高分子链的柔顺性
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除了少数含有很强吸电子基团的单体(如偏二腈乙烯、 硝基乙烯)只能进行阴离子聚合外,大部分含吸电子基团的 单体均可进行自由基聚合。 含有共轭双键的烯类单体,如苯乙烯、α-苯乙烯、丁二 烯、异戊二烯等,因电子云流动性大,容易诱导极化,因此 既可进行自由基聚合,也可进行阴、阳离子聚合。
结论:
乙烯基单体对离子聚合有较强的选择性,但对自由基聚 合的选择性很小,大部分烯类单体均可进行自由基聚合。
第四章 高聚物的结构
第一节高聚物的合成
1.1加聚反应
烯类单体通过双键打开发生的加成聚合反应。 反应活性中心----自由基聚合; 离子聚合 大多属于连锁聚合。
n CH2 CH X [ CH2 CH ] n X
阳离子聚合 阴离子聚合 配位聚合
连锁聚合反应通常由链引发、链增长和链终止等基元反 应组成。每一步的速度和活化能相差很大。
1,1取代的异丁烯分子中含有两个甲基,推电子能力大大 增强,可进行阳离子聚合,但不能进行自由基聚合。 含有烷氧基的烷氧基乙烯基醚、苯基的苯乙烯、乙烯基 的丁二烯均可进行阳离子聚合。
结论:
含有1,1-双烷基、烷氧基、苯基和乙烯基的烯烃因推电 子能力较强,可进行阳离子聚合。
分子中含有吸电子基团,如:腈基、羰基(醛、酮、酸、 酯)等,碳—碳双键上电子云密度降低,并使形成的阴离子 活性种具有共轭稳定作用,因此有利于阴离子聚合进行。
δ
CH2
CH
Y
例如丙烯腈中的腈基能使负电荷在碳—氮两个原子上离 域共振而稳定。
H CH2 C C N CH2 H C C N
卤素原子既有诱导效应(吸电子),又有共轭效应(推 电子),但两者均较弱,因此既不能进行阴离子聚合,也不 能进行阳离子聚合,只能进行自由基聚合。如氯乙烯、氟乙 烯、四氟乙烯均只能按自由基聚合机理进行。
CF2=CFCF3
CH2=CF2 CH2=CH—OR CH2=CHOCOCH3 CH2=CHCOOCH3 CH=C(CH3)COOCH3 CH2=CHCN CH2=C(CN)2 CH2=CHNO2
⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + + + ⊕ ⊕ + +
由取代基的体积、数量和位置等因素所引起的空间位阻 作用,对单体的聚合能力有显著影响,但不影响其对活性种 的选择性。 单取代烯类单体, 即使取代基体积较大,也不妨碍聚合, 如乙烯基咔唑。 1,1双取代的烯类单体,因分子结构对称性更差,极化程 度增加,因此更容易聚合。取代基体积较大时例外,如1,1二苯乙烯不能聚合。
取代基对乙烯基单体聚合机理的影响如下:
阳离子聚合
取代基 X:
NO2
CN
COOCH3
阴离子聚合
CH
CH2
C6H5
CH3
OR
自由基聚合
表4—1 常见烯类单体的聚合类型
单体 中文名称 氟乙烯 四氟乙烯 CH2=CHF CF2=CF2 分子式 自由基 ⊕ ⊕ 聚合类型 阴离子 阳离子
续表
配位
六氟丙烯
偏二氟乙烯 烷基乙烯基醚 醋酸乙烯酯 丙烯酸甲酯 甲基丙烯酸甲酯 丙烯腈 偏二腈乙烯 硝基乙烯
分子中含有推电子基团,如烷基、烷氧基、苯基、乙烯 基等,碳—碳双键上电子云增加,有利于阳离子聚合进行。
δ
CH2
CH
Y
丙烯分子上有一个甲基,具有推电子性和超共轭双重效 应,但都较弱,不足以引起阳离子聚合,也不能进行自由基 聚合。只能在配位聚合引发体系引发下进行配位聚合。 其他含有一个烷基的乙烯基单体也具有类似的情况。
原因: 氟原子半径较小,仅大于氢原子,不会造成空间位阻。
表4—2 乙烯基单体取代基的体积与数量对聚合特性的影响
二取代
取代基X
H F Cl
取代基半径 /nm
0.032 0.064 0.099
一取代
1,1-取代 + + + + + + + - 1,2-取代
三取代
四取代
+
+ -
+ -
CH3
Br I C6H5
0.109
0.114 0.133 0.232
+
+ + +
+
+ - -
-
- - -
-
- - -
-
- - -
* 碳原子半径:0.075nm
1.3 自由基聚合机理
考察自由基聚合有两个重要指标:聚合速率和分子量。 为了弄清楚这两个指标的影响因素和控制方法,就必须从自 由基聚合的机理入手。 1.3.1 自由基聚合的基元反应 1)链引发反应 形成单体自由基活性种的反应。引发剂、光能、热能、 辐射能等均能使单体生成单体自由基。
C
O
C
O
烯类单体的碳—碳双键既可均裂,也可异裂,因此可进 行自由基聚合或阴、阳离子聚合,取决于取代基的诱导效应 和共轭效应。 乙烯分子中无取代基,结构对称,因此无诱导效应和共 轭效应。只能在高温高压下进行自由基聚合,得到低密度聚 乙烯。在配位聚合引发体系引发下也可进行常温低压配位聚 合,得到高密度聚乙烯。
R R 2R A B A + B
自由基、阴离子和阳离子均有可能作为连锁聚合的活性 中心,因此有自由基聚合、阴离子聚合和阳离子聚合之分。
1.2 连锁聚合的单体
连锁聚合的单体包括单烯类、共轭二烯类、炔类、羰基 和环状化合物。 不同单体对聚合机理的选择性受共价键断裂后的电子结 构控制。 醛、酮中羰基双键上C和O的电负性差别较大,断裂后具 有离子的特性,因此只能由阴离子或阳离子引发聚合,不能 进行自由基聚合。环状单体一般也按阴离子或阳离子机理进 行聚合。
由引发剂引发时,由两步反应组成: a. 初级自由基的生成
I
2R
2 (CH3)2C CN + N2
2 + 2 CO2
(CH3)2C CN
N
N
C (CH3)2 CN
ቤተ መጻሕፍቲ ባይዱ
链引发
I R* + M
R* RM* RM2* RM3*
链增长
RM* + M RM2* + M
RMn-1* + M
链终止
RMn* 死聚合物
RMn*
聚合过程中有时还会发生链转移反应,但不是必须经过 的基元反应。
引发剂分解成活性中心时,共价键有两种裂解形式:均 裂和异裂。 均裂的结果产生两个自由基;异裂的结果形成阴离子和 阳离子。
1,2双取代的烯类化合物,因结构对称,极化程度低,位 阻效应大,一般不能聚合。但有时能与其他单体共聚,如马 来酸酐能与苯乙烯共聚。 三取代、四取代的烯类化合物一般不能聚合,但氟代乙 烯例外。例如:氟乙烯、1,1-二氟乙烯、1,2-二氟乙烯、三氟 乙烯、四氟乙烯均可聚合。
不论氟代的数量和位置,均极易聚合。