纳米材料修饰电极在电化学分析中的应用研究进展
核黄素在碳纳米管修饰电极上的电化学行为
核黄素在碳纳米管修饰电极上的电化学行为1 简介核黄素是一种水溶性维生素B族物质,经常在食品和饮料中出现。
它是一种重要的辅酶,参与细胞呼吸、糖代谢和DNA修复等生物学过程。
近年来,核黄素在电化学传感领域引起了广泛关注,因为它能与许多氧化还原活性物质发生反应,并产生特征性的电化学峰。
同时,碳纳米管修饰电极作为一种新型纳米材料,在电化学传感器中也有很大潜力。
因此,将核黄素与碳纳米管修饰电极结合应用于电化学传感领域,具有广阔的应用前景。
2 核黄素的电化学行为核黄素在电化学过程中,是通过氧化还原反应来实现的。
在氧化反应中,核黄素能够捐赠两个电子,在相应的还原反应中,却能够接受两个电子。
在该过程中,核黄素的分子结构发生了变化,分子上的某些原子的化学键被破坏或生成,从而产生电化学峰。
这种特征性的电化学峰是核黄素的鉴别标志。
在电化学传感器中应用核黄素需要考虑到其浓度、pH值、温度等多种因素的影响。
实验表明,核黄素的电化学行为受到pH值和温度的显著影响。
当pH值<4时,氧化峰电势变低,电流强度增大;当pH值>10时,氧化峰电势变高,电流强度减小。
而在pH 7.0和25 ℃下,根据实验曲线,核黄素的氧化还原峰电势分别为-0.2 V和-0.4 V。
在这些实验条件下,可利用核黄素的电化学特性进行定量分析。
3 碳纳米管修饰电极的优点碳纳米管具有多种优点,如高比表面积、良好的导电性、高机械强度、耐腐蚀性等。
通过与电极表面的化学键结合,可以形成一层完整的、密集的、具有可控厚度的碳纳米管膜。
碳纳米管修饰电极具有以下优点:(1)增加电极表面积,增强了反应活性。
(2)提高了传质速率,缩短了响应时间。
(3)提高了电子传导和催化效率。
4 核黄素在碳纳米管修饰电极上的电化学行为目前,研究表明,将核黄素与碳纳米管修饰电极结合能够提高电化学性能,因为碳纳米管的优异性能能够提高核黄素与电极之间的电子传输速率。
在碳纳米管修饰电极上,核黄素的电化学特性得到了良好的控制和增强。
碳纳米管修饰电极的研究进展
引言
化 学 修饰 电极 是2 O 世 纪7 0 年代 中期发 展 起来 的一 门 新 兴 学科 ,也是 目前 电化 学和 电分析 化 学研 究最 为 活跃 的前 沿 领 域 。化 学 修 饰 电极 是 在 电极 表 面 进 行 分 子 设 计和 剪裁 ,将 具有 优 良化 学性 质 的分 子 、离 子 、聚合 物 等 固定在 电极表 面 ,使 电极可 以有选 择地 进 行所 希 望 的
研 究 者 利用 种 类丰 富 的聚 合物 、超分 子 、生物 物质 、无 机 物 和 有 机 物 等 在 电极 表 面 进 行 多 组 分 、多 元 、微 型 化 、多 层等 反应 制 备化 学 修饰 电极 。 因此 ,修 饰 电极 在
生活 中得 到越 来越 多 的应用 。
碳 纳 米 管 是 由单 层或 多 层 石 墨 片卷 曲 形 成 的无 缝 管状 结 构 的纳 米材 料 。碳 纳 米管 中碳原 子 以 s p 杂化 为 主 , 以 一 定 的s p 杂 化 键 的 形 式 与 相 邻 的3 个 碳 原 子 相 连 ,形成 一 定 弯 曲量 的六 角形 网格 结 构 ,从 而使 碳纳 米 管 的结 构表 现 为空 间 拓扑 结构 。根据 石 墨片 卷 曲层 数的 不 同 ,碳 纳米 管 可分 为 单壁 碳 纳米 管 ( S WN T s ) 和 多 壁碳 纳米 管( MWN T s ) 。单 壁碳 纳米 管 的长度 为几 十微 米 ,其 直径 一 般 在零 点几 纳 米到 几 纳米 之 间 ;多壁 碳 纳米 管 的
山 西
化 工
2 0 1 3 年1 0 月
蚀 、传 热快 、导 电性 高 、强度 大 、具 有 自润滑 性及 能 与
生物体 相容 等综 合性能 。 1 . 2 . 2 电化学性 能 与传统 的 碳材 料相 比 ,碳 纳米 管具 有 良好 的 电化 学
纳米材料修饰电极及其在电分析化学中的应用
的原子团包含大约 9 0个原 子,几乎是英 0 文里一个句点的百万分 之一 , 这个比例相
当于 一 条 3 0 米 长 的 船 跟 整 个 地 球 的 比 0多 例。
附近 电子 能级 由准连 续变 为离 散能 级 ;
并且纳米半导体微粒存在 不连续的最高被
占 据的 分 子 轨 道 能级 和最 低 未 被 占据 的分 子 轨 道 能 级 ,使 得 能 隙 变 宽 的 现 象 ,被 称 为 量 子 尺 寸 效 应 。 在 纳 米 粒 子 中 处 于 分 立 的 量 子 化 能 级 中 的 电 子的 波 动性 带 来
选择 性 。纳米材 料的 特殊性 能使 得纳 米 材料 修饰 电极 也具有 以下特性 :
( )表 面 效 应 纳 米 粒 子 的 表 面 原 1 子数 与总 原 子 数 的 比 例随 粒 径 的 变 小而 急
间的纳米 粒子所 组成 的新一 代材料 。它 包 括体积 分数近似 相 等的两 个部 分 :一 是直径为几个或 几十个纳米的粒子 ,二是 粒 子 间 的 界 面 。前 者 具 有 长 程 序 的 晶 状 结 构, 后者是既没有长程序也没有短程 序的
通的金属 、陶瓷和其他 固体材料都是 由同 样 的 原 子 组 成 ,只不 过 这 些 原 子 排 列 成 了 纳米级的原子团 , 成为组成这些新材料的
结 构 粒 子 或 结 构 单 元 。一 个直 径 为 3 nl i ]
就是针对金 属纳米粒子费米面附近 电子能
级状态 分布而提 出的有名 的久保理论 。 ( )量 子 尺 寸 效 应 当纳 米 粒 子 的 3 尺寸 下降 到某一 值时 ,金 属粒 子费米面
米管修饰 电极
由于其组 成单 元 的尺度 小 ,界面 占
纳米团簇研究新进展及其在分析化学中的应用
第17卷 第2期大学化学2002年4月今日化学 纳米团簇研究新进展及其在分析化学中的应用胡效亚Ξ 陈洪渊ΞΞ(南京大学化学化工学院 南京210093) 在对自然世界客观规律的探索中,研究对象的三维空间尺寸从大的方面说,利用射电天文望远镜已将视野延伸到200亿光年之遥的广漠太空;从小的空间而言,对“基本粒子”的穷究越来越往更小的单元延伸。
17世纪的自然科学家依靠个人的努力即可对宏观世界揭示出具有普遍意义的科学定律和自然界的基本规律,如今则需要学科渗透、交叉和联合。
化学家长期以分子、原子作为研究对象,曾忽略了对分子以上层次的研究。
如今,尽管包括化学家在内的广大科学家对分子以上、100nm以下的尺寸范围即介观层次的纳米微粒的艰辛研究已有二三十年,取得了可喜的成绩,但还仅仅处于起步阶段。
纳米粒子以其在三维空间中特殊范围的尺寸,展现了人们还不太熟悉的世界的另一面,给人类带来了新的认识、新的惊喜和新的希望,也将给我们的生活和社会带来新的色彩和变化。
从前科学家以宏观世界为基础建立的力学体系和以微观世界为基础建立的量子物理学和量子化学等一系列理论和规则,对介于宏观和微观之间的所谓介观世界(如纳米材料和超分子材料等)是否适用,需要重新认识和研究。
如今纳米材料正在各个领域被广泛地研究和应用,如量子器件、能量贮存、催化反应、新型材料、生物医学检测和宇航工业等等。
下面仅就纳米材料特性及其组装和在分析化学方面的应用研究的最新进展作一简要介绍。
1 纳米粒子的特性 现在普遍认为直径在1~100nm尺寸的颗粒属纳米粒子的范畴。
这段尺寸的粒子的物理和化学性质与大于100nm以上的粒子有着明显的区别,但对其性质远没有深入研究。
迄今人工合成的最新枝状化合物的最大尺寸还只能达到10nm,而光刻的最小尺寸也只能接近100nm (Intel公司Pentium III微处理器使用的光刻技术达到180nm),胶体粒子和纳米团簇的尺寸大体位于这一间隙。
超级电容器用MOFs衍生纳米电极材料的研究进展
第52卷第11期2023年11月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.52㊀No.11November,2023超级电容器用MOFs 衍生纳米电极材料的研究进展郭容男1,李太文1,王㊀栋1,王天汉1,裴㊀琪1,王媛媛2(1.河南农业大学机电工程学院,郑州㊀450002;2.河南农业大学园艺学院,郑州㊀450002)摘要:超级电容器因具有功率密度高㊁充放电速度快和循环寿命长等优点而备受关注,但是较低的能量密度限制了其广泛应用㊂开发新型高效电极材料对改善超级电容器电化学性能至关重要㊂金属有机框架材料(MOFs)具有比表面积大㊁结构孔径可控和活性位点丰富等特点,故在能量转化和储存领域受到了广泛关注㊂但是由于MOFs 的结构稳定性和导电性较差,其作为超级电容器的电极材料时,无法获得满意的电化学性能㊂以MOFs 为前驱体制得的MOFs 衍生物的稳定性和导电性优于原生MOFs,显著提高了超级电容器的电化学性能㊂本文综述了超级电容器用纳米MOFs 衍生碳化物㊁氧化物㊁氢氧化物㊁磷化物㊁硫化物电极材料的研究现状,总结了MOFs 衍生超级电容器电极材料的合成策略,为超级电容器用MOFs 衍生纳米材料的研究提供指导意义㊂关键词:超级电容器;电极材料;MOF;衍生材料;碳材料;策略选择;结构调制中图分类号:TM53;TB332㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2023)11-1922-09Research Progress of MOFs-Derived Nano-Electrode Materials for SupercapacitorsGUO Rongnan 1,LI Taiwen 1,WANG Dong 1,WANG Tianhan 1,PEI Qi 1,WANG Yuanyuan 2(1.School of Mechanical and Electrical Engineering,Henan Agricultural University,Zhengzhou 450002,China;2.College of Horticulture,Henan Agricultural University,Zhengzhou 450002,China)Abstract :Supercapacitors have attracted much attention because of their high power density,fast charging /discharging speed,and long cycle life.However,the low energy density restricted their wide application.Developing novel and efficient electrode materials is imperative to improve the electrochemical performance of supercapacitors.Metal-organic frameworks (MOFs)have attracted extensive attention in the field of energy conversion and storage,owing to their large specific surface area,controllable pore size,rich active sites and easy synthesis.Nevertheless,due to the inferior structural stability and low conductivity of MOFs,the electrochemical performance of supercapacitors with MOFs electrode materials is unsatisfactory.MOFs derivatives,prepared from the MOFs precursor,possess excellent structural stability and conductivity,thus prominently improve the electrochemical performance