u检验和t检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例19.3根据大量调查,已知健康成年男子脉搏均数为72次/分,标准差为6.0次/分。某医生在山区随机抽查25名健康成年男子,求得其脉搏均数为74.2次/分,能否据此认为山区成年男子的脉搏高于一般?
据题意,可把大量调查所得的均数72次/分与标准差6.0次/分看作为总体均数μ0和总体标准差σ,样本均数x为74.2次/分,样本例数n为25.
H0:μ=μ0
H1:μ>μ0
α=0.05(单侧检验)
例19.4 若例19.3中总体标准差σ未知,但样本标准差已求出,s=6.5次/分,余数据同例19.3.
据题意,与例19.3不同之处在于σ未知,可用t检验。
H0:μ=μ0
H1:μ>μ0
α=0.05(单侧检验)
本例自由度v=25-1=24,查t界值表(单侧)(附表19-1)得t0.05(24)=1.711.算得的统计量t=1.692<1.711,P>0.05,按α=0.05检验水准不拒绝H0,尚不能认为该山区成年男子的脉搏高于一般。
二、配对资料的比较
H0:该药治疗前后的舒张压无变化,即μd=0 H1:该药治疗前后的舒张压有变化,即μd≠0
α=0.05
自由度v=n-1=8,查t界值表得t0.05(8)=2.306,t0.01(8)=3.355,本例t=3.714>
t0.01(8),P<0.01,按α=0.05检验水准拒绝H0,接受H1,可认为治疗前后舒张压有变化,即该药有降压作用。
三、完全随机设计的两样本均数的比较
亦称成组比较。目的是推断两样本各自代表的总体均数μ1与μ2是否相等。根据样本含量n 的大小,分u检验与t检验。
(一)u检验可用于两样本含量n1、n2、均足够大时,如均大于50或100.
公式(19.9)
算得的统计量为u 值,按表19-3所示关系作出判断。
例19.6某地抽样调查了部分健康成人红细胞数,其中男性360人,均数为4.660×1012/L,标准差为0.575×1012/L;女性255人,均数为4.178×1012/L,标准差为0.291×1012/L,试问该地男、女红细胞数的均数有无差别?
H0:μ=μ0
H1:μ≠μ0
α=0.05
今x1=4.660×1012/L,s1=0.575×1012/L,n1=360;
x2=4.1781012/L,s2=0.2911012/L,n2=255.
算得的u=13.63>2.58,P<0.01,按α=0.05检验水准拒绝H0,接受H1,可认为该地男女红细胞数的均数不同,男性高于女性。
(二)t检验可用于两样本含量n1、n2较小时,且要求两总体方差相等,即方差齐(homoscedasticity)。若被检验的两样本方差相差较大且差别有统计学意义则需用t检验。
公式(19.10)
公式(19.11)
公式(19.12)
式中sx1-x2,为两样本均数之差的标准误,s2c为合并估计方差(combined estimate variance)。算得的统计量为t,按表19-4所示关系作出判断。
例19.7某医生统广西瑶族和侗族正常妇女骨盆X线测量资料各50例。骨盆入口前后径:瑶族的均数为12.002(cm),标准差0.948(cm),侗族相应的为11.456(cm)和1.215(cm)。问两族妇女的骨盆入口前后径是否有差别?
H0:μ1=μ2
H1:μ1≠μ2
α=0.05
已知n1=n2=50, x1=12.002(cm),s1=0.948(cm);
x2=11.456(cm),s2=1.215(cm)。
本例自由度v =n1+n2-2=98,查t界值表[表内自由度一栏无98,可用内插法(从略)或用v =100估计].T0.05(100)=1948,t0.01(100)=2.626,今t=2.505>t0.05(1000,P<0.05,按α
=0.05检验水准拒绝H0,接受H1,可认为广西瑶族和侗族妇女骨盆入口前后径不同,前者大于后者。
四、完全随机设计的两样本几何均数比较
医学上有些资料为等比资料或正态分布资料,宜用几何均数表示其平均水平。比较两样本几何均数的目的是推断它们分别代表的总体几何均数是否相等。此种情况下,应先把原始数据X进行对数变换,用变换后的数据代入式(19.10)、(19.11)、(19.12)计算t值。
例19.8 将20名钩端螺旋体病人的血清随机分为两组,分别用标准株或水生株作凝溶试验,测得稀释倍数如下,问两组的平均效价有无差别?
X1:标准株(11人)100,200,400,400,400,400,800,1600,1600,1600,3200
X2:水生珠(9人)100,100,100,200,200,200,200,400,400
H0:μ1=μ2
H1:μ1≠μ2
α=0.05
将两组数据分别取对数,以对数作为新变量X1和X2.
X1:2.000,2.301,2.602,2.602,2.602,2.602,2.903,3.204,3.204,3.204,3.505
X2: 2.000,2.000,2.000,2.301,2.301,2.301,2.301,2.602,2.602
用变换后的数据计算 x1,s12;x2,s22再代入式(19.10)、(19.11)、(19.12)计算t 值。
x1=2.794,s12=0.2043;x2=2.268,s22=0.0554
自由度v=11+9-2=18,查t界值表得t0.01(18)=2.878,今t=3.150>2.878,P<0.01,按α=0.05检验水准拒绝H0,接受H1,可认为两组平均效价不同,标准株高于水生株。