直流升降压斩波电路的设计

合集下载

升压式直流斩波电路

升压式直流斩波电路

升压式直流斩波电路1.电路的结构与工作原理 1.1电路结构U LRU0+-+-图1 升压式直流斩波电路的电路原理图1.2 工作原理假设电路输出端的滤波电容器足够大,以保证输出电压恒定,电感L 的值也很大。

1)当控制开关VT 导通时,电源E 向串联在回路中的电感L 充电储能,电感电压u L 左证右负;而负载电压u 0上正下负,此时在R 于L 之间的续流二极管VD 被反偏,VD 截止。

由于电感L 的横流作用,此充电电流基本为恒定值I1.另外,VD 截止时C 向负载R 放电,由于正常工作C 已经被充电,且C 容量很大,所以负载电压基本保持为一恒定值,记为u 0。

假设VT 的导通时间为t on ,则此阶段电感L 上的储能可以表示为EI 1t on2)在控制开关VT 关断时,储能电感L 两端电势极性变成左负右正,续流二极管VD 转为正偏,储能电感L 与电源E 叠加共同向电容C 充电,向负载R 提供能量。

如果VT 的关断时间为t off ,则此段时间内电感L 释放的能量可以表示为(U 0-E )I 1t off 。

1.3基本数量关系a.一个周期内灯光L 储存的能量与释放的能量相等:即b.输出电流平均值11()ono off EI t U E I t =-Et T E t t t U offoff off on o =+=2.建模在MA TLAB 新建一个Model ,命名为jiangya ,同时模型建立如下图所示:图 1 升压式直流斩波电路的MATLAB 仿真模型2.1模型参数设置a 电源参数,电压100v :b.同步脉冲信号发生器参数 振幅1V ,周期0.001,占空比20%RER U I β1o o ==c.负载电阻参数d.电容参数设置e.二极管参数设置f.电感参数G.IGBT参数f.示波器参数示波器五个通道信号依次是:电源电流、负载电流、IGBT电流电压、负载电压、电源电压。

3 仿真结果与分析a. 占空比α=20,MATLAB仿真波形如下:图 2 α=20升压式直流斩波电路b. 占空比α=50,MATLAB仿真波形如下:图9 α=50升压式直流斩波电路c. 占空比α=80,MATLAB仿真波形如下:图10 α=80升压式直流斩波电路4小结对于升压斩波电路,要输出电压高于输入电源电压应满足两个假设两个条件,即电路中电感的L值很大,电容的C值也很大。

直流降压斩波电路课程设计

直流降压斩波电路课程设计

直流降压斩波电路课程设计引言直流降压斩波电路是电子电路领域中一种常见的电路,它主要用于将高压直流电源降压为所需的低压直流电源,并通过斩波电路消除输出信号的脉动。

本文将详细介绍直流降压斩波电路的设计原理、实施步骤和实际应用。

设计原理直流降压斩波电路的设计原理基于基础的电路理论知识。

在设计中,需要考虑以下几个方面的内容:输入电压和输出电压的关系根据设计的需求,需要确定输入电压和输出电压的关系。

通常情况下,输出电压要低于输入电压。

这个关系对于电路的元件选择和参数确定非常重要。

电路拓扑结构根据输入输出电压的关系,可以选择不同的电路拓扑结构。

常见的直流降压斩波电路拓扑有BUCK和BOOST两种。

BUCK电路用于输出电压小于输入电压的情况,BOOST电路用于输出电压大于输入电压的情况。

斩波电路设计斩波电路的设计是直流降压斩波电路设计中的重要部分。

斩波电路的作用是消除输出信号的脉动,使输出电压更加稳定。

常见的斩波电路包括电容滤波、电感滤波等。

根据设计需求,选择合适的斩波电路并计算电路参数。

控制电路设计直流降压斩波电路通常需要控制电路来调整输出电压。

控制电路可以通过开关元件的开关频率和工作占空比来实现电压调节。

控制电路的设计需要考虑开关元件的特性和相关电路参数。

实施步骤针对以上设计原理,可以按照以下步骤进行直流降压斩波电路的设计:1.确定输入输出电压的关系,并计算所需降压比例。

2.根据电压关系选择合适的电路拓扑结构,BUCK或BOOST。

3.根据拓扑结构选择合适的元件并计算参数,包括开关元件、电容和电感等。

4.设计斩波电路,选择合适的斩波电路拓扑和计算电路参数。

5.设计控制电路,选择合适的控制策略和计算相关参数。

6.综合考虑各个部分的设计结果,进行仿真验证。

7.制作电路原型并进行实际测试,调整和优化电路参数。

8.编写电路设计报告,包括设计原理、步骤、仿真结果和实际测试结果等。

实际应用直流降压斩波电路在实际应用中有广泛的应用。

直流降压斩波电路课程设计

直流降压斩波电路课程设计

直流降压斩波电路课程设计一、设计背景直流降压斩波电路是电子工程中常见的一种电路,其作用是将高压的直流电源转换为低压的直流电源,以满足不同设备对电压的需求。

本次课程设计旨在通过设计一个直流降压斩波电路来加深学生对该电路原理和应用的理解,并提高学生的实践能力。

二、设计要求1. 输入电压:24V DC2. 输出电压:12V DC3. 输出电流:最大2A4. 效率:不低于80%5. 稳定性:输出稳定性好,纹波小于100mV三、设计原理1. 直流降压原理直流降压是指通过变换器将输入端直流高压转换成输出端所需的较低直流电源。