of supercapacitors.This work mainly focuses on the MOFs-derived electrode materials for supercapacitors,including MOFs-derived carbides,oxides,hydroxides,phosphides and sulfides.The synthesis strategies of electrode materials for supercapacitors are discussed,providing guidance for the research of nano-MOFs-derived materials for supercapacitors.Key words :supercapacitor;electrode material;MOF;derivative material;carbon material;strategy selection;structural modulation㊀㊀㊀收稿日期:2023-04-28㊀㊀基金项目:河南省高等学校重点科研项目计划(23A430016);河南省自然科学基金(232300421332);中国科学院战略性先导科技专项(B 类,XDB44000000-6)㊀㊀作者简介:郭容男(1987 ),女,陕西省人,博士,讲师㊂E-mail:guorn@0㊀引㊀㊀言超级电容器因具有功率密度高㊁充放电速度快和循环寿命长等优点而备受关注㊂超级电容器根据储能原理分为电化学双层电容器(electrical double-layer capacitor,EDLC)㊁法拉第赝电容器和混合型超级电容器㊀第11期郭容男等:超级电容器用MOFs衍生纳米电极材料的研究进展1923㊀三类,其充放电机理如图1所示㊂其中,EDLC充电时,通过极化电极吸引电解质中的阴阳离子在电极/电解质界面聚集并形成电势差,使其达到储能要求;法拉第赝电容器则是通过电极在外加电场中极化后,电解质中的阴阳离子被吸引到电极附近,在电极表面发生界面反应,在电极内部和电解质中发生体相反应,界面反应和体相反应使大量的电荷储存在电极上,从而实现储能目的;混合型超级电容器的负极通常以EDLC储能原理储能,正极为法拉第赝电容器,通过氧化还原反应进行储能,从而获得更宽的电势窗口,电化学性能得到提升㊂优异的电极材料可使超级电容器具有出色的功率密度㊁循环性能和能量密度㊂电极材料的优劣主要通过其比表面积㊁孔结构㊁活性位点和导电性进行评判[1]㊂金属有机骨架(metal-organic framworks,MOFs)是一种是由金属离子或金属簇和有机配体通过二价或多价配位键构建的三维结构,由于其具有比表面积高(1000~10000m2/g)和孔分布均匀(5~10nm)等优点[2],被广泛应用于吸附[3]㊁催化[4]与传感[5]等领域㊂但是较差的导电性和结构稳定性,限制了其在超级电容器中的应用㊂为此,研究人员以MOFs作为牺牲模板制得MOFs衍生物,MOFs衍生物作为超级电容器的电极材料时,比原生MOFs具有更优异的电化学性能,这主要得益于MOFs衍生物保留了原生MOFs丰富的孔结构和大的比表面积,同时拥有更稳定的结构和更快的载流子传输速度㊂相比普通的MOFs衍生物,纳米MOFs衍生物具有更为特殊的结构和各组分间的协同作用,其构建的超级电容器可以实现快速㊁稳定和高效的电荷储存[6]㊂本文总结了近年来MOFs衍生的纳米材料在超级电容器电极中的应用,详细阐述了策略选择和结构调制对其孔结构㊁载流子传输动力学㊁电化学性能㊁结构稳定性及机械性能的影响,为超级电容器用MOFs衍生纳米材料的研究提供指导㊂图1㊀超级电容器的分类及其充放电机理示意图[7]Fig.1㊀Classification of supercapacitors and their schematic illustration of charge-discharge mechanism[7]1㊀MOFs衍生纳米碳材料纳米多孔碳材料因其高比表面积㊁良好的导电性被广泛应用到EDLC[7]中(见图1)㊂以MOFs作为牺牲模板制备的纳米多孔碳(nano porous carbons,NPCs)保留了原生MOFs的多孔结构,故NPCs具有有序多孔网络结构,广泛作为超级电容器电极[8]㊂NPCs通常通过高温热解直接碳化获得㊂Zhuang等[9]在氩气气氛下高温碳化MIL-100(Fe)纳米颗粒,获得了具有高度石墨化的中空碳多面体(HCPs)㊂HCPs继承了原生铁基MOF的分级孔隙结构,故离子迁移速率快㊂当电流密度为50A/g时,HCPs超级电容器经过5000次充放电循环后,电容仍保持在较高水平㊂虽然NPCs可以继承原生MOFs的孔结构,但是碳化过程可能导致金属纳米颗粒在微孔为主的多孔结构中扩散和不可逆聚集,影响载流子在电极内部的吸附㊁反应㊁缓冲及通过[10]㊂Shang等[11]通过介孔二氧化硅保护煅烧,获得分散良好的ZIF衍生Co和N掺杂碳纳米框架Co,N-CNF㊂如图2(a)所示,以正硅酸四乙酯和十六烷基三甲基溴化铵(CTAB)作为孔导向剂,将mSiO2壳均匀涂覆在ZIF表面,进行高温热解,最后通过蚀刻去除mSiO2壳㊂mSiO2壳能有效防止Co,N-CNF纳米颗粒聚集和融合,故所得Co,N-CNF纳米结构具有清晰的分级孔结构㊁高比表面积(1170m2/g)和高累积孔体积(1.52m3/g)㊂结构调制赋予Co,N-CNF优越的孔结构和比表面积,保障了载流子在电极内部的活动和快速迁移,使超级电容器表现出优异的电化学1924㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷性能㊂MOFs碳化时的反应温度也至关重要㊂Yao等[12]将Zn基MOF在不同碳化温度(即850㊁950和1050ħ)下进行处理,得到MOF衍生的纳米多孔碳(MOF-NPC,分别表示为MNC850㊁MNC950和MNP1050)㊂研究表明,高温有利于增加纳米多孔碳的石墨化程度和导电性,但过高的温度会导致结构破坏,影响其稳定性和电化学性能(见图2(b)~(d))㊂NPCs材料通常亲水性较差,而N元素的引入有效改善了其在水性电解质中的润湿性㊂同时,N掺杂的NPCs具有更优秀的电催化活性㊂Zhu等[13]以ZIF-67为前驱体,在800ħ下碳化2h获得具有丰富孔结构的Co修饰氮掺杂多孔碳(Co-NPC),再进行磷化得到CoP修饰氮掺杂多孔碳(CoP-NPC)㊂最后将CoP-NPC锚定在还原氧化石墨烯片上获得超级电容器用复合材料(CoP-NPC/RGO)㊂由于CoP-NPC/RGO的3D互连多孔结构,CoP与氮掺杂碳基体之间的协同效应,故制备的超级电容器在1和20A/g的电流密度下,比电容高达466.6和252.0F/g㊂Fang等[14]以尿素为外加氮源,在氮气气氛下热解Zn-bioMOFs,获得了具有手风琴状分层结构的N掺杂类石墨烯碳纳米片(H-NCNs)㊂通过改变尿素用量,调节H-NCNs的氮掺杂程度和孔隙率,提升H-NCNs组装成超级电容器的比电容㊁倍率性能和能量密度㊂图2㊀mSiO2保护煅烧法合成Co,N-CNF过程[11](a)及Zn基MOF不同碳化温度产物MNC850(b)㊁MNC950(c)和MNC1050(d)的SEM照片[12]Fig.2㊀Synthetic procedure of the Co,N-CNF by the mSiO2protected calcination strategy[11]㊀(a)and SEM images ofMNC850(b),MNC950(c)and MNC1050(d)[12]聚合物和表面活性剂等也可调控MOFs衍生NPCs的结构㊂聚合物可作为MOFs衍生纳米多孔碳的结构导向剂和碳源㊂Wang等[15]以聚多巴胺(PDA)为ZIF-8NP的涂层材料,制备中空结构的氮掺杂碳(NC)㊂热解过程中,PDA层为ZIF-8 向外 拉动提供了驱动力,同时ZIF-8体积减小,形成中空结构㊂阴离子表面活性剂(如十二烷基硫酸钠)㊁阳离子表面活性剂(如CTAB)和非离子表面活性剂等也被广泛用于控制MOFs 衍生物的形态和大小[16]㊂SiO2㊁聚合物或表面活性剂在MOFs表面形成壳,诱导MOFs生长为中孔㊁中空㊁蛋黄壳㊁多维中空或多孔结构的MOF衍生纳米多孔碳㊂尽管聚合物和表面活性剂优化了NPCs的结构,提高了NPCs的电化学性能,但这些策略也存在一些问题,例如SiO2辅助策略需要清除模板,步骤繁多㊁条件苛刻;聚合物辅助仅限于一些特定环境中;表面活性剂易引入杂原子等㊂故研究人员通过声化学[17]㊁盐模板[18]和有机化学蚀刻[19]等方法调制MOFs衍生的纳米多孔碳的结构,但是这些策略目前只用于特殊种类的MOFs㊂此外,研究人员还提出了利用零维材料和MOFs复合制备衍生纳米多孔碳,以期进一步提高超级电容器的电化学性能㊂Tang等[20]使用内部支持策略将零维石墨烯量子点(GQD)作为MOFs刚性支架,获得了高效的MOFs衍生纳米碳材料(GMPC)㊂高度结晶的GQD降低了衍生NPCs的缺陷密度,并构建了内部导电网络㊂当GQD和对苯二甲酸的质量比为0.35时,GMPC获得了优异的比表面积和导电率㊂这种多维耦合内㊀第11期郭容男等:超级电容器用MOFs衍生纳米电极材料的研究进展1925㊀部支持策略显著提高了超级电容器的电化学性能㊂表1总结了其他高效MOFs衍生纳米碳材料及其复合材料的结构调制策略,以及调制后的表面形貌和电化学性能,为后续通过结构调制提升电极电化学性能和开发新策略提供帮助㊂表1㊀超级电容器电极材料用部分高效MOFs衍生纳米碳材料Table1㊀Some highly efficient MOF-derived nano-carbon materials for supercapacitor electrodes电极材料形貌制备策略或方法比表面积/(m2㊃g-1)电解液电流密度/(A㊃g-1)比电容/(F㊃g-1) HC-40-4[21]分级纳米结构碳化2837EMIMBF40.5206 Mn@ZnO/CNF[22]多孔十二面体碳化 6mol/L KOH1501Ni/Co-MOF-NPC-2ʒ1[23]空心微球纳米棒碳化1135ʃ272mol/L KOH11214N-NPC-850[24]互联微孔碳化12446mol/L KOH1479UT-CNS[25]超薄纳米片自底向上合成1535.246mol/L KOH0.5347 MOF525-NC1.35[26]立方体碳化和酸化7861mol/L H2SO42425HZC-2M-2h[27]中空十二面体葡萄糖辅助水热7456mol/L KOH0.5220NiO x@NPC[28]立方结构溶剂热15236mol/L KOH1534NGCA[29]蜂窝状干法冷冻和连续高温10856mol/L KOH1244DUT-5-CN[30]二维纳米结构煅烧415.26mol/L KOH0.5100 Zn/Co-MOF-NPC[31]分级多孔结构煅烧和酸洗11376mol/L KOH0.5270Ni-Fe-O/NPC@PCNFs-400[32]四面体纳米棒自模板MOF合成52.953mol/L KOH11419 ZIF-8-NC/rGO[33]碳纳米纸煅烧和酸浸489.36mol/L KOH1280C-S-900[34]三维分层海绵一步热解法1356.36mol/L KOH20226HZ-NPC[35]多面体结构高温碳化约2026mol/L KOH2545 CTAs@NCBs-700(T)[36]纳米棒阵列乙醇原位催化蒸发9051mol/L H2SO41mA/cm2244㊀㊀注:参考文献22㊁24㊁33㊁34的材料采用双电极体系进行电化学性能测试,其余材料测试均采用三电极体系㊂2㊀其他MOFs衍生的纳米材料基于金属氧化物㊁氢氧化物㊁硫化物及磷化物构建的赝电容超级电容器(见图1(b))在充放电过程中主要通过氧化还原反应进行能量储存,故这些材料比NPCs构筑的超级电容器具有更高的能量密度㊂因此研究人员以MOFs为牺牲模板,合成了MOFs衍生的氧化物㊁氢氧化物㊁硫化物和磷化物㊂这些MOFs衍生的纳米材料继承了原生MOFs的有序孔道结构,作为超级电容器的电极材料时,具有更优异的电化学性能㊂其与NPCs组成的非对称超级电容器以及使用单一材料的对称超级电容器相比,拥有更宽的工作电压窗口㊁更高的能量密度以及更优越的循环稳定性[37]㊂Li等[38]向ZIF-67中添加适当比例的钴和镍离子,制备了衍生自双金属咪唑骨架的化合物空心NiCo2O4和片状Co3O4/NiCo2O4,得益于其独特的片状结构以及镍钴两种金属元素的协同作用,Co3O4/NiCo2O4电极在0.5A/g的电流密度下显示出846F/g的高比电容㊂具有丰富活性位点和独特结构的层状双氢氧化物(layered