《数学广角──鸽巢问题》重难点突

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学广角──鸽巢问题》重难点突破

初步了解“抽屉原理(鸽巢原理)”,培养学生的“模型思想”

平罗城关一小赵会珍

一、在直观操作中理解“抽屉原理”的有关概念,初步了解“抽屉原理”的结构特征。

教学时要借助直观,让学生在亲身经历(看到、摸到)的基础上,深刻感受分的过程和分的结果,积累对“抽屉原理”的感性认识。这既可降低学生学习的难度,又可使学生充分地理解“总有”“至少”等特定术语的含义,清晰地建立“待分物品”和“抽屉”之间的关系。例如,在教学例1时,通过直观地摆铅笔的经历,学生发现“把4支铅笔放进3个笔筒中”一共只有四种情况。在每一种情况中,都一定有一个笔筒中至少有2支铅笔。针对实验的所有结果,再次组织学生展开讨论交流,“‘总有’和‘至少’是什么意思?”“你确定结论的正确性吗?”在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,教学时借助平均分(必要时也可实际进行操作,即每个笔筒里先只放1支),这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。最后,可组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。

二、引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。

本单元的学习,教学的目的不是让学生计算抽屉原理,去应用,而更多的

是给出一个结论,让学生去证明这种结论的正确性。这样,这实质上是一种数学证明的思想的渗透教学。因此,教学时应让学生经历猜测、尝试、验证的探究过程,并在此过程中引导学生逐步从直观走向抽象。例如教学例2时,可以直接让学生想办法解释结论,在学生汇报总结出用直观枚举、分解数、用“平均分”来假设等思考方法的同时,组织学生进一步比较这几种方法的优缺点,使学生认识到直观方式终究具有一定的局限性,进而意识到假设法的优越性。在此基础上,对假设法进行强化教学,使得学生对知识和方法进行牢固掌握。此外,针对“抽屉原理”的问题的变式多,应用更具灵活性,教师更应在平时的练习中帮助学生思考如何将具体问题与“抽屉原理”建立联系,引导学生探究如何建立问题中的具体情境和“抽屉原理”的一般化模型之间的内在关系。比如说,让学生去判断13个孩子中一定有两个人的生日在同一个月份,让学生去判断367个孩子中一定有两个人的生日是同一天。在解决这些问题的过程中,明确什么是“抽屉原理”中的“物体”,什么是“抽屉”,这既是能否解决问题的关键因素,又是学生经历将具体问题“数学化”的过程,即从复杂的现实素材中找出本质的数学模型的过程,有效地增强学生对“模型思想”的体验和认识理解。

相关文档
最新文档