通常情况下,使用变换器将输入端高频交变成矩形波进行输出,再通过滤波器进行平滑处理,从而得到稳定的直流输出。

2. 斩波原理斩波是指将交流信号转化为脉冲信号输出。

在斩波过程中,通过改变占空比(即高电平时间与周期时间之比)可以调节输出脉冲宽度,从而实现对输出电压的调节。

3. 直流降压斩波电路原理直流降压斩波电路是将直流高压输入信号通过变换器转化为高频交流信号,再通过斩波电路将其转化为脉冲信号输出。

最后通过滤波器对输出信号进行平滑处理,得到稳定的直流低压输出。

四、设计方案1. 变换器选择变换器是直流降压斩波电路中最关键的部分之一。

在本次设计中,我们选择使用UC3845作为变换器控制芯片,并搭配IRF540N MOSFET管进行驱动。

同时,我们还需要根据输入和输出电压的不同来选择合适的变压器。

2. 斩波电路设计在本次设计中,我们选择使用NE555作为斩波芯片,并根据输入和输出电压的不同来计算出合适的占空比。

同时,在斩波过程中还需要注意控制脉冲宽度以保证输出稳定性。

3. 滤波器设计滤波器是直流降压斩波电路中用于平滑处理输出信号的部分。

在本次设计中,我们选择使用L-C滤波器进行滤波处理,以保证输出电压的稳定性和纹波小于100mV。

4. 控制电路设计为了保证直流降压斩波电路的稳定性和安全性,我们还需要设计一个控制电路来监测输入和输出电压,并对变换器进行合适的控制。

大功率dc-dc直流斩波升降压电路

大功率dc-dc直流斩波升降压电路

大功率dc-dc直流斩波升降压电路下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!大功率DCDC直流斩波升降压电路引言直流斩波升降压电路是一种用于将直流电压进行升降的重要电路。

直流降压斩波电路的设计

直流降压斩波电路的设计

直流降压斩波电路的设计直流降压斩波电路的设计一、设计目的直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器。

直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流—交流—直流的情况。

设计目的如下:〔1〕培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。

〔2〕培养综合分析问题、发现问题和解决问题的能力。

〔3〕通过对直流降压斩波电路的设计,掌握直流降压斩波电路的工作原理,综合运用所学知识,进行直流降压斩波电路和系统设计的能力〔4〕培养运用知识的能力和工程设计的能力。

〔5〕提高课程设计报告撰写水平。

二、设计任务 2.1、设计任务要求设计降压斩波电路的主电路、控制电路、驱动及保护电路,稳压直流电源15V和直流电压100V的设计2.2、设计要求对直流降压电路的根本要求有以下几点:〔1〕输入直流电压:100V 〔2〕输出电压范围:50V~80V 〔3〕最大输出电流:5A 〔4〕开关频率:40KHz 〔5〕L:1mH2.3、设计步骤〔1〕根据给出的技术要求,确定总体设计方案〔2〕选择具体的元件,进行硬件系统的设计〔3〕进行相应的电路设计,完成相应的功能〔4〕进行调试与修改〔5〕撰写课程设计说明书三、设计方案选择及论证斩波电路有三种控制方式〔1〕脉冲宽度调制〔PWM〕:开关周期T不变,改变开关导通时间Ton。

〔2〕频率调制:开关导通时间不变,改变开关周期T。

〔3〕混合型:开关导通时间和开关周期T都可控,改变占空比。

本次设计采用的是脉宽调制的方法,开关选用全控型器件IGBT,IGBT降压斩波电路是直流斩波中最根本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。

IGBT是MOSFET与GTR的复合器件。

它集中了电力MOSFET和GTR的优点,既有MOSFET易驱动的特点,输入阻抗高,又具有功率晶体管电压、电流容量大等优点。

直流斩波电路设计

直流斩波电路设计

一、设计项目与要求1、输入直流电压U i=60V,R=8Ω;2、输出电压范围为0-100V,试选用合适斩波电路;3、计算占空比α=23%和α=59%时,负载两端输出电压和电流;4、画出α=23%和α=59%时斩波电路的电压电流波形分析图;5、IGBT的工作特性分析。