double hydroxides,LDHs)展现出超高理论电容,故LDHs成为混合超级电容器(hybrid supercapacitor,HSC)的理想电极材料之一㊂然而,当一些环境条件发生变化时,离子之间的相互作用增强,导致LDHs团聚,影响了载流子的储存㊁交换和释放[39],影响了LDHs超级电容器的电化学性能㊂为了缓解LDHs的团聚,研究人员利用MOFs和LDHs制得了MOFs衍生的纳米层状氢氧化物(MOFs-LDHs)㊂Zhang等[40]在MOF的分级结构中原位蚀刻/电沉积,构建了界面扩散电极HKUST-1@CoNiLDH(见图3(a))㊂在1A/g的电流密度下,其比电容为297.23mA㊃h/g㊂HKUST-1@CoNiLDH 与活性炭阳极制成的HSC具有相当可观的能量密度和功率密度(39.8W㊃h/kg和799.9W/kg)㊂Hu等[41]使用电化学阴离子交换方法控制MOFs的水解,合成了多孔Ni/Co氢氧化物纳米片㊂电化学阴离子交换后, MOFs纳米片的有机配体可以循环再利用㊂当NiʒCo的摩尔比为7ʒ3时,多孔Ni/Co氢氧化物电极的能量密度和功率密度高达74.7W㊃h/kg和5990.6W/kg,经过8000次充放电循环后仍具有较高电容保持率㊂在电化学阴离子交换方法控制MOFs水解策略中,可循环利用的有机配体降低了电极的制备成本,这种结构调制方法为后续制备成本更低和更环保的电极材料提供了参考㊂除了MOFs衍生的氧化物和LDHs被广泛作为超级电容器电极,MOFs衍生的硫化物也受到了较多的关注㊂MOFs衍生的硫化物比MOFs衍生的氧化物和LDHs的结构更灵活,与过渡金属之间的配位能力更好㊂1926㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷Acharya等[42]采用MOFs介导硫化合成了瘤状Ni-Co-S纳米材料,并将中空和多孔NiMoO4纳米管集成到rGO 涂覆的泡沫镍上,制备了NiMoO4@Ni-Co-S超级电容器电极材料㊂经过硫化和刻蚀后,NiMoO4@Ni-Co-S电极独特的开放框架和管状结构极大缩短了载流子迁移路径,促进了复合电极的法拉第反应速率㊂在2mol/L 的KOH电解质中,1A/g的电流密度下,获得了318mA㊃h/g的高比容量;经过10000次充放电循环后,初始电容保持率仍高达88.87%,展现了其优异的循环性能㊂磷化物自然丰度高㊁环境友好㊁价格低廉㊂MOFs衍生的金属磷化物纳米材料用作超级电容器电极时,由于多组分的协同作用,增强了电极材料的电导率㊁氧化还原反应动力学和循环性能[43]㊂He等[44]通过水热法实现了层状砖堆叠NiCo-MOF组件的局部磷化,制备了由镍/钴MOF(NiCo-MOF)和磷化物(NiCoP)组成的功能异质结构(NiCoP-MOF)㊂NiCoP-MOF中P-O可以有效防止NiCoP晶体在离子储存和交换时被破坏,赋予了NiCoP-MOF极佳的结构稳定性㊂以其制备的超级电容器的比电容㊁能量密度和功率密度远优于NiCo-MOF㊂Chhetri等[45]通过核-壳静电纺丝技术制备了中空碳纳米纤维(HCNF),然后进行连续稳定和碳化㊂在HCNF内外合成了双金属MOF(Ni和Fe基),并通过磷化转化为双金属磷化物(Ni-Fe-P)㊂HCNF独特的高孔隙率和中空通道,极大提升了电解质离子/电子的传输速率㊂故(Ni-Fe)-P-C@HCNFs电极展现出优异的电化学性能㊂图3㊀HKUST-1@CoNiLDH[40](a)和MOF/MXene/NF[46](b)基电极的合成示意图Fig.3㊀Schematic illustration of synthesis process of HKUST-1@CoNiLDH(a)[40]and MOF/MXene/NF(b)based electrodes[46]尽管MOFs衍生的金属氧化物㊁氢氧化物㊁硫化物和磷化物等纳米材料展现出了优异的电化学性能,但是这些衍生物仍存在金属离子与有机配体之间的弱配位键和不稳定性㊁活性位点利用率低以及晶格失配等诸多问题,导致在储能领域的应用受到了诸多限制㊂针对这些问题,研究人员使用不同的合成策略和结构调制方法开发了MOFs衍生的多元材料和复合材料㊂通过不同元素之间的协同作用和更高效的纳米结构来改善电极材料的电化学性能[47]㊂Li等[48]使用电沉积和CVD制备了阵列结构材料㊂在MOF-CVD过程中,树状阵列之间的自由空间有效缓解了体积膨胀,保证了阵列结构的结构完整性和稳定性㊂在20A/g的高电流密度下,比电容高达368F/g;在经过10000次循环后,电容保持率高达95.9%㊂此外,可利用界面工程构建异质纳米结构,调整混合MOFs衍生纳米材料和其他材料形态,提高超级电容器的电化学性能[49]㊂Yang等[46]通过温度控制退火工艺在泡沫镍(NF)(即MOF/MXene/NF)上制备Ni-MOF/V2CTx-MXene-300复合材料㊂随后在不改变晶体结构的情况下,构建了分级多孔纳米棒复合材料㊀第11期郭容男等:超级电容器用MOFs衍生纳米电极材料的研究进展1927㊀的异质结构(见图3(b))㊂其构建的异质结结构与活性炭/NF作为阳极组成的超级电容器的能量密度和功率密度分别为46.3W㊃h/kg和746.8W/kg,循环15000次后,初始容量保持率高达118.1%,这得益于Ni O V键的界面相互作用可以有效地调节组件的电子结构,增强电子传导性和反应性㊂MOFs衍生超级电容器电极材料的合成策略主要包括模板碳化策略㊁表面修饰策略㊁衍生金属化合物策略等㊂在模板碳化策略中,将MOFs直接高温热解或水热处理生成碳骨架,这种方法可以获得具有高比表面积的和多孔结构的碳材料[50]㊂在表面修饰策略中,通过一些化学修饰将纳米颗粒引入到MOFs的表面或内部,改善MOFs的电化学性能和储能性能[51-52]㊂在衍生金属化合物策略中,将MOFs衍生成金属氧化物㊁双层氢氧化物㊁金属磷化物以及金属硫化物,这些金属化合物具有优异的电化学活性,是超级电容器电极极具潜力的材料[53-54]㊂值得注意的是,具体的合成策略可能会根据具体的MOFs材料和应用需求而有所差异,在设计和合成过程中,需要综合考虑材料的电化学性能㊁稳定性和成本等因素㊂结构调制在MOFs衍生超级电容器电极材料的合成过程中也十分重要,其中经结构调制后的MOFs衍生的多元材料和复合材料所展现的电化学性能尤为突出㊂Pathak等[55]通过同轴静电纺丝合成了具有足够柔韧性㊁导电性和高度功能化的含有中空碳纳米纤维(MXHCNF)的MXenes,并在MXHCNF内外装饰聚吡咯层得到PPy@MXHCNF㊂PPy@MXHCNF作为独立电极的高效基底,均匀生长了ZnCoMOF㊂该材料作为超级电容器电极(ZCO@PPy@MXHCNF)时,在1A/g的电流密度下具有1567.5F/g的超高比电容㊂ZCO@PPy@MXHCNF 电极的高比电容主要源于其独特的三层结构形态学㊁自行设计的高效基底以及双金属MOFs提供的协同作用㊂当前不同种类材料的耦合受到了研究人员的广泛关注,在超级电容器的电极设计方面,电极材料之间的协同作用可提升离子载流子传输动力学㊁结构稳定性以及电容性能等[56-57]㊂Jayakumar等[58]将MOF衍生的双金属氧化物与石墨烯3D水凝胶耦合,通过连续且多孔的石墨烯导电网络实现了2870.8F/g的高比电容㊂Shao等[59]在UiO-66的孔中生长聚苯胺分子链(PANI/UiO-66),形成固定的互穿网络结构㊂PANI/UiO-66通过多种协同作用增强了其电导率和电化学性能,以其为电极材料制备的柔性超级电容器在800个180ʎ的弯曲周期后,其性能仅下降10%,这种柔性超级电容器在储能装置中显示出了巨大的潜力㊂3㊀结语与展望本文综述了目前MOFs衍生碳材料㊁氧化物㊁氢氧化物㊁硫化物以及磷化物作为高效超级电容器电极材料的研究进展,概括和总结了目前超级电容器电极用MOFs衍生材料的合成策略和结构调制方法㊂在孔结构的设计中,微孔用于EDLC载流子的吸附和赝电容的体相反应,介孔用于载流子的交换,大孔主要用于载流子的储存扩散㊂通过结构调制调整MOFs衍生材料的结构尺寸㊁孔隙率和载流子通道对提高超级电容器的电化学性能至关重要㊂尽管目前MOFs衍生物具有高比电容㊁高功率密度㊁快充放电及长循环寿命等优异的超级电容行为,但后续电极材料的开发仍存在合成策略选择的多样性㊁结构调制不确定性和不稳定性㊁合成过程消耗能量大,以及环境问题等,限制了其在超级电容器中的商业化应用㊂为了进一步提高超级电容器用MOFs衍生材料的电化学性能,促进超级电容器的商业化,需从以下几个方面进行进一步的探究㊂对于MOFs衍生碳材料,可将其与杂原子进行掺杂,在原子水平上调节材料的原子/分子结构,通过改变材料的电子结构来提高超级电容器的性能㊂此外,进一步深入研究MOFs衍生碳材料的储能机理㊂通过先进的表征方法获得其在循环过程中的形貌㊁价态㊁结构和组分变化,建立研究模型,通过计算机模拟手段对其建立材料模型以及材料数据库,并结合机器学习和大数据模型对材料进行更直观的表达和预测㊂对于MOFs衍生氧化物㊁氢氧化物㊁硫化物以及磷化物纳米材料,首先可通过不同过渡金属离子与配体结合,构建新型拓扑结构的原生MOFs,再通过硫化或磷化调节组分活性,提升MOFs衍生纳米电极材料电容特性和结构稳定性㊂其次,尝试MOFs衍生的多元材料与不同维度㊁不同种类以及不同特性的材料耦合,提升电化学性能和机械性能㊂最后MOFs衍生的多元材料在复合时存在缺陷和引入杂原子等问题,故需系统研究异质原子掺杂量和位错缺陷浓度之间的关系,并深入探究位错缺陷浓度对电极材料的导电性㊁电化学活性以及结构稳定性的影响㊂此外,MOFs衍生氧化物㊁氢氧化物㊁硫化物㊁磷化物和其复合所得的材料在不同电解质中电容表现不同,故需通过合理匹配电极和电解质,降低电极在循环过程中的衰变㊂1928㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷参考文献[1]㊀XU B,ZHANG H B,MEI H,et al.Recent progress in metal-organic framework-based supercapacitor electrode materials[J].CoordinationChemistry Reviews,2020,420:213438.[2]㊀ZHAO Y,SONG Z X,LI X,et al.Metal organic frameworks for energy storage and conversion[J].Energy Storage Materials,2016,2:35-62.[3]㊀EMAM H E,ABDELHAMEED R M,AHMED H B.Adsorptive performance of MOFs and MOF containing composites for clean energy and safeenvironment[J].Journal of Environmental Chemical Engineering,2020,8(5):104386.[4]㊀ADEGOKE K A,MAXAKATO N W.Porous metal-organic framework(MOF)-based and MOF-derived electrocatalytic materials for energyconversion[J].Materials Today Energy,2021,21:100816.[5]㊀DOLGOPOLOVA E A,RICE A M,MARTIN C R,et al.Photochemistry and photophysics of MOFs:steps towards MOF-based sensingenhancements[J].Chemical Society Reviews,2018,47(13):4710-4728.