厦门大学参考答案--08-09学年第一学期《高等代数》期末考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特别说明:答案写在答题纸上

一、 单选题(32分. 共8题, 每题4分)

1.

下列说法错误的是A) 若向量组123,,ααα线性无关,则其中任意两个向量线性无关; B) 若向量组123,,ααα中任意两个向量线性无关,则123,,ααα线性无关; C) 向量组122331,,αααααα---线性相关;

D) 若向量组123,,ααα线性无关,则112123,,αααααα+++线性无关.

2. 设n 维列向量12,,...,m ααα()m n <线性无关, 则n 维列向量12,,...,m βββ线性无关的充要条件是

A) 向量组12,,...,m ααα可由向量组12,,...,m βββ线性表示; B) 向量组12,,...,m βββ可由向量组12,,...,m ααα线性表示; C) 向量组12,,...,m ααα与向量组12,,...,m βββ等价; D) 矩阵12(,,...,)m A ααα=与矩阵12(,,...,)m B βββ=相抵.

3.

设线性方程组0Ax =的解都是线性方程组0Bx =的解,则

A) ()()r A r B <; B) ()()r A r B >; C) ()()r A r B ≥;

D) ()()r A r B ≤.

4.

设n 阶方阵A 的伴随矩阵*

0A ≠,非齐次线性方程组Ax b =有无穷多组解,则对应的齐次线性

方程组0Ax =的基础解系 A) 不存在;

B) 仅含一个非零解向量;

C) 含有两个线性无关的解向量; D) 含有三个线性无关的解向量.

5.

下列子集能构成22

R

⨯的子空间的是A) 221{|||0,}V A A A R ⨯==∈;

B) 22

2{|()0,}V A tr A A R

⨯==∈;

C) 2223{|,}V A A A A R ⨯==∈;

D) 224{|,}V A A A A A R ⨯'==-∈或.

6.

设V 是数域K 上的线性空间, V 上的线性变换ϕ在基12,,...,n ααα下的矩阵为A 且||2A =,若ϕ

在基11,,...,n n ααα-下的矩阵为B , 则||B =

A) 2n

; B) 2; C)

1

2

; D) 不能确定.

7.

设V 是n 维向量空间,ϕ和ψ是V 上的线性变换,则dimIm dimIm ϕψ=的充分必要条件是

A) ϕ和ψ都是可逆变换;

B) Ker ϕ=Ker ψ;

C) Im Im ϕψ=; D) ϕ和ψ在任一组基下的表示矩阵的秩相同. 8.

设ϕ是线性空间V 到U 的同构映射

, 则下列命题中正确的有个. (Ⅰ) ϕ为可逆线性映射;

(Ⅱ) 若W 是V 的s 维子空间, 则()ϕW 是U 的s 维子空间; (Ⅲ) ϕ在给定基下的表示矩阵为可逆阵;

(Ⅳ) 若12V=V V ⊕, 则1212)))ϕϕϕ⊕=⊕(V V (V (V . A) 1

B) 2

C) 3

D) 4

二、 填空题(32分. 共8题,每题4分)

1. 若矩阵1234(,,,)A αααα=经过行初等变换化为100300

24010500

00-⎛⎫

-

⎪⎝⎭

, 那么向量组1234,,,αααα的

一个极大无关组是

其余向量由此极大无关组线性表示的表示式为

.

2. 设3维向量空间的一组基为123(1,1,0),(1,0,1),(0,1,1)ααα===,则向量(2,0,0)β=在这组基

.

3. 设1V ,2V 均为线性空间

V 的子空间,则12()L V V ⋃

4. 数域K 上所有三阶反对称矩阵构成的线性空间的维数是

的一组基. 5. 已知12

K

⨯上的线性变换ϕ定义如下:((,))(0,)a

b a ϕ=-,则Ker ϕ=

Im ϕ

6. 设ϕ是数域K 上n 维线性空间V 到m 维线性空间U 的线性映射, 则ϕ为满射的充分必要条件是

(请写出两个)

7. 设12,,...,n ααα和12,,...,n βββ是线性空间V 的两组基,从12,,...,n ααα到1

2,,...,n βββ的过渡矩阵为P . 若ϕ是V 上的线性变换且,()i i ϕαβ=1,2,...,i n =,则ϕ在基12,,...,n βββ下的表示矩阵是8. 设ϕ是线性空间V 上的线性变换,ϕ在基12,,...,n ααα下的表示矩阵为0A B C ⎛⎫

⎪⎝⎭

其中A 为r r ⨯矩阵,则存在V 的一个非平凡ϕ-,,)r α.

三、

(8分) 设线性空间

V 的向量组12,,...,m ααα线性无关,V β∈,考虑向量组12,,,...,m βααα.

求证:或者该向量组线性无关,或者β可由12,,...,m ααα线性表示. ,

,m α线性相关,则存在不全为,,k m 使得+k m m α+=.事实上,若k +k m m α+=12,,...,ααα线性无关知1m k ==k =0.

m =

=k =0.

,,k m 不全为0相矛盾.m

m k k α--

从而,或者该向量组线性无关,或者β可由α 四、

(10分) 设1V ,2V 分别是数域K 上的齐次线性方程组12n x x x ==

=与120n x x x +++=的

解空间. 证明1

12n K

V V ⨯=⊕.

相关文档
最新文档