二、电路原理图设计2.1主电路的设计斩波电路:将直流电变为另一固定电压或可调电压的直流电。

也称为直流-直流变换器(DC/DCConverter)。

一般指直接将直流电变为另一直流电,不包括直流-交流-直流。

升降压斩波斩波电路结构Boost型升降压斩波变换器的特点是输出电压可以低于电源电压,也可以高于电源电压,是将降压斩波和升压斩波电路结合的一种直接变换电路。

主要由功率开关、二极管、储能电感、输出滤波电容等组成。

本次课题是在输入直流电压为60V时,想要输出电压的范围为0-100V,故而要选择的斩波电路应为升降压斩波斩波电路。

图1升降压斩波电路原理图2.2触发电路设计斩波器触发电路由三部分组成,图2为斩波器触发电路的原理图。

第一部分为由幅值比较电路U1和积分电路U2组成一个频率和幅值均可调的锯齿波发生器。

电位器RP1用来调节锯齿波的上下位置,电位器RP2用来调节锯齿波的频率,频率从100到700Hz可调。

由于晶闸管的开关速度及LC振荡频率所限,所以在斩波实验中我们一般选用200Hz这一范围。

第二部分是比较器部分。

比较器U3输入的一路是锯齿波信号,另一路是给定的电平信号,输出为前沿固定后沿可调的方波信号。

改变输入的电平信号的值,则相应改变了输出方波的占空比。

第三部分是比较器产生的方波送到4098双单稳电路U4,单稳电路则在方波的前沿和后沿分别产生两个脉冲,如图4所示,其后沿脉冲随方波的宽度变化而移动,前沿脉冲相位则保持不变,输出的脉冲经三极管放大通过脉冲变压器输出。

将上述两脉冲分别送至主晶闸管及辅助晶闸管,其中方波前沿触发脉冲G1、K1接主晶闸管VT1,而后沿触发脉冲G2、K2接辅助晶闸管VT2。

电力电子技术课程设计直流升压斩波电路的设计

电力电子技术课程设计直流升压斩波电路的设计

《电力电子技术》课程设计说明书直流升压斩波电路的设计电力电子课程设计课题任务书学院:电气与信息工程学院专业:电气工程及其自动化专业直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,包括直接直流电变流电路和间接直流电变流电路。

直接直流电变流电路也称斩波电路,它的功能是将直流电变成另一固定电压或可调电压的直流电,一样是指直接将直流电变成另一直流电,这种情形下输入与输出之间不隔离。

间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采纳变压器实现输入输出间的隔离,因此也称带隔离的直流直流变流电路或直交直电路。

直流斩波电路的种类有很多,包括六种大体斩波电路:降压斩波电路,升压斩波电路,起落压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路。

斩波电路,利用不同的斩波电路的组合能够组成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。

利用相同结构的大体斩波电路进行组合,可组成多相多重斩波电路。

关键词:直流斩波电路;变压器;升压斩波绪论 (1)1 直流升压斩波电路的设计思想 (2)1.1 直流升压斩波电路原理 (2)1.2 参数计算 (3)2 直流升压斩波电路驱动电路设计 (4)2.1 驱动电路M57962L简介 (4)2.2 驱动电路设计 (4)3 直流升压斩波电路爱惜电路设计 (6)3.1 过电流爱惜电路 (6)3.2 过电压爱惜电路 (6)4 直流升压斩波电路总电路的设计 (7)5 直流升压斩波电路仿真 (8)5.1 仿真模型的选择 (8)5.2 仿真电路图 (8)5.3 仿真结果及分析 (9)设计总结 (11)致谢 (12)参考文献 (13)随着电力电子技术的迅速进展,高压开关稳压电源已被普遍用于运算机、通信、工业加工和航空航天等领域。

所有动力机装置需要一个稳固的电力输送装置,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各类类别直流任务。

降压斩波电路课程设计

降压斩波电路课程设计

降压斩波电路课程设计一、设计任务与要求设计一个降压斩波电路,将直流电源的电压降低到所需电压值,并实现稳定的输出。

具体要求如下:1.输入直流电源电压范围为0-100V。

2.输出电压可调,范围为0-50V。

3.输出电流最大值为5A。

4.实现恒压输出,即输出电压稳定不变。

5.电路效率高,损耗小。

6.考虑电路的安全性,添加必要的保护措施。

二、电路设计降压斩波电路主要由电源、开关管、电感、二极管和负载组成。

其工作原理是利用开关管在斩波周期内反复通断,控制电感电流的平均值,从而达到降低输出电压的目的。

1.电源:采用0-100V的直流电源,满足输入电压范围要求。

2.开关管:选择合适的开关管,如MOSFET或IGBT等,根据输入电压和电流要求进行选择。

3.电感:选择适当的电感值,以保证电路的稳定性和效率。

4.二极管:选择合适的整流二极管,如肖特基二极管或快恢复二极管等,以保证电路的稳定性和效率。

5.负载:根据设计要求,选择适当的负载电阻或负载电容等。

三、电路原理图设计根据以上分析,可以设计出降压斩波电路的原理图。

在原理图中,需要标明各元件的参数和连接方式,并注意电路的安全性和可靠性。

例如,为保护开关管和二极管,可以在电路中添加限流电阻或温度保护元件等。

四、仿真与测试在完成原理图设计后,需要进行仿真和测试,以验证设计的正确性和可靠性。

可以使用仿真软件如Multisim进行仿真分析,并根据测试结果对电路参数进行调整。

实际测试时,可以使用电子负载仪等设备进行测试,并记录测试数据和波形。

五、总结与反思在完成降压斩波电路课程设计后,需要对整个设计过程进行总结和反思。

总结设计的优点和不足之处,提出改进方案和优化措施,为今后的课程设计和工程实践提供有益的参考和借鉴。

直流升降压斩波电路的设计

直流升降压斩波电路的设计

摘要20世纪80年代以来,信息电子技术和电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型的电力电子器件,典型代表有门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极型晶体管。