[6]㊀ZHANG X Q,CHENG X B,ZHANG Q.Nanostructured energy materials for electrochemical energy conversion and storage:a review[J].Journal of Energy Chemistry,2016,25(6):967-984.[7]㊀MILLER E E,HUA Y,TEZEL F H.Materials for energy storage:review of electrode materials and methods of increasing capacitance forsupercapacitors[J].Journal of Energy Storage,2018,20:30-40.[8]㊀YANG W P,LI X X,LI Y,et al.Applications of metal-organic-framework-derived carbon materials[J].Advanced Materials,2018:1804740.[9]㊀ZHUANG J L,LIU X Y,MAO H L,et al.Hollow carbon polyhedra derived from room temperature synthesized iron-based metal-organicframeworks for supercapacitors[J].Journal of Power Sources,2019,429:9-16.[10]㊀WANG C H,KIM J,TANG J,et al.New strategies for novel MOF-derived carbon materials based on nanoarchitectures[J].Chem,2020,6(1):19-40.[11]㊀SHANG L,YU H J,HUANG X,et al.Carbon nanoframes:well-dispersed ZIF-derived co,N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts[J].Advanced Materials,2016,28(8):1712.[12]㊀YAO M Y,ZHAO X,JIN L,et al.High energy density asymmetric supercapacitors based on MOF-derived nanoporous carbon/manganese dioxidehybrids[J].Chemical Engineering Journal,2017,322:582-589.[13]㊀ZHU J,SHEN X P,KONG L R,et al.MOF derived CoP-decorated nitrogen-doped carbon polyhedrons/reduced graphene oxide composites forhigh performance supercapacitors[J].Dalton Transactions,2019,48(28):10661-10668.[14]㊀FANG H,BIAN H,ZHANG H,et al.Hierarchical porous nitrogen-doped carbon nanosheets derived from zinc-based bio MOF as flexiblesupercapacitor electrode[J].Applied Surface Science,2023,614:156154.[15]㊀WANG M J,MAO Z X,LIU L,et al.Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction[J].Small,2018,14(52):1804183.[16]㊀LI C J,YANG W H,HE W,et al.Multifunctional surfactants for synthesizing high-performance energy storage materials[J].Energy StorageMaterials,2021,43:1-19.[17]㊀BAI P Y,WEI S L,LOU X X,et al.An ultrasound-assisted approach to bio-derived nanoporous carbons:disclosing a linear relationship betweeneffective micropores and capacitance[J].RSC Advances,2019,9(54):31447-31459.[18]㊀ZHANG Z,FENG J Z,JIANG Y G,et al.Self-sacrificial salt templating:simple auxiliary control over the nanoporous structure of porous carbonmonoliths prepared through the solvothermal route[J].Nanomaterials,2018,8(4):255.[19]㊀ZHANG W,JIANG X F,ZHAO Y Y,et al.Hollow carbon nanobubbles:monocrystalline MOF nanobubbles and their pyrolysis[J].ChemicalScience,2017,8(5):3538-3546.[20]㊀TANG T T,YUAN R L,GUO N N,et al.Improving the surface area of metal organic framework-derived porous carbon through constructing innersupport by compatible graphene quantum dots[J].Journal of Colloid and Interface Science,2022,623:77-85.[21]㊀LIU W H,WANG K,LI C,et al.Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte[J].Journal of Materials Chemistry A,2018,6(48):24979-24987.[22]㊀SAMUEL E,JOSHI B,KIM M W,et al.Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbonnanofiber electrodes for high performance flexible supercapacitors[J].Chemical Engineering Journal,2019,371:657-665.[23]㊀ZHOU P,WAN J F,WANG X R,et al.Nickel and cobalt metal-organic-frameworks-derived hollow microspheres porous carbon assembled fromnanorods and nanospheres for outstanding supercapacitors[J].Journal of Colloid and Interface Science,2020,575:96-107. [24]㊀ZHANG S,SHI X Z,WEN X,et al.Interconnected nanoporous carbon structure delivering enhanced mass transport and conductivity towardexceptional performance in supercapacitor[J].Journal of Power Sources,2019,435:226811.[25]㊀ZHAO K M,LIU S Q,YE G Y,et al.High-yield bottom-up synthesis of2D metal-organic frameworks and their derived ultrathin carbonnanosheets for energy storage[J].Journal of Materials Chemistry A,2018,6(5):2166-2175.[26]㊀LI Q A,DAI Z W,WU J B,et al.Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material forsupercapacitor[J].Advanced Energy Materials,2020,10(33):1903750.㊀第11期郭容男等:超级电容器用MOFs衍生纳米电极材料的研究进展1929㊀[27]㊀WANG J E,LUO X L,YOUNG C,et al.A glucose-assisted hydrothermal reaction for directly transforming metal-organic frameworks into hollowcarbonaceous materials[J].Chemistry of Materials,2018,30(13):4401-4408.[28]㊀AL-ENIZI A M,UBAIDULLAH M,AHMED J,et al.Synthesis of NiO x@NPC composite for high-performance supercapacitor via waste petplastic-derived Ni-MOF[J].Composites Part B:Engineering,2020,183:107655.[29]㊀PING Y J,YANG S J,HAN J Z,et al.N-self-doped graphitic carbon aerogels derived from metal-organic frameworks as supercapacitor electrodematerials with high-performance[J].Electrochimica Acta,2021,380:138237.[30]㊀LIU Y,XU J,LIU S C.Porous carbon nanosheets derived from Al-based MOFs for supercapacitors[J].Microporous and Mesoporous Materials,2016,236:94-99.[31]㊀HE D P,GAO Y,YAO Y C,et al.Asymmetric supercapacitors based on hierarchically nanoporous carbon and ZnCo2O4from a single biometallicmetal-organic frameworks(Zn/co-MOF)[J].Front Chem,2020,8:719.[32]㊀ACHARYA D,PATHAK I,DAHAL B,et al.Immoderate nanoarchitectures of bimetallic MOF derived Ni-Fe-O/NPC on porous carbonnanofibers as freestanding electrode for asymmetric supercapacitors[J].Carbon,2023,201:12-23.