基于小波变换的风廓线雷达大气边界层高度探测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于小波变换的风廓线雷达大气边界层高度探测
戈书睿1)艾未华1)魏浩1)徐芬2)
(1 解放军理工大学气象海洋学院,南京,211101)
(2江苏省气象科学研究所,南京,211101)
大气边界层是地表与大气相互接触的一层大气,响应地面作用的时间尺度为一小时或者更短,大气边界层的厚度虽然只有几公里,但它是与人类关系最为密切的大气层。大气边界层的高度是污染物扩散模式、气候模式、大气模式的一个重要输入参数,边界层高度的变化对数值预报中的物理过程,天气预报的诊断分析,城市污染物的监控也有相当重要的作用。然而,边界层高度的连续监测缺乏有力的手段。风廓线雷达凭借其高时间分辨率和空间分辨率,加上其能够连续探测等优点,可以成为连续监测边界层高度的有效工具。利用协方差小波变换对风廓线雷达距离订正后信噪比数据进行分析,来确定边界层的高度,并与无线探空仪确定的边界层高度进行比较。采用不同的小波基函数对典型的风廓线雷达距离订正后的信噪比数据廓线进行变换,比较不同变化尺度下几种常用小波基函数变换的稳定性,得到最优的反演边界层高度的小波基函数,为实际应用提供参考。结果表明,协方差小波变换法与探空结果具有较好的一致性。
关键词:协方差小波变换;风廓线雷达;边界层高度;探测
参考文献:
1 Stull R B. An introduction to boundary layer meteorology[M]. Springer, 1988.
2 Ottersten H. Atmospheric structure and radar backscattering in clear air[J]. Radio Science, 1969, 4(12): 1179-1193.
3 Cohn S A, Angevine W M. Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling
radars[J]. Journal of Applied Meteorology, 2000, 39(8): 1233-1247.
4 Lippmann M. Health effects of tropospheric ozone[J]. Environmental science & technology, 1991, 25(12): 1954-1962.
5 Bell M L, McDermott A, Zeger S L, et al. Ozone and short-term mortality in 95 US urban communities, 1987-2000[J].
Jama, 2004, 292(19): 2372-2378.
6 Kane E S, Valentine D W, Schuur E A G, et al. Soil carbon stabilization along climate and stand productivity gradients
in black spruce forests of interior Alaska[J]. Canadian Journal of Forest Research, 2005, 35(9): 2118-2129.
7 Cha J S, Choi J C, Ko J H, et al. The low-temperature SCR of NO over rice straw and sewage sludge derived char[J].
Chemical Engineering Journal, 2010, 156(2): 321-327.
8 Angevine W M, White A B, Avery S K. Boundary-layer depth and entrainment zone characterization with a boundary-layer
profiler[J]. Boundary-Layer Meteorology, 1994, 68(4): 375-385.
9 A. B. White, C. J. Senff, and R. M. Banta, 1999: A Comparison of Mixing Depths Observed by Ground-Based Wind Profilers
and an Airborne Lidar.J. Atmos. Oceanic Technol.,16, 584–590.
10 Heo B, Jacoby-Koaly S, Kim K, et al. Use of the Doppler Spectral Width to Improve the Estimation of the Convective Boundary Layer Height from UHF Wind Profiler Observations[J]. Journal of Atmospheric & Oceanic Technology, 2003, 20(3):408-424.
11 Bianco L, Wilczak J M. Convective Boundary Layer Depth: Improved Measurement by Doppler Radar Wind Profiler Using Fuzzy Logic Methods[J]. Journal of Atmospheric & Oceanic Technology, 2002, 19(11):1745-1758.
12 Bianco L, Wilczak J M, White A B. Convective Boundary Layer Depth Estimation from Wind Profilers: Statistical Comparison between an Automated Algorithm and Expert Estimations[J]. Journal of Atmospheric & Oceanic Technology, 2008, 25(8):1397.
13姜杰, 郑有飞, 刘建军等. 南京上空大气边界层的激光雷达观测研究[J]. 环境科学与技术, 2014, (1).
Ottersten H. Atmospheric structure and radar backscattering in clear air[J]. Radio Science, 1969, 4(12): 1179-1193.
14 VanZandt T E, Green J L, Gage K S, et al. Vertical profiles of refractivity turbulence structure constant: Comparison of observations by the Sunset radar with a new theoretical model[J]. Radio Science, 1978, 13(5): 819-829.
15 何平.相控阵风廓线雷达[M].北京:气象出版社,2006,5:105-113.
16 Gamage N, Hagelberg C. Detection and analysis of microfronts and associated coherent events using localized transforms[J]. Journal of the atmospheric sciences, 1993, 50(5): 750-756.
17 Cha J S, Choi J C, Ko J H, et al. The low-temperature SCR of NO over rice straw and sewage sludge derived char[J]. Chemical Engineering Journal, 2010, 156(2): 321-327.
18 Davis K J, Gamage N, Hagelberg C R, et al. An objective method for deriving atmospheric structure from airborne lidar observations[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(11): 1455-1468.
19 Compton J C, Delgado R, Berkoff T A, et al. Determination of Planetary Boundary Layer Height on Short Spatial
and Temporal Scales: A Demonstration of the Covariance Wavelet Transform in Ground-Based Wind Profiler and Lidar Measurements*[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(7): 1566-1575.
注:不要收录知网