利用全控型器件可以组成变流器。

直流-直流变换器就是其中一种,它广泛应用于通信交换机、计算机以及手机等电子设备的开关电源。

直流—直流变流电路(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。

直接直流变流电路也称斩波电路(DC Chopper),它的功能是将直流电变为另一固定电压或可调电压的直流电。

本文着重介绍升降压斩波电路的原理和基于matlab的simulink的升降压斩波电路的仿真以及用一种芯片的方法实现升降压斩波。

关键词:直流—直流变流电路;升降压斩波;Simulink;仿真目录1 绪论 (1)1.1电力电子技术的概况 (1)1.2电力电子技术的发展 (1)1.3电力电子技术的重要应用 (2)2 总体方案设计 (3)2.1设计要求 (3)2.2升降压斩波电路整体设计方案 (3)2.3方案确定 (3)3 主电路设计 (4)3.1主电路原理 (4)3.2波形图 (5)3.3主要元器件选择 (6)4 控制与驱动电路设计 (7)4.1控制电路设计 (7)4.2驱动电路设计 (8)5 保护电路设计 (9)5.1过电流保护 (9)5.2过电压保护 (9)6 仿真分析 (10)6.1仿真软件介绍 (10)6.2建立仿真模型 (10)6.3仿真结果分析 (12)结束语 (15)参考文献 (16)致谢 (17)附录 (18)1绪论1.1电力电子技术的内容电力电子学,又称功率电子学(Power Electronics)。

它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。

它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。

降压直流斩波电路设计

降压直流斩波电路设计

降压直流斩波电路设计一、背景介绍高血压是目前全球性的公共卫生问题,长期高血压会增加心脑血管疾病的风险,因此对高血压患者进行有效的降压治疗非常重要。

目前常见的降压药物有利尿剂、β受体阻滞剂、钙通道阻滞剂等,但这些药物也会带来一定的副作用。

因此,设计一种可靠、安全、无副作用的降压方法对于人类健康具有重要意义。

二、直流斩波电路原理直流斩波电路是一种将直流电转换为交流电的电路。

其基本原理是通过切换开关将直流电源分时段地斩断,使得输出信号呈现出交变特性。

在实际应用中,直流斩波电路可以通过调节开关频率和占空比来控制输出信号的幅值和频率。

三、降压直流斩波电路设计1. 电源部分:由于直流斩波电路需要稳定的直流供电,因此需要设计一个稳定可靠的电源模块。

常见的供电方式包括单相整流桥式电路、双向开关稳压电源等。

在设计时需要考虑到电源的输出电压和电流,以及对于直流斩波电路的影响。

2. 斩波部分:直流斩波电路的核心是斩波部分,其主要由开关管、滤波器和负载组成。

在设计时需要考虑到开关管的导通损耗和关断损耗,以及滤波器的参数选择和负载的匹配问题。

常见的开关管包括MOSFET、IGBT等。

3. 控制部分:为了实现对输出信号幅值和频率的精确控制,需要设计一个可靠的控制模块。

常见的控制方式包括PWM控制和SPWM控制等。

在设计时需要考虑到控制信号的精度和稳定性。

四、降压直流斩波电路应用降压直流斩波电路可以广泛应用于医疗、工业自动化、能源等领域。

在医疗领域中,可以通过调节输出信号幅值和频率来实现对高血压患者血压的精确调节;在工业自动化领域中,可以用于驱动各种类型的负载;在能源领域中,可以用于太阳能、风能等新能源的转换和控制。