[33]㊀LU H Y,LIU S L,ZHANG Y F,et al.Nitrogen-doped carbon polyhedra nanopapers:an advanced binder-free electrode for high-performancesupercapacitors[J].ACS Sustainable Chemistry&Engineering,2019,7(5):5240-5248.[34]㊀CAO X M,SUN Z J,ZHAO S Y,et al.MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors[J].Materials Chemistry Frontiers,2018,2(9):1692-1699.[35]㊀KIM J,YOUNG C,LEE J,et al.Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors[J].Journal ofMaterials Chemistry A,2017,5(29):15065-15072.[36]㊀TANG Z Y,ZHANG G H,ZHANG H,et al.MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors[J].Energy Storage Materials,2018,10:75-84.[37]㊀LIU H,LIU X,WANG S L,et al.Transition metal based battery-type electrodes in hybrid supercapacitors:a review[J].Energy StorageMaterials,2020,28:122-145.[38]㊀LI J N,ZHANG C Y,WEN Y P,et al.Design of ZIF-67MOF-derived Co3O4/NiCo2O4nanosheets for supercapacitor electrode materials[J].Journal of Chemical Research,2021,45(11-12):983-991.[39]㊀ZHANG X,WANG S L,XU L,et al.Controllable synthesis of cross-linked CoAl-LDH/NiCo2S4sheets for high performance asymmetricsupercapacitors[J].Ceramics International,2017,43(16):14168-14175.[40]㊀ZHANG Y N,CHEN J L,SU C Y,et al.Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxidefor high-performance hybrid supercapacitors[J].Nano Research,2022,15(10):8983-8990.[41]㊀HU Q,CHAI Y R,ZHOU X Y,et al.Electrochemical anion-exchanged synthesis of porous Ni/Co hydroxide nanosheets for ultrahigh-capacitancesupercapacitors[J].Journal of Colloid and Interface Science,2021,600:256-263.[42]㊀ACHARYA J,OJHA G P,KIM B S,et al.Modish designation of hollow-tubular rGO-NiMoO4@Ni-co-S hybrid core-shell electrodes withmultichannel superconductive pathways for high-performance asymmetric supercapacitors[J].ACS Applied Materials&Interfaces,2021,13(15):17487-17500.[43]㊀LIU Z C,ZHANG G,ZHANG K,et al.Low electronegativity Mn bulk doping intensifies charge storage of Ni2P redox shuttle for membrane-freewater electrolysis[J].Journal of Materials Chemistry A,2020,8(7):4073-4082.[44]㊀HE S X,GUO F J,YANG Q,et al.Design and fabrication of hierarchical NiCoP-MOF heterostructure with enhanced pseudocapacitive properties[J].Small,2021,17(21):2100353.[45]㊀CHHETRI K,KIM T,ACHARYA D,et al.Hollow carbon nanofibers with inside-outside decoration of Bi-metallic MOF derived Ni-Fephosphides as electrode materials for asymmetric supercapacitors[J].Chemical Engineering Journal,2022,450:138363.[46]㊀YANG X F,TIAN Y H,LI S A,et al.Heterogeneous Ni-MOF/V2CT x-MXene hierarchically-porous nanorods for robust and high energy densityhybrid supercapacitors[J].Journal of Materials Chemistry A,2022,10(22):12225-12234.[47]㊀HUANG Y C,ZHOU T,LIU H,et al.Do Ni/Cu and Cu/Ni alloys have different catalytic performances towards water-gas shift?A densityfunctional theory investigation[J].ChemPhysChem,2014,15(12):2490-2496.[48]㊀LI Y,XIE H Q,LI J,et al.Metal-organic framework-derived CoO x/carbon composite array for high-performance supercapacitors[J].ACSApplied Materials&Interfaces,2021,13(35):41649-41656.[49]㊀LI D X,WANG J A,GUO S J,et al.Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery[J].Advanced Functional Materials,2020,30(50):2003945.[50]㊀LIU Y,XU X M,SHAO Z P,et al.Metal-organic frameworks derived porous carbon,metal oxides and metal sulfides-based compounds forsupercapacitors application[J].Energy Storage Materials,2020,26:1-22.[51]㊀LI Z W,MI H Y,LIU L,et al.Nano-sized ZIF-8anchored polyelectrolyte-decorated silica for nitrogen-rich hollow carbon shell frameworkstoward alkaline and neutral supercapacitors[J].Carbon,2018,136:176-186.[52]㊀YAN C X,WEI J,GUAN J,et al.Highly foldable and free-standing supercapacitor based on hierarchical and hollow MOF-anchored cellulose。
二氧化硅纳米微粒修饰电极的制备及其在黄嘌呤电化学检测中的应用
碳纳米管修饰电极在电化学中应用
到 电极表 面 。不 同的极 性质 。 制备 碳纳 米管修 饰 电极的方 法很 多 ,现 在就 来 简 单介绍 几种 。
1 碳纳米 管的分类
C NT属 于 富勒烯 ( l rn ) 系 ,管状 无缝 中 f l ee 碳 ue
空 ,具有 完整 的分子结 构 , 由碳 六元环 构成 的类石 墨 平面卷 曲而 成 …。管各 单层两 端 由五边 形 或七边
由于 C NT具有 良好 的导 电性 、催 化 活性 和 较
大 的 比表 面积 ,尤其 对过 电位 的大大 降低及 对部分 氧 化还原 蛋 白质 的直接 电子 转移 现象 ,因此被 广泛 用 于修饰 电极 的研究 。碳纳 米管在 作为 电极 用于 化 学 反应 时能促进 电子 转移 。碳纳 米管 的 电化学 和 电 催 化行为 研究 已有 不少报道 。
围 3个碳 原子相 连形成 六角 形 网格 结构 ,但通 常 因 产 生 弯 曲 而 形 成 空 间拓 扑 结 构 ,从 而 使 某 些 碳 原
子呈 s』 p 杂化状态 J 。卷层数从一到数百不等。由
单层 石 墨片 卷积 而成 的称 为单 壁碳 纳 米管 (ig e sn l. w l dcro a ou e S al a n n tb , WNT , 备时 管径 可控 , e b n ) 制
透 射 电镜 ( TE 下 发现 的一种 针状 的管 形碳 单 HR M)
质 。它 以特有 的力学 、电学 和化学 性质 ,以及 独特 的准一 维管状 分子结 构和在 未来 高科 技领域 中所具 有 的潜在 应用 价值 ,迅速 成为化学 、物 理及 材料科 学 等领域 的研 究热点 。 目前 , 纳米碳 管 在理论 计算 、 制备和 纯化生 长机理 、光谱 表征 、物理 化学性 质 以 及 在力学 电学 、化学 和材料 学等领 域 的应用研 究正 在 向纵 深发展 ,在 一些方 面 已取得 重 大突破 。纳米 碳管 ( CNT 的 发现 ,开 辟碳 家 族 的 又一 同素 异 形 ) 体和纳 米材料 研究 的新领域 。
聚酰亚胺-碳纳米材料修饰电极的制备及其在光电催化和传感器中的应用
聚酰亚胺-碳纳米材料修饰电极的制备及其在光电催化和传感器中的应用聚酰亚胺/碳纳米材料修饰电极的制备及其在光电催化和传感器中的应用引言近年来,光电催化和传感器技术在环境监测、能源转化等领域得到了广泛应用。
其中,聚酰亚胺/碳纳米材料修饰电极由于其具备高导电性、良好的化学稳定性和优异的光电催化性能而备受关注。
本文将介绍聚酰亚胺/碳纳米材料修饰电极的制备方法及其在光电催化和传感器中的应用。
一、聚酰亚胺/碳纳米材料修饰电极的制备方法聚酰亚胺/碳纳米材料修饰电极的制备方法多种多样,下面我们将介绍其中的几种常用方法。
1. 化学气相沉积法化学气相沉积法是一种常用的制备碳纳米材料修饰电极的方法。
首先,在底物表面沉积一层金属催化剂,如铁、钴等。
然后,在高温下将碳源物质如甲烷引入反应室中,通过热解反应生成碳纳米材料。
最后,将得到的碳纳米材料沉积在电极表面,形成聚酰亚胺/碳纳米材料修饰电极。
2. 化学还原法化学还原法是一种简单有效的制备聚酰亚胺/碳纳米材料修饰电极的方法。
首先,将聚酰亚胺溶液与碳纳米材料混合,并在外加热源的作用下进行混合反应。
然后,通过化学还原剂的还原作用,将聚酰亚胺和碳纳米材料还原成聚酰亚胺/碳纳米材料修饰电极。
