:若{an}为等差数列,那么
{
Sn n
}
是什么数列?
性质:数列{an}是等差数列
{ S n } 为等差数列 n
即等差数列{an}的前n项的平均值组成的数列仍然 是等差数列,且公差是数列{an}的公差的一半。
【题型分类 深度剖析】
题型1:等差数列前n项和性质的简单应用
1.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( ) A.a1+a101>0 B.a2+a100<0 C. a3+a99=0 D.a51=51
2.等差数列{an} 前n项和Sn=an2+(a+1)n+a+2,
则an=
.
3. 等差数列{an}中,已知S4=2,S8=7,则S12=_____;
∴Tn=1n22-n-12nn2, +172≤,n≤ n≥6, 7,nn∈∈NN*,*.
『变式探究』
1.数列{an}中,a1=8,a4=2,且满足an+2-2an+1+ an=0,n∈N*. (1)求数列{an}的通项; (2)设Sn=|a1|+|a2|+…+|an|,求Sn.
等差数列前n项和的性质
【知识复习】
1.等差数列通项公式是什么?结构上它有什么特征? an=a1+(n-1)d an =am+(n-m)d an =pn+k. 在结构上是关于n的一次函数.
2.等差数列前n项和的两个基本公式是什么?
Sn
n(a1 an), 2
Sn na1n(n21)d
想一想: 在等差数列{an}中,Sn,S2n,S3n三者之间有什么
且
Sn Tn
7n 2 n3
,则
a5 b5
.
『变式探究』
1.已知两个等差数列{an}和{bn}的前n项和分别为An和
Bn,且
An Bn
7n45,则使得 n3
a b
n n
为整数的正整数n的Leabharlann 个数是( )A.2
B.3
C.4
D.5
思考5: 在等差数列{an}中,若a1>0, d<0,则Sn是否存在
最值?如何确定其最值?
满足an≥0且an+1<0; (2)若a1<0,d>0,则Sn有小值,且Sn最小时的n
满足an≤0且an+1>0;
『变式探究』
1.首项为正数的等差数列{an},它的前3项和与前11项 和相等,则此数列前________项和最大?
2.等差数列{an} 前n项和Sn中,以S7最大,且|a7|<| a8|, 则使Sn>0的n的最大值为_____.
由an=13-2n≥0,得n≤
13 2
,
即当1≤n≤6(n∈N*)时,an>0;当n≥7时,an<0.
(1)当1≤n≤6(n∈N*)时, Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=12n-n2. (2)当n≥7(n∈N*)时,Tn=|a1|+|a2|+…+|an| =(a1+a2+…+a6)-(a7+a8+…+an) =-(a1+a2+…+an)+2(a1+…+a6) =-Sn+2S6=n2-12n+72.
当ak≥0,ak+1<0时,Sk为最大.
题型2:等差数列最值问题
例2:等差数列{an}中,a1<0,S9=S12,该数列前多 少项的和最小?
[解析] 解法 1:设等差数列{an}的公差为 d,则由题意得 9a1+12×9×8·d=12a1+21×12×11·d ,∴a1=-10d, ∵a1<0,∴d>0,∴Sn=na1+21n(n-1)d=12dn2-221dn =d2n-2212-4841d. ∵d>0,∴Sn 有最小值.
解法 3:∵S9=S12,∴a10+a11+a12=0, ∴3a11=0,∴a11=0.∵a1<0,∴前 10 项或前 11 项和最小.
小结:求等差数列{an}前n项和Sn的最值常用方法: 方法1:二次函数性质法,即求出Sn=an2+bn,
讨论二次函数的性质
方法2:讨论数列{an} 的通项,找出正负临界项。 (1)若a1>0,d<0,则Sn有大值,且Sn最大时的n