五、总结降压直流斩波电路具有可靠、安全、无副作用等优点,可以广泛应用于医疗、工业自动化、能源等领域。

在设计时需要考虑到电源部分、斩波部分和控制部分的参数选择和匹配问题,以实现对输出信号的精确控制。

直流升压斩波电路设计

直流升压斩波电路设计

直流升压斩波电路设计
直流升压斩波电路是一种用于将直流电压提升到更高电压水平的电路。

其设计旨在实现稳定而高效的电压转换,同时还要满足升压电路的波形控制要求,以减小对其他电路或设备的干扰。

在直流升压斩波电路设计中,首先需要选择适当的升压变压器。

变压器的绝缘和耐压能力应与升压倍数相匹配,并且要根据负载电流和功率要求选择合适的变压器。

需要设计合适的开关装置,通常使用MOSFET或IGBT作为开关元件。

这些开关元件需要能够高效地开关,以实现高效能量转换,并且需要具备耐高电压和大电流的特性。

为了实现波形控制,通常会使用斩波电路。

斩波电路的作用是使开关元件在开关过程中能够提供平滑的输出波形,以减小开关瞬间产生的高频噪声和电压波动。

常见的斩波电路包括LC滤波电路和降压电路等。

在直流升压斩波电路设计中,还需要考虑保护电路的设计。

保护电路可以保护开关元件、变压器和其他相关电路免受电压过高、电流过大等异常情况的损害。

对于直流升压斩波电路的控制和调节,可以考虑使用微控制器、数字信号处理器或专用的控制电路来实现。

这些控制装置可以根据输入信号、负载要求等条件对电路进行精确控制和调节,以满足不同应用场景的需求。

直流升压斩波电路的设计需要综合考虑电压升压、波形控制、保护等因素。

合理选择变压器、开关元件,并设计适用的斩波电路和保护电路,以及合适的控制装置,可以实现稳定而高效的直流电压升压。

这种电路设计在许多应用领域中都有广泛的应用,如电力系统、通信设备等。

IGBT直流降压斩波电路设计

IGBT直流降压斩波电路设计

目录1设计原理分析 (1)1.1总体结构分析 (1)1.2主电路的设计 (1)1.3触发电路的选型 (2)1.4驱动电路选型 (3)1.5整流滤波电路 (5)2. 设计总电路图及参数 (6)2.1设计总电路图 (6)2.2 元件参数计算 (8)3. 元器件清单 (10)小结 (11)参考文献 (11)IGBT 直流降压斩波电路的设计1设计原理分析1.1总体结构分析直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。

它在电源的设计上有很重要的应用。

一般来说,斩波电路的实现都要依靠全控型器件。

在这里,我所设计的是基于IGBT 的降压斩波短路。

直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块和驱动电路模块。

电路的结构框图如下图(图1)所示。

图1 电路结构框图1.2主电路的设计主电路是整个斩波电路的核心,降压过程就由此模块完成。

其原理图如图2所示。

图2 主电路原理图如图,IGBT 在控制信号的作用下开通与关断。

开通时,二极管截止,电流io 流过大i EV +-MRLVD a)i oE Mu oi G电源 触发电路 驱动电路 主电路整流滤波电路电感L ,电源给电感充电,同时为负载供电。

而IGBT 截止时,电感L 开始放电为负载供电,二极管VD 导通,形成回路。

IGBT 以这种方式不断重复开通和关断,而电感L 足够大,使得负载电流连续,而电压断续。

从总体上看,输出电压的平均值减小了。

输出电压与输入电压之比α由控制信号的占空比来决定。

这也就是降压斩波电路的工作原理。

降压斩波的典型波形如下图所示。

图3 降压电路波形图图2中的负载为电动机,是一种放电动式负载。

反电动势负载有电流断续和电流连续两种工作状态。

分别入图3中b )和a )所示。

无论哪一种情况,输出电压的平均值都与负载无关,其大小为:(1-1)T on 表示导通的时;T off 表示截止的时间 ;α表示导通时间占空比。

对于输出电流,当0U >E 时电流连续,输出电流平均值大小为:(1-2) 当Uo<E 时,电流既无法通过IGBT 也无法通过二极管。

降压直流斩波电路课程设计

降压直流斩波电路课程设计

降压直流斩波电路课程设计
降压直流斩波电路是一种基本的电子电路,它可以将高电压的直流电源降压为合适的电压,以满足电子设备的需求。

以下是一个简单的降压直流斩波电路的课程设计:
1.电路原理:降压直流斩波电路主要由变压器、桥式整流电路、
电容和负载组成。

变压器将高电压的直流电源降压,桥式整流电路将交流输出转换为直流输出,电容平滑输出电压,负载则是电路的输出部分。

2.设计要求:设计一个输出电压为12V,输出电流为1A的降压直
流斩波电路。

3.设计步骤:
(1)计算变压器的变比。

因为输出电压为12V,变压器的变比为Vin/Vout=36/12=3。

(2)选择变压器。

根据变比选择合适的变压器。

(3)设计桥式整流电路。

选择合适的整流二极管和滤波电容。

(4)计算电容容值。

根据输出电流和输出电压计算电容的容值。

(5)确定负载。

根据输出电流和输出电压确定负载的电阻值。

(6)进行电路仿真。

使用电路仿真软件进行电路仿真,验证电路的性能是否符合设计要求。

4.实验步骤:
(1)搭建电路。

根据设计要求,搭建电路。

(2)连接电源。

将电源连接到电路上,调整电源输出电压。

(3)测量输出电压和输出电流。

使用万用表测量输出电压和输出电流,检查是否符合设计要求。

(4)观察电路波形。

使用示波器观察电路各部分的电压和电流波形,检查是否正常。

5.实验结果:
经过实验测量和仿真验证,输出电压为12V,输出电流为1A,符合设计要求。

(完整版)升降压斩波课程设计.doc

(完整版)升降压斩波课程设计.doc

《电力电子技术》课程设计说明书直流升降压斩波电路的设计与仿真院、部:电气与信息工程学院学生姓名:指导教师:职称讲师专业:电气工程及其自动化班级:学号:完成时间:2016 年 6 月电力电子技术课程设计任务书学院:电气与信息工程系专业:电气工程及其自动化指导教师姓名学生姓名课题名称直流升压降压斩波电路的设计与仿真一、技术指标及要求:1)直流输入电压 100V;设计内容及任务设计安排主要参考资料2)电阻负载; (R 取学号尾数 X10Ω);3)控制电路频率 10KHZ ;4)输出电压纹波系数: 0.2%;5)仿真出占空比α分别为 0.1,0.2,0.5,0.8 的电感电压、电感电流、开关管电流、二极管电流和输出电压的波形。