3. 电化学沉积法电化学沉积法是一种对金属电极表面进行修饰的常用方法。
通过在电化学沉积过程中添加特定的聚酰亚胺和碳纳米材料前驱物,可以实现对电极表面的修饰。
该方法具备操作简单、可控性好的优点,一直受到研究者的关注。
二、聚酰亚胺/碳纳米材料修饰电极在光电催化方面的应用聚酰亚胺/碳纳米材料修饰电极在光电催化方面的应用主要体现在太阳能电池、光电分解水和光催化还原等方面。
1. 太阳能电池聚酰亚胺/碳纳米材料修饰电极可以用于太阳能电池的构建,通过聚酰亚胺和碳纳米材料的修饰,可以提高电极的导电性,增强电子传输速率,并有效减少电极与电解质间的接触电阻。
因此,在太阳能电池中,聚酰亚胺/碳纳米材料修饰电极可以提高光电转换效率,提升太阳能的利用率。
一种纳米线-纳米颗粒修饰电极的制备方法及其应用-概述说明以及解释
一种纳米线-纳米颗粒修饰电极的制备方法及其应用-概述说明以及解释1.引言1.1 概述纳米线-纳米颗粒修饰电极是一种新兴的电化学修饰技术,通过在电极表面修饰纳米线和纳米颗粒,可以显著提高电化学性能和催化活性。
纳米线具有高比表面积、优异的导电性能和较好的机械强度,而纳米颗粒则具有丰富的催化活性和可调控性,因此将二者有效结合在一起,能够实现更高效、更可控的电化学反应和催化过程。
本文主要针对纳米线-纳米颗粒修饰电极的制备方法和应用进行系统研究和总结。
首先,介绍了两种常用的制备方法:方法一是利用化学合成的方式,通过控制反应条件和添加适量的表面活性剂来合成纳米线和纳米颗粒,并将其修饰在电极表面;方法二则是采用物理沉积的方法,将事先制备好的纳米线和纳米颗粒直接沉积在电极表面。
对比分析了这两种方法的优缺点,并探讨了它们在实际应用中的适用性和局限性。
其次,重点探讨了纳米线-纳米颗粒修饰电极的应用。
应用一方面涉及电化学领域,纳米线-纳米颗粒修饰电极在电催化、电化学传感和电化学储能等方面显示出了显著的优势,可以提高催化活性、提升传感灵敏度和增加电化学储能密度。
应用二方面则涉及催化剂领域,纳米线-纳米颗粒修饰电极在催化剂的设计和合成中具有巨大的潜力,可以通过控制纳米结构和相互作用来调控催化剂的活性和选择性。
综上所述,纳米线-纳米颗粒修饰电极的制备方法和应用是一个具有广阔前景的研究领域。
本文旨在探讨这种技术的制备方法、性能优势和应用潜力,为相关研究和应用提供一定的理论和实践指导。
通过深入研究和探索,相信纳米线-纳米颗粒修饰电极技术将对电化学和催化领域带来新的突破和发展。
文章结构部分的内容如下:1.2 文章结构本文主要包括引言、正文和结论三个主要部分。
引言部分对研究主题进行了概述,介绍了纳米线-纳米颗粒修饰电极制备方法及其应用的背景和意义。
同时,引言部分还对本文的结构进行了简要说明,包括正文部分的内容和目的。
正文部分分为两个主要章节:纳米线-纳米颗粒修饰电极的制备方法和纳米线-纳米颗粒修饰电极的应用。
物理化学中电化学分析方法的新进展和应用领域
物理化学中电化学分析方法的新进展和应用领域电化学分析方法是研究物质的电化学性质、反应和机制的一种重要手段,具有广泛的应用领域。
近年来,随着科学技术的不断发展和进步,电化学分析方法在物理化学领域取得了许多新的进展,并在众多应用领域得到了广泛应用。
本文将针对物理化学中电化学分析方法的新进展和应用领域展开讨论。
一、新进展1. 界面电化学技术界面电化学技术是电化学分析方法中的一项重要技术,在表面电化学和电催化研究领域得到广泛应用。
近年来,研究人员通过改进电极材料和结构设计,提高了界面电化学技术的性能和灵敏度。
例如,利用纳米材料构建电极界面,可以增强电化学反应的速率和效率。
此外,通过表面修饰和功能化改性,可以实现对特定物质的高选择性检测。
2. 生物电化学技术生物电化学技术是电化学分析方法中的一个重要分支,主要研究生物分子及其电化学性质和反应过程。
近年来,生物电化学技术在生物医学、环境保护和食品安全等领域取得了显著的进展。
例如,利用生物传感器可以实现对生物分子的高灵敏度检测,为生物医学诊断和药物研发提供重要手段。
3. 纳米电化学技术纳米电化学技术是电化学分析方法中的一项前沿技术,主要研究纳米材料在电化学过程中的特殊性质和应用。
近年来,通过纳米材料的合成和调控,研究人员实现了对电化学过程的精密控制和增强。
此外,利用纳米电化学技术可以实现超灵敏的电化学传感和催化反应,具有重要的应用潜力。
二、应用领域1. 环境分析电化学分析方法在环境分析领域具有重要的应用价值。
通过电化学技术可以实现水质、大气和土壤中有害物质的检测和监测。
例如,利用电化学传感器可以实时监测水中的重金属离子和有机污染物,为环境保护提供重要参考。
2. 药物研发电化学分析方法在药物研发中广泛应用。
通过电化学技术可以研究药物的电化学性质、药物与生物分子的相互作用等。
例如,通过电化学分析可以确定药物的氧化还原性质,并优化药物的合成和性能。
此外,电化学方法还可以用于药物的质量控制和药物代谢动力学研究。
ppcps类污染物氧化处理的电化学分析研究
摘要PPCPs类污染物是近年来在环保领域引起普遍关注的新型污染物,本文以PPCPs污染物为研究对象,通过建立电化学分析方法用于它们的降解监测研究。
本文首先采用UV/H2O2光催化法研究了4-氨基安替比林(4-AAP)的降解过程。
建立了基于碳纳米管(CNTs)修饰电极的电化学测定方法并用其对降解过程进行监测。
研究了4-AAP在CNTs修饰电极上的电化学行为以及支持电解质、富集时间等对峰电流的影响。
在最佳条件下,4-AAP的氧化峰电流与浓度在5.0×10-5-2.0×10-3 mol/L范围内呈良好线性关系,其回归方程为I p(μA)=15.206 +207.7c (mmol/L),相关系数为0.9984,检出限(S/N=3)为2.6×10-5 mol/L。
根据以上电化学分析方法,考察了4-AAP的UV/H2O2的降解过程中H2O2投加量以及pH对降解速度的影响。
采用UV/Fenton技术对安替比林(AP)进行光催化降解,建立了AP在CNTs修饰电极上的电分析方法并对降解过程进行监测。
研究了AP在CNTs修饰电极上的电化学行为,考察了支持电解质、富集时间、扫速等对峰电流和峰电位的影响,电极反应为吸附控制过程。
采用循环伏安法时,AP的氧化峰电流与浓度在1.0×10-4-2.0×10-3 mol/L范围内呈良好线性关系;采用差示脉冲伏安时,AP氧化峰电流与浓度在8.0×10-6-2.0×10-4 mol/L范围内呈良好线性关系。
然后用UV/Fenton技术对AP进行光催化降解,并用上述循环伏安法监测降解过程,分析了H2O2用量、Fe2+用量和pH对AP降解速率的影响。
制备了一种新型的外磁场固定磁载纳米材料修饰电极并将其应用于光电催化降解双氯芬酸钠。
首先以共沉淀法、溶胶-凝胶法合成了TiO2/SiO2/Fe3O4(TSF)纳米材料,采用X射线衍射仪、透射电子显微镜和傅里叶红外光谱仪对材料进行表征。
纳米材料在电化学检测和传感中的应用
纳米材料在电化学检测和传感中的应用电化学检测和传感技术是一种非常有效和广泛应用的技术。
它具有灵敏度高、选择性好、实时性强等优点,因此在医学、环保、安全检测等领域应用广泛。
近年来,纳米材料的发展与应用为电化学检测和传感提供了全新的思路和手段。
本文将从纳米材料的定义、性质以及在检测和传感领域的应用进行探讨。
一、纳米材料的定义和性质纳米,是指尺寸在1~100纳米之间的物质。
纳米材料则是指在纳米尺度下制备的材料。
纳米材料具有明显的量子效应、表面效应、空间限制效应等独特的物理和化学性质。
其中,表面效应是最明显的。
由于纳米材料的比表面积大,其表面原子数目相对体积内的原子数目增加。
因此,纳米材料具有更高的表面能、化学活性、催化活性、生物相容性等特性。
二、纳米材料在电化学检测中的应用电化学检测法是通过电化学反应检测样品中的物质,从而实现对其分析定量的技术。
纳米材料在电化学检测中的应用主要集中在增强电化学信号和提高传感器选择性上。
1. 增强电化学信号纳米材料的尺寸和表面性质使其在电化学反应中表现出明显的增强作用。
例如,金纳米颗粒能够增强氧化还原反应在电极上的峰电流。
这是因为金纳米颗粒的表面具有精细的纳米结构,面积相对较大以及其在检测反应间的相互作用,激活了电化学反应,增强峰电流强度。
因此,纳米材料在电化学检测中能够提高分析灵敏度,增强电化学信号。
2. 提高选择性纳米材料具有调控组成和表面性质的特点。
利用这些特点,可以制备具有高选择性的电化学传感器。
以金纳米棒为例,它可以通过改变其棒长宽比来调控其吸收光谱,从而增强传感器的选择性。
又如,石墨烯氧化物不仅具有化学惰性,更重要的是其表面含有多种官能团。
可以利用这种多样性来选择性地吸附和识别特定的单分子或离子。
这样的传感器能够根据不同的生物分子或环境物质作出特定响应。
三、纳米材料在电化学传感中的应用电化学传感器是一种将电化学检测技术与传感器技术相结合的新型传感器。
因其具有灵敏度高、选择性好、实时性强等优点,使其在生物医学监控、环境污染监测、数字诊断等方面应用广泛。
纳米材料修饰电极的制备及在电化学分析中的应用综述
0 引 言
纳米 材料具 有表 面 效 应 、 体积 效 应 和 介 电限 域
修饰时, 不但 可将材 料 本 身 的物 化 特性 引 入 电极 界 面 , 可增 大 电极 的 比表 面 积 , 某 些 物 质 的 电化 还 对 学行 为产生 特有 的催 化效 应 . 文 对各 种 纳 米 材料 本
Ab t a t s r c :Th ee tvt n e stvt fe e to e c n b mp o e y mo i e t a o trmae i e s lc ii a d s n i i o lcr d a e i r v d b df d wi n n mee tr- y i y i h a ,o x mpe, a o mealco ie, tli a o p ri ls, abo a o u e c r o a ou e o o n l f re a l n n — tli xd mealc n n — atc e c r n n n t b s, a b n n n t b sc mp u d a d S n I h tr n to fn u or ns te c r o y r t a n cd, uf y r lc mp u d n n n O o . n t e dee mi ain o e rta mi r, a b h d ae, mi o a i s lh d y o o n s a d i t
t ep a ma e t a a ay i ,h df d ee to e wi a e a g o p l ao r s e t F n l t e r — h h r c u i l n l s t e mo i e lcr d l h v o d a pi t n p o p c . i al h e c s i l c y,
电极表面修饰对电化学反应的影响研究
电极表面修饰对电化学反应的影响研究电化学反应是指通过电学作用来进行化学反应。
电化学反应有广泛的应用,涵盖电池、电解、电渗析、电析等领域。
而电极表面修饰可以改变电极表面的化学、物理属性,从而影响电化学反应,成为研究的热点之一。
电极表面修饰对电化学反应的影响电极表面修饰可以通过改变电极表面的形貌、化学性质或者表面活性位点密度等方面来影响电化学反应的性质和速率。
具体而言,电极表面修饰可以改变电极的电化学反应动力学和热力学性质,从而对电化学反应过程中的反应速率、选择性、电子转移能力等产生影响。
形貌方面,电极表面修饰可以通过热处理、化学处理或电化学方法来改变电极表面的形貌,如制备多孔、纳米、有序阵列等结构的电极。
这些结构的电极表面积大,表面分子可与溶液中的反应物充分接触,提高了反应速率和选择性。
化学性质方面,电极表面修饰可以通过在电极表面修饰层引入特定的化学官能团来改变电极表面的性质,比如引入氨基、硫醇等官能团。
这些化学官能团可与溶液中的反应物形成靶向作用,提高反应速率和选择性。
活性位点密度方面,电极表面修饰可以在电极表面制备高活性位点密度的电极,增强电子转移速率和能力,从而加快电化学反应。
