北师大版高一数学下学期期末试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学科试题(理科)
(时间:120分钟 满分:150分)
欢迎你参加这次测试,祝你取得好成绩!
一、选择题(每小题5分共60分)
1.若10x y <-<<,则下列不等式正确的是( )
A .1x y
< B .||y x <- C .22
x y <
D .
11x y
< 2.数列}{n a 是公比为q 的等比数列,若m a k =,则=+t k a ( ) A .1-+t k mq B .t mq C .1-t mq D . 1+t mq
3.等差数列}{n a 中,若2,103241=-=+a a a a ,则此数列的前n 项和n S 是( ) A .n n 72
+ B .2
3n n - C . 2
9n n - D . 2
15n n - 4.在等比数列{a n }中,11a =,103a =,则23456789a a a a a a a a =( ) A . 81 B. 27527 C. 3 D. 243
5.在△ABC 中,三边长AB=7,BC=5,AC=6,则AB BC •的值为( )
A .19
B .-14
C .-18
D .-19
6.某人朝正北方向走x 千米后,向北偏东转o
150并走3千米,结果他离出发点恰好3千
米,那么x 的值为 ( ) A .3 B . 32 C .
3或32 D . 3
7.下列结论正确的是 ( ) A .21
≥+
x x B .当2lg 1lg ,10≥+≠>x
x x x 时且 C .21,
≥+
>x
x x 时当 D .21
,2的最小值为时当x
x x +
≥ 8.一元二次不等式2
20ax bx ++>的解集是11(,)23
-,则a b +的值是( )
A .10
B .10-
C .14
D .14-
9.已知数列{}n a 中,3a =2,7a =1,若1
{
}1
n a +为等差数列,则11a 等于( ) A .0 B .
12 C .2
3
D .-1 10.表示如图中阴影部分所示平面区域的不等式组是( )
A .⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x
B .⎪⎩
⎪
⎨⎧≥-+≥--≤-+062306320
1232y x y x y x
C .⎪⎩⎪⎨⎧≤-+≤--≤-+0623063201232y x y x y x
D .⎪⎩
⎪
⎨⎧≥-+≤--≥-+0623063201232y x y x y x
11.设偶函数f(x)满足f(x)=2x -4 (x ≥0),则(){}
20x f x ->=( ) A .{}24x x x <->或 B .{}
04 x x x <>或 C .{}06 x x x <>或 D .{}
22 x x x <->或
12.在三角形ABC 中,已知A 60︒
=,b=1,其面积为3,则
sin sin sin a b c
A B c
++++为 ( )
A .33
B .392
C .2633
D .239
3
二、填空题(每小题5分共20分)
13.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:
则第n 个图案中有白色地面砖 块.
14.已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==
+且75A ∠=,
则b = . 15.函数2
1
-+
=x x y 的值域是 . 16.已知数列{}n a 的前n 项和n
n S 23+=,则n a =___________.
三、解答题
17.(满分10分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座
灯塔的塔顶。测量船于水面A 处测得B 点和D 点的仰角分别为0
75,0
30,于水面C 处测得B 点和D 点的仰角均为0
60,AC =0.1km 。试探究图中B ,D 间距离与另外哪两点距离相等,然后求B ,D 的距离(计算结果保留根号).
18.(满分12分)ABC △1,且sin sin A B C +=.
(1)求边AB 的长; (2)若ABC △的面积为
1
sin 6
C ,求角C 的度数. 19.(满分12分)
某单位用2160万元..购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房。经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积
购地总费用
)
20.(满分12分)已知{}n a 是一个等差数列,且 ,11,362==a a
(1)求{}n a 的通项n a 及前n 项和n S ;
(2)若n n
n a x c ⋅=,求}{n c 的前n 项和n T .
21.(满分12分)设数列}{n a 前n 项和为n S ,且*).( 1N n S a n n ∈=+ (1)求}{n a 的通项公式;
(2)若数列{}n b 满足11b =且1n n n b b a +=+(n≥1),求数列{}n b 的通项公式.
22.(满分12分)
(1)设函数)(x f 是定义在(,)-∞+∞上的增函数,如果不等式2
(1)(2)
f ax x f a --<-对于任意[]1,0∈a 恒成立,求实数x 的取值范围;
(2)设函数)(x f 是定义在(,)-∞+∞上的增函数,如果不等式2(1)(2)
f ax x f a --<-对于任意[0,1]x ∈恒成立,求实数a 的取值范围.
高一数学科参考答案(理科)