起止日期设计内容2016 年 5 月 25 日确定设计方案2016 年 5 月 26 日计算相关数据2016 年 5 月 27 日至 2016 年 6 月 6 日Simulink仿真2016 年 6 月 7 日至 2016 年 6 月 23 日撰写课程设计说明书[1] 王兆安、刘进军.电力电子技术(第 5 版).机械工业出版社, 2009[2] 康华光、陈大钦.电子技术基础模拟部分.高等教育出版社,2002[3]秋关源、罗先觉.电路(第 5 版).高等教育出版社, 2006[4]周克宁 . 电力电子技术 . 北京:机械工业出版社, 2004.[5]黄家善 . 电力电子技术 . 北京:机械工业出版社, 2006[6]王维平 . 现代电力电子技术及应用 . 南京:东南大学出版社, 1999[7]张明勋主编 , 电力电子设备设计和应用手册 [M]. 北京 : 机械工业出版社.1992[8]丁道宏主编 , 电力电子技术 [M]. 北京 : 航空工业出版社 .1992[9]林渭勋主编 , 电力电子技术基础 [M]. 北京 : 机械工业出版社 .1990摘要电力电子技术飞速发展,电力电子技术已经成为自动化领域里一个重要部分,其核心就是利用弱电电路的设计思路,强大电路的器件来实现电路的各种需求。

直流升压斩波电路课程设计

直流升压斩波电路课程设计

直流升压斩波电路课程设计介绍如下:
直流升压斩波电路是一种能够将直流电源输出电压升高的电路,其基本结构包括斩波电路和升压电路。

在本次课程设计中,我们将设计一种直流升压斩波电路,并通过实验验证其性能。

设计需求:
1.输入电压:12V直流电源;
2.输出电压:至少24V;
3.斩波电路:使用快速二极管;
4.升压电路:使用升压变压器;
5.输出电压稳定性:±2%;
6.负载变化时输出电压稳定性:±5%。

设计步骤:
1.根据设计需求,选择适合的二极管和变压器。

在实验中我们选择快速二极管1N4148
以及3:1的升压变压器;
2.根据升压电路的特点,需要选择合适的升压交流电压。

一般情况下,将输入交流电
压直接升高三倍的场合比较适宜。

根据实验需要,我们选择将输入电压升高2倍,即使用3:1的升压变压器;
3.设计斩波电路。

斩波电路是直流升压斩波电路的关键。

为了避免斩波电路对输出电
压的影响,我们选择快速二极管1N4148作为斩波管,将其正向的承受电压设为12V 即可;
4.设计升压电路。

升压电路是直流升压斩波电路的另一个重要组成部分。

根据设计需
求,我们选择将输入电压升高2倍,因此需要选用3:1的升压变压器;
5.组装电路并测试。

将斩波电路和升压电路组装在一起,接入12V直流电源。

使用示
波器检测电路输出电压波形,并进行输出稳定性测试,最终得出该直流升压斩波电路的性能。

通过以上设计步骤,我们可以设计出一款简单的直流升压斩波电路,并通过实验验证其性能。

降压升压斩波电路的课程设计

降压升压斩波电路的课程设计

MOSFET降压、升压斩波设计一、问题的提出与简述直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。

直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路。

利用不同的基本斩波电路进行组合,可构成复合斩波电路。

本文着重解决用MOSFET作开关的降压、升压斩波电路。

二、设计目的1、设计一个MOSFET降压斩波电路(纯电阻负载)设计要求:=100V;1)输入直流电压:Ud2)输出功率: 300W;3)开关频率: 5KHz;4)占空比: 10%~90%;5)输出电压脉动率:小于10%。

2、设计一个MOSFET升压斩波电路(纯电阻负载)设计要求:1)输入直流电压:U=100V;d2)输出功率: 300W;3)开关频率: 5KHz;4)占空比: 10%~90%;5)输出电压脉动率:小于10%。

三、原理Ⅰ、降压斩波电路原理图如下:(因多数电源输出都是直流电压,因此,输出电路都带有整流滤波电路。

)具体工作原理如下:在控制开关开通期间on t ,电源向储能电感L 充电,电流从电源正极流出,流经储能电感L ,经负载R 流回电源负极。

()()i L o U u t u t =+ 得出()L i o u t U U =-··(1) 在控制开关关断期间off t ,储能电感L 将释放电能,流过储能电感L 的电流L i 从电感L 的正极流出,通过负载R ,再经过续流二极管VD 的正极,然后从续流二极管VD 的负极流出,最后回到储能电感L 的负极。

回路电压方程为:0()()L o u t u t =+ 得出:()L o u t U =- (2)(1)当开关导通时间on t 内,续流二极管因反偏二截止,电容开始充电,直流电压源i U 通过电感L 向负载R 传递能量。