比如通过修饰层上引入贵金属纳米颗粒、碳量子点等高活性位点,可提高电化学反应速率和选择性。
电极表面修饰方法现今,电极表面修饰的方法极为丰富且灵活。
早期电极表面修饰主要依靠物理方法,比如化学蒸汽沉积法和物理气相沉积法,但是这种方法需要高温、高压环境,以及实验设备的高要求,操作较为复杂,限制了其广泛应用。
而现今主要采取化学方法,依靠电极表面修饰分子的化学反应来改变电极表面性质。
这种方法不止包括常见的吸附法、共价键化学修饰法,还包括无机-有机杂化材料、表面聚合法和电聚合法等一系列化学方法。
比如吸附法选择性强、易于操作,无机-有机杂化材料可同时发挥无机和有机材料的优点,表面聚合法和电聚合法制备的电极有优异的重复性和稳定性。
电极表面修饰的应用电极表面修饰的应用在电池、超级电容器、氧还原反应等领域有很广泛的应用。
《纳米银的制备及其在电化学传感器中的应用》范文
《纳米银的制备及其在电化学传感器中的应用》篇一一、引言随着纳米技术的不断发展,纳米材料在诸多领域展现出独特的性能和应用潜力。
其中,纳米银作为一种重要的纳米材料,因其优异的导电性、良好的生物相容性以及独特的表面效应,在电化学传感器领域得到了广泛的应用。
本文将详细介绍纳米银的制备方法,并探讨其在电化学传感器中的应用。
二、纳米银的制备纳米银的制备方法主要包括物理法、化学法和生物法。
其中,化学法因其操作简便、成本低廉等特点,得到了广泛的应用。
1. 化学法制备纳米银化学法制备纳米银主要利用还原剂将银离子还原为银原子,进而形成纳米银。
常见的还原剂包括硼氢化钠、抗坏血酸、银氨溶液等。
在制备过程中,通过控制反应温度、浓度、时间等参数,可以获得不同形状、尺寸的纳米银。
2. 其他制备方法除了化学法,还有物理法和生物法可以制备纳米银。
物理法主要包括真空蒸发、激光烧蚀等;生物法则利用微生物、酶等生物分子进行还原反应。
这些方法各有优缺点,在实际应用中需根据需求选择合适的制备方法。
三、纳米银在电化学传感器中的应用电化学传感器是一种将化学信号转换为电信号的装置,广泛应用于环境监测、生物医学等领域。
纳米银因其优异的导电性和良好的生物相容性,在电化学传感器中发挥着重要作用。
1. 纳米银在电极修饰中的应用纳米银可以用于修饰电极表面,提高电极的导电性和敏感度。
通过将纳米银与其他材料(如碳纳米管、石墨烯等)复合,可以进一步提高电极的性能。
修饰后的电极具有更好的响应速度和检测灵敏度,能够实现对目标物质的快速、准确检测。
2. 纳米银在电化学传感器信号放大中的应用纳米银具有良好的催化性能,可以用于放大电化学传感器的信号。
通过将纳米银与其他催化剂(如酶、抗体等)结合,可以实现信号的放大和增强。
这有助于提高电化学传感器的检测范围和灵敏度,从而实现对低浓度目标物质的检测。
四、结论纳米银作为一种重要的纳米材料,在电化学传感器领域具有广泛的应用前景。
纳米金修饰碳糊电极上沙丁胺醇的电化学研究
西安化学试剂厂;高纯石墨粉
-3
国药集团化学试剂公司;液体石蜡
。Sal在裸玻碳、裸金电极上的响应比较弱,分析
学试剂公司;Sal标准储备液(1.67×10 mol/L):准确称取 0.0100g Sal标准品,用二次蒸馏水溶解后,定容于25mL 棕色容量瓶中,阴冷处避光保存,使用时用 PBS 缓冲溶
灵敏度不高。而采用C60、碳纳米管等修饰电极可以显著 提高检测的灵敏度[9-16]。纳米金因其良好的电学特性和生
收稿日期:2011-09-06 基金项目:陕西自然科学基础研究计划项目(2010JM2020);陕西省教育厅科研项目(2010JS062); 延安大学科研项目(YD2008-37);延安大学研究生创新项目(2011-24) 作者简介:魏瑞丽(1984—),女,硕士研究生,主要从事生物电分析化学研究。E-mail:76763038@ *通信作者:李晓霞(1970—),女,副教授,博士,主要从事生物电分析化学研究。E-mail:lixiaoxia1970@
[7-8] [4] [5] [6]
物相容性被用于药物、免疫和核酸分析中[17-18]。纳米金修 饰碳糊电极对Sal具有明显的电催化作用,基此利用纳米 金修饰碳糊电极料与方法 材料与试剂 沙丁胺醇(相对分子质量239) 定所;金氯酸(HAuCl4・3H2O) 酸钠、浓硝酸和浓盐酸 (光谱纯) 中国药品生物制品检 美国Sigma公司;柠檬 天津化
沙丁胺醇(salbutamol,Sal),学名为1-(4-羟基-3羟甲 基苯基)-2-(叔丁氨基)乙醇,是一种人工合成的β-肾上腺 素受体兴奋剂,因具有脂肪再分配作用和促进生长作用[1] 而被滥用于食品动物饲养中。过量滥用该类药物或食用 高残留的动物组织均会影响人体健康。因此,研究和建 立检测Sal的分析技术,对于临床药物代谢研究和食品安 全检测都具有重要意义。 目前测定Sal的分析方法主要有色谱法[2-3]、化学发光 法 、荧光法 和酶联免疫法 等。这些方法或仪器价格昂 贵,或分析过程繁琐或检测灵敏度较低。电化学分析法 因其良好的选择性、响应快和设备简单等优点而被广泛 研究
芦丁在纳米金修饰玻碳电极上的电化学行为及其测定
一、 实验目的
1.初步掌握电化学工作站的使用方法,掌握循环伏安法和差分脉冲伏安法 的基本原理和测量技术 2. 通过对体系的测量,了解如何根据峰电流、峰电势及峰电势差和扫描速 度之间的函数关系来判断电极反应过程的可逆性, 以及求算有关的热力学参数和 动力学参数。 3. 学习固体电极表面的处理方法 二、 实验原理
七、思考题: 1. 在三电极体系中,工作电极、辅助电极和参比电极各起什么作用? 2. 若实验中测得的条件电位值和值与文献值有差异,试说明为什么? 3. 通过扫速与峰电流的关系,可以说明什么问题?
pa/V
ipa/A
pc/V
ipc/A
ipa/ipc
5. 考察峰电流与浓度的关系 在 15 mL 分别含芦丁标准液 0.1、0.2、0.5 、1.0、2.0 µM 的电解液中。其他 实验条件同上,分别记录从 0.8 ~ 0 V 扫描的差示脉冲伏安图,并作标准曲线。
五、注意事项: 1. 为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下
在脉冲施加前 20ms,只有电容电流 iC; 在脉冲期后 20ms, 所测电流为电解电 流和电容电流的和,DPV 是两次电流相减得到 Δi,因此杂质的氧化还原电流导 致的背景电流也被大大的扣除了,因而具有更高的检测灵敏度和更低的检出限, 使其能够应用于浓度低至 10-8mol/L(约 1µg/L)的场合。 纳米材料从兴起到现在,研究发展历程大致可分为以下 3 个阶段 :第一阶段 (18 世纪中期到 20 世纪 90 年代初) ,在美国巴尔的摩召开的首届国际纳米科学技 术会议标志着正式把纳米技术作为材料学科的一个新的分支 ; 第二阶段 (1990 — 1994 年) ,第二届国际纳米材料学术会议提出了对纳米材料微结构的研究应着眼 于对不同类型材料的具体描述;第三阶段(1994 年至现在) ,纳米材料的特点在于按 人们的意愿设计、组装和创造新的体系,即以纳米颗粒、纳米线和纳米管为基本 单元在一维、二维和三维空间组装纳米结构的体系。研究表明,纳米材料具有大 量的界面,界面原子可达到 50% 以上,使得纳米材料具有常规材料不具备的独特 性质,产生了四大效应:尺寸效应、量子效应、表面效应和界面效应。 纳米金是指金粒子直径在 1 ~100nm 之间的金材料,是最稳定的贵金属纳米 粒子之一。它属于介观粒子,具有特殊的电子结构,在一些特定的晶面上存在着表 面电子态,其费米能级恰好位于体能带结构沿该晶向的禁带之中。因此,处于此表 面态的电子由于功函数的束缚而不能逸出外围;又由于体能态的限制而不能深入 内层,形成了只能平行于表面方向运动的二维电子云。这就是纳米金颗粒所具有 表面效应、量子效应和宏观量子隧道效应等的物理基础。纳米金的颜色随其直径 大小和周围化学环境的不同而呈现红色至紫色 , 并具有很强的二次电子发射能 力。
电泳沉积制备聚苯胺纳米复合材料修饰电极及其在多巴胺检测中的应用
电泳沉积制备聚苯胺纳米复合材料修饰电极及其在多巴胺检测中的应用电泳沉积制备聚苯胺纳米复合材料修饰电极及其在多巴胺检测中的应用摘要:本文通过电泳沉积方法制备了聚苯胺纳米复合材料修饰电极,并研究了其在多巴胺检测中的应用。
实验结果表明,聚苯胺纳米复合材料修饰电极对多巴胺具有优异的电化学检测性能,具备较高的灵敏度、选择性和稳定性,可望成为一种新型的多巴胺传感器。
1. 引言聚苯胺具有良好的导电性、生物相容性和可调控性等特点,在传感器领域具有广阔的应用前景。
然而,由于聚苯胺纳米材料的微纳尺度结构特性,制备方法和控制条件对其性能影响较大。
2. 实验方法2.1 材料实验中使用的材料包括:厚度为1mm的石墨电极片、聚苯胺棒状样品和多巴胺溶液。
2.2 电泳沉积制备将聚苯胺棒状样品放置在多巴胺溶液中,通过电泳沉积方法将多巴胺吸附在聚苯胺棒状样品表面,形成纳米复合材料修饰电极。
3. 结果与分析3.1 电化学性能测试使用循环伏安法测试了纳米复合材料修饰电极在多巴胺检测中的电化学性能。
结果显示,纳米复合材料修饰电极具有较低的氧化还原峰电位、较大的峰电流和较小的电化学阻抗,表明修饰层对多巴胺具有较好的电催化活性。
3.2 多巴胺检测性能将纳米复合材料修饰电极应用于多巴胺检测,在一定范围内,多巴胺浓度与氧化还原峰电流呈良好的线性关系(R^2=0.98),表明修饰电极对多巴胺具有较好的检测灵敏度。
4. 讨论与展望本研究通过电泳沉积方法制备了聚苯胺纳米复合材料修饰电极,并研究了其在多巴胺检测中的应用。
结果表明,纳米复合材料修饰电极具有优异的电化学性能,可用于高灵敏度的多巴胺检测。
然而,目前研究还存在一些问题,例如修饰层的稳定性和荧光信号的检测等,需要进一步研究来解决。
5. 结论本研究成功制备了聚苯胺纳米复合材料修饰电极,并研究了其在多巴胺检测中的应用。
实验结果表明,纳米复合材料修饰电极具有较好的电化学性能和检测灵敏度,为多巴胺传感器的研究提供了新的思路和方法。
纳米银石墨烯修饰电极-电化学法测定血清中的过氧化氢
纳米银石墨烯修饰电极-电化学法测定血清中的过氧化氢姜浩杰;李盛富;王斌堂【摘要】建立纳米银-石墨烯修饰电极电化学法测定血清中过氧化氢的方法.在pH 7.0的磷酸缓冲溶液中,过氧化氢在-0.1 V处产生明显的还原峰.过氧化氢在纳米银-石墨烯修饰的电极上的反应是典型的表面控制反应过程.过氧化氢的浓度在0.5~2.7 mmol/L范围内与其还原峰峰电流呈良好的线性关系,线性相关系数r2=0.9930,检出限为0.17 mmol/L(信噪比S/N=3),测定结果的相对标准偏差小于5%(n=5),加标回收率为98%~103%.该方法灵敏度高,测定结果准确可靠,可用于血清中过氧化氢的测定.【期刊名称】《化学分析计量》【年(卷),期】2018(027)005【总页数】5页(P34-38)【关键词】纳米银石墨烯修饰电极;电化学法;过氧化氢;血清【作者】姜浩杰;李盛富;王斌堂【作者单位】核工业二一六大队,核工业新疆理化分析测试中心,乌鲁木齐 830000;核工业二一六大队,核工业新疆理化分析测试中心,乌鲁木齐 830000;核工业二一六大队,核工业新疆理化分析测试中心,乌鲁木齐 830000【正文语种】中文【中图分类】O657.1过氧化氢是一种重要的化学产品,被广泛应用于农业、工业、医用、生物、军工以及建材等。
过氧化氢的广泛应用对环境产生了污染,对人体危害较大,例如多次接触过氧化氢可以引起人体遗传物质DNA损伤及基因突变,加速人体衰老进程,导致脑中风、动脉硬化、白内障、老年痴呆、癌症[1–3]。
2018年5月1日国家卫生健康委员会在GBZ/T 300.48–2017中降低了过氧化氢的职业接触限值(时间加权平均容许浓度为1.5 mg/m3),由此可见测定过氧化氢含量,特别是直接测定人体中血液中的过氧化氢具有重要意义。
目前,检测过氧化氢的方法主要分为3类:化学发光法、波谱法和电化学法[4–5]。
其中电化学法因操作简单、检测快速、消耗低、灵敏度高而具有应用优势。
纳米材料修饰电极在电化学分析中的应用研究进展
纳米 材料 具有 表面效 应 , 体积效 应 和介 电限 域效 应 等 不 同 于块 体 材 料 的性质 , 作 为 电极 材 料 和催 化 可