直流降压斩波电路课程设计创新

直流降压斩波电路课程设计创新

直流降压斩波电路课程设计创新直流降压斩波电路是电子工程领域中的一种关键电路,用于将高电压的直流信号降低至更低的电压水平。

在电子设备和系统设计中,直流降压斩波电路具有重要的应用价值。

本文将探讨这一电路的原理、设计和创新。

一、原理理解直流降压斩波电路主要由变压器、整流电路和滤波电路组成。

其基本原理是先通过变压器将输入的高电压信号转换为相应的低电压信号,然后使用整流电路将交流信号转换为直流信号,最后通过滤波电路去除直流信号中的脉动部分,使输出信号更加平稳。

二、设计过程1. 需求分析:需要明确设计的目的和要求,包括输出电压水平、负载要求等。

还要考虑设计的成本、效率和可靠性等因素。

2. 变压器设计:在直流降压斩波电路中,变压器的作用是将输入电压转换为所需的输出电压。

需要根据输入输出电压比例和功率要求来选择合适的变压器。

3. 整流电路设计:直流降压斩波电路一般采用整流桥式电路进行整流,可以实现将交流信号转换为直流信号的功能。

在整流电路设计中,需要考虑到电流和电压的损失、纹波和效率等因素。

4. 滤波电路设计:滤波电路用于去除直流信号中的脉动部分,使输出信号更加稳定。

在滤波电路设计中,可以采用电容滤波、电感滤波或者二者的组合。

需要根据输出电压水平和负载要求来选择合适的滤波电路。

5. 控制电路设计:为了实现稳定的输出电压,可以引入反馈控制电路。

通过对输出电压进行采样,然后与参考值进行比较,调节电路中的元件来控制输出电压的稳定性和精度。

三、创新点探索在直流降压斩波电路的设计中,可以通过以下几个方面进行创新。

1. 高效率设计:可以采用先进的半导体器件,如功率MOSFET或IGBT,以提高电路的效率。

还可以优化电路拓扑结构和参数选择,以减小功率损耗和提高能量转换效率。

2. 小型化设计:利用大功率集成电路、有源滤波和高频变压器等技术,可以实现直流降压斩波电路的小型化设计。

这在一些对体积要求较高的应用场景中具有重要意义。

3. 多功能设计:在满足基本需求的可以引入一些附加功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要20世纪80年代以来,信息电子技术和电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型的电力电子器件,典型代表有门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极型晶体管。

利用全控型器件可以组成变流器。

直流-直流变换器就是其中一种,它广泛应用于通信交换机、计算机以及手机等电子设备的开关电源。

直流—直流变流电路(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。

直接直流变流电路也称斩波电路(DC Chopper),它的功能是将直流电变为另一固定电压或可调电压的直流电。

本文着重介绍升降压斩波电路的原理和基于matlab的simulink的升降压斩波电路的仿真以及用一种芯片的方法实现升降压斩波。

关键词:直流—直流变流电路;升降压斩波;Simulink;仿真目录1 绪论 (1)1.1电力电子技术的概况 (1)1.2电力电子技术的发展 (1)1.3电力电子技术的重要应用 (2)2 总体方案设计 (3)2.1设计要求 (3)2.2升降压斩波电路整体设计方案 (3)2.3方案确定 (3)3 主电路设计 (4)3.1主电路原理 (4)3.2波形图 (5)3.3主要元器件选择 (6)4 控制与驱动电路设计 (7)4.1控制电路设计 (7)4.2驱动电路设计 (8)5 保护电路设计 (9)5.1过电流保护 (9)5.2过电压保护 (9)6 仿真分析 (10)6.1仿真软件介绍 (10)6.2建立仿真模型 (10)6.3仿真结果分析 (12)结束语 (15)参考文献 (16)致谢 (17)附录 (18)1绪论1.1电力电子技术的内容电力电子学,又称功率电子学(Power Electronics)。

它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。

它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。

电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。

在电力电子技术中, 将直流电的一种电压值通过电力电子变换装置变换为另一种固定或可调电压值的变换, 称为直流-直流变换。

直流变换电路的用途非常广泛, 包括直流电动机传动、开关电源、单相功率因数校正, 以及用于其他领域的交直流电源。

1.2 电力电子技术的发展电力电子技术包括功率半导体器件、功率变换技术及控制技术等几个方面。

其中电力电子器件是电力电子技术的核心和基础,也是电力电子技术发展的“龙头”。

从1957年美国通用电气公司(GE)研制出世界上第一只工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器(如水银整流器)进入由电力电子器件构成的静止式半导体变流器时代,这标志着电力电子技术的诞生。

我国电力电子的起步可追溯到上世纪50年代末。

50年代末研制出第一只整流管,60年代初研制出第一只晶闸管和晶体管。

经过近二十年的工艺完善和应用开发,到上世纪70年代,普通晶闸管(不能自关断,属于半控型器件)已趋于成熟,形成了从低压小电流到高压大电流的系列产品。

电力电子技术的概念和基础就是由于晶闸管和晶闸管变流技术的发展而确立的。

上世纪70年代后期,以门极关断晶闸管(GTO)、双极晶体管(BJT)、功率场效应管(PowerMOSFET)为代表的全控型器件(通过对门极(栅极)或基极的控制,可以使其开通,又可以使其关断)全速发展。

上世纪80年代后期,以绝缘栅双极晶体管IGBT和功率MOSFET为代表的,集高频、高压和大电流于一身的功率半导体复合器件的相继问世,是传统电力电子向现代电力电子转化的标志。

1.3电力电子技术的重要作用优化电能使用。

通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。

例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%,我国已许多装置列入节能的推广应用项目。

改造传统产业和发展机电一体化等新兴产业。

据发达国家预测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础。

电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。

实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。

电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。

有人甚至提出,电子学的下一项革命将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子革命的边缘。

2总体方案设计2.1设计要求设计一个直流升降压斩波电路,已知直流输入电压200V,负载自拟,要求输出电压在100~300V连续可调,其它性能指标自定。

2.2升降压直流斩波电路总体设计方案直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。

它在电源的设计上有很重要的应用。

一般来说,斩波电路的实现都要依靠全控型器件。

在这里,我所设计的是基于IGBT的降压斩波短路。

直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块和驱动电路模块。

电路的结构框图如图1所示。

直流图 1 总体设计方案除了上述主要结构之外,还必须考虑电路中电力电子器件的保护,以及控制电路与主电路的电器隔离。

2.3方案的确定电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。

由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。

控制电路是用来产生升、降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。

通过控制开关的开通和关断来控制升、降压斩波电路的主电路工作。

控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。

3主电路设计3.1工作原理图1所示为升降压斩波电路(Buck-Boost Chopper )原理图。

电路中电感L 值很大,电容C 值也很大。

因为要使得电感电流和电容电压基本为恒值。

图2 升降压斩波电路该电路的基本工作原理:当可控开关V 处于通态时,电源E 经V 向电感L 供电使其储存能量,此时电流为1i ,方向如图1所示。

同时,电容C 维持输出电压基本恒定并向负载R 供电。

此后,使V 关断,电感L 中储存的能量向负载释放,电流为2i ,方向如图1所示。

可见,负载电压极性为下正上负,与电源电压极性相反,因此该电路也称作反极性斩波电路。

稳态时,一个周期T 内电感L 两端电压L u 对时间的积分为零,即: ()()0000=-=+=⎰⎰⎰off t T t on off L on L T L t u Et dt u dt u dt u on on (1)当V 处于通态期间时,L u =E ,而当V 处于断态期间时,L u = -0u 。

于是off o on t U Et =所以输出电压为:E E t T t E t t u on on off on αα-=-==10 (2) on t 为V 处于通态的时间,off t 为V 处于断态的时间。

T 为开关周期;α为导通占空比,简称占空比或导通比。

若改变导通比α,则输出电压既可以比电源电压高,也可以比电源电压低。

当012α<<时为降压,当121α<<时为升压,因此该电路称为升降压斩波电路。

根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式:(1)保持开关周期T 不变,调节开关导通时间on t 不变,称为PWM 。

(2)保持开关导通时间on t 不变,改变开关周期T ,称为频率调制或调频型。

(3)on t 和T 都可调,使占空比改变,称为混合型。

3.2波形图输出电压E E t t U off on O αα-==1(3)图2给出了电源电流1i 和负载电流2i 的波形,设两者的平均值分别为1I 、2I ,当电流脉动足够小时,有off ont t I I =21 (4) 由上式可得1121I I t t I on offαα-==(5) 如果V 、VD 为没有损耗的理想开关时,则有21I U EI O =其输出功率和输入功率相等,可看作直流变压器。

图3 升降压斩波电路波形3.3主要元器件选择、参数分析考虑安全裕度则IGBT 的额定电压为2-3倍峰值电压,所以额定电压可为440V-660V 。

额定电流33A-44A 。

二极管VD 的周瑜打反向电压为220V.选择IGBT 的型号为IRH4PC40U 其额定电压为600V ,额定电流为40A 。

选择续流二极管的型号为HFA25TB60,期而定电压为600V ,额定电流25A 。

(1)前级整流电路负载平均电压升高,纹波减小,且C 越大,电容放电速率越慢,则负载电压中的纹波成分越小,负载平均电压越高。

为得到平滑的负载电压,一般取 =C(3~5)T/2 (6) 式中T 为电源交流电压的周期。

电容滤波电路的负载电压与的关系约为 L V =Y1.1~1.22V (7) 令整流后输出电压为50V ,则整流前输入电压2V =L V /1.2=50/1.2=41.7V (8)因为电源为交流单项220V ,变压器变比需满足1V :2V =220:41.7=4:1 (9)此时前级整流输出电压E 为50V 。

并且为满足输出电流o I 最大2A ,整流电路中每个二极管所承受的最大电流为VT I =o I /2=1A (10)变压器二次侧的电流2A ,由变压器变比为4:1,流过一次侧的电流为0.5A 。

(2)输出直流电压要求输出直流电压o U 在10~100V 可调,由输出电压公式可知,当o U 为10V 时,占空比α=1/6;当o U 为100V 时,占空比α=2/3。

即控制占空比α在1/6~2/3之间,可得输出直流电压o U 在10~100V 可调。

相关文档
最新文档