剂, 具有 很 高的活性 和选 择性 .当利用 纳米 材料对 电极 进行 修饰 时 , 了将 材料 本身 的物 化 特性 引入 电极 界 除 面外 , 使 电极 拥有 大 的 比表 面积 , 良的吸 附性 能等纳 米材料 的特性 , 而 降低 电极 电位 , 还 优 从 提高 电化学 反应 的速度 、 电极 的选择 性和灵 敏度 .这类修 饰 电极可 用 于测定 多种具 有活 性 和非活 性 的样 品 , 而使 电分析 化 从
mo fe l c r de r if d. dii d e e t o s a e bre e Ke wo d n no t ra ;mo fe l c r de;e e t o h mi a n l i y r s: a ma e i l dii d ee t o l c r c e c la a yss;r s a c o e s e e r h pr gr s
t o e S r v e d Th l c r c e ia p l a i n o a o me a ,n n x d , c r o a o r d s i e iwe . e ee t o h m c la p i t f n n t I a o o i e a b n n n - c o
Re e r h Pr g e s o e t o he i a p i a i n o s a c o r s f El c r c m c lAp lc to f Na o a e i lM o i i d El c r d s n m t ra d fe e t o e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米材料修饰电极在电化学分析中的应用研究进展作者:陈丽娟, CHEN Li-juan作者单位:福建交通职业技术学院,安全技术与环境工程系,福建,福州,350007刊名:化学研究英文刊名:CHEMICAL RESEARCH年,卷(期):2010,21(5)被引用次数:1次1.Nian B L;Jun H P;Kyungsoon P Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode[外文期刊] 2008(10)2.Lu W;Jin Y;Wang G Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode 2008(02)3.Lu X X;Bai H P;Ping H A reagentless amperometric immunosensor for α-1-fetoprotein based on gold nanowires and ZnO nanorods modified electrode[外文期刊] 2008(02)4.黄海平;张玉梅;孙旦子基于聚苯胺-纳米金修饰玻碳电极的研制及其对过氧化氢的催化研究[期刊论文]-分析化学 2007(11)5.Lin L;Qiu P H;Cao X N Colloidal silver nanoparticles modified electrode and its application to the electroanalysis of cytochrome c[外文期刊] 2008(16)6.林丽;仇佩虹;杨丽纳米银粒子修饰电极法测定血红蛋白[期刊论文]-分析化学 2006(01)7.Maiyalagan T Synthesis,characterization and electrocatalytic activity of silver nanorods towards the reduction of benzyl chloride[外文期刊] 2008(02)8.姚爱丽;吕桂琴;胡长文银纳米修饰电极的制备及电化学行为[期刊论文]-无机化学学报 2006(22)9.邵玉艳;尹鸽平;王家钧Pt/碳纳米管电极的电化学稳定性[期刊论文]-催化学报 2006(03)10.Lei B;Xue J J;Qin L Preparation and electrocatalytic activities of Pt-TiO2 nanotubes electrode[期刊论文]-J Mater Sci Engin 2007(06)11.Ding H Y;Zhou Y;Zhang S J Preparation of nano-copper modified glassy carbon electrode and its catalytic oxidation to glucose[期刊论文]-Chin J Analyt Chem 2008(06)12.周庆美;谢青季纳米金-壳聚糖-血红蛋白/普鲁士蓝/金电极检测过氧化氢[期刊论文]-化学传感器 2008(01)13.李正;赵燕荣;晏青峰金核-铂壳纳米修饰电极在酸性溶液中对甲醛的电催化氧化[期刊论文]-光谱实验室2008(02)14.Lo P H;Kumar S A;Chen S M Amperometric determination of H2O2 at nano-TiO2/DNA/ thionin nanocomposite modified electrode 2008(02)15.Lu X X;Bai H P;Ping H A reagentless amperometric immunosensor for α-1-fetoprotein based on gold nanowires and ZnO nanorods modified electrode[外文期刊] 2008(02)16.Le W Z;Liu Y Q Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization[外文期刊] 2009(01)17.Du D;Ye X P;Zhang J D Stripping voltammetric analysis of organophosphate pesticides based onsolid-phase extraction at zirconia nanoparticles modified electrode[外文期刊] 2008(05)18.Mohammad A M;Awad M I;El-Deab M S Electrocatalysis by nanoparticles:optimization of the loadinglevel and operating pH for the oxygen evolution at crystallo graphically oriented manganese oxide nanorods modified electrodes 2008(53)19.Cheng X;Zhang S;Zhang H Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode[外文期刊] 2008(02) 20.Kang J W;Li Z F;Lu X Q Studies on the electrochemical behavior of 3-nitrobenzaldehyde thiosemicarbazone at glass carbon electrode modified with nano-γ-Al2O3[外文期刊] 2004(01)21.He Q;Yuan S;Chen C Electrochemical properties of estradiol at glassy carbon electrode modified with nano-Al2O3 film 2003(05)22.白红艳;包建春;戴志晖纳米ZnO 修饰电极上低电位检测烟酰胺腺嘌呤二核苷酸和乙醇[期刊论文]-化学学报2008(15)23.雷斌;薛建军;秦亮Pt-TiO2纳米管电极的制备及电催化性能[期刊论文]-材料科学与工程学报 2007(06)24.于志辉;田密;谢佳夏基于SnO2 为修饰层的Au-Pt /SnO2 /Au 复合电极研究[期刊论文]-无机化学学报2007(08)25.朱传高;王凤武有机体系中纳米TiO2 /ZrO2 修饰电极的制备及电催化活性[期刊论文]-无机化学学报 2008(05)26.尉艳;刘红英;李茂国CeO2 纳米晶包裹碳纳米管修饰电极对特布他林的电催化测定[期刊论文]-分析试验室2008(05)27.杨百勤;李靖;杜宝中碳纳米管修饰电极的现状[期刊论文]-分析仪器 2008(05)28.Wang Z H;Dong X Y;Li J An inlaying ultra-thin carbon paste electrode modified with functional single-wall carbon nanotubes for simultaneous determination of three purine derivatives[外文期刊] 2008(02)29.Odaci D;Telefoncu A;Timur S Pyranose oxidase biosensor based on carbon nanotube (CNT)-modified carbon paste electrodes[外文期刊] 2008(01)30.Zheng L;Song J F Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine[外文期刊] 2009(02)31.彭春桃;林丽;连国军羧基化多壁碳纳米管修饰电极循环伏安法测定过氧化氢[期刊论文]-温州医学院学报2008(01)32.Yang Y H;Wang Z J;Yang M H Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes[外文期刊] 2007(02)33.Rezaei B;Zare S Z M Modified glassy carbon electrode with multiwall carbon nanotubes as a voltammetric sensor for determination of noscapine in biological and pharmaceutical samples[外文期刊] 2008(01)34.Wang S F;Xu Q Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes[外文期刊] 2007(02)35.马曾燕;李将渊;向伟聚吡咯/多壁碳纳米管修饰电极对多巴胺的测定[期刊论文]-化学研究与应用 2008(20)36.高迎春;吴根华;陈金龙多壁碳纳米管修饰电极对抗坏血酸的电催化作用[期刊论文]-安庆师范学院学报2008(03)37.Sun W;Gao R F;Jiao K Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO338.李平;刘梅川;张成林聚乙烯吡咯烷酮/硫化镉量子点修饰电极的制备及其对血红蛋白的测定研究[期刊论文]-化学学报 2005(12)39.吴艳丹;王立世超声合成纳米硫化镉及苯酚在其修饰电极上的电化学行为[期刊论文]-分析测试学报 2008(07)40.Mashhadizadeh M H;Akbarian M Voltammetric determination of some anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nano-wire[外文期刊] 2009(4-5)1.蔡彬纳米材料修饰电极及其在电分析化学中的应用[期刊论文]-中国科技信息2010(18)2.李一峻.常子栋.何锡文.LI Yi-jun.CHANG Zi-dong.HE Xi-wen电化学分析的进展及应用[期刊论文]-分析试验室2007,26(10)1.储艳兰.张凯纳米二氧化硅的研究现状与进展[期刊论文]-赤峰学院学报(自然科学版) 2013(5)引用本文格式:陈丽娟.CHEN Li-juan纳米材料修饰电极在电化学分析中的应用研究进展[期刊论文]-化学研究2010(5)。