线性代数第三章第一节优秀课件
大学线性代数课件第三章第一节可逆矩阵
假设有两个不同的逆矩阵$B$和$C$,则有$AB = BA = I$和$AC = CA = I$。由此可得$(B - C)A = 0$和 $A(B - C) = 0$,从而推出$(B - C)$是零矩阵,即$B = C$。
逆矩阵与原矩阵的关系
逆矩阵的性质
如果矩阵$A$是可逆的,那么它的逆矩阵和原矩阵满足关系式 $AA^{-1} = A^{-1}A = I$。
分解方法
常见的矩阵分解方法包括QR 分解、LU分解、SVD分解等, 这些方法都利用了可逆矩阵的 性质。
应用场景
在数值分析、计算物理等领域 中,矩阵分解是非常重要的计 算工具,可逆矩阵的应用为这 些领域提供了强大的支持。
特征值和特征向量的计算
特征值和特征向量
可逆矩阵可以用于计算特征值和 特征向量,这些数值在许多领域 中都有重要的应用。
p;3 1&2 end{bmatrix} $$
习题
判断矩阵B是否可逆,如果可逆,求其逆矩阵。
$$ B = begin{bmatrix}
习题
4 & -3 1&2 end{bmatrix} $$
答案与解析
矩阵A的行列式值为
$ |A| = 2*2 - 3*1 = 1 neq 0 $,因此矩阵A是可逆的。
矩阵A的逆矩阵为
$ A^{-1} = frac{1}{2} begin{bmatrix}
答案与解析
2 & -3
end{bmatrix} $。 1&2
01
03 02
答案与解析
矩阵B的行列式值为
$ |B| = 4*2 - (-3)*(-1) = 5 neq 0 $,因此矩 阵B是可逆的。
《线性代数》课件第3章
a1
a2
an
与n维行向量 αT=(a1,a2,…,an)
总看做是不同的向量(按定义3.1.1,α与αT应是同一向量)。 所有n维向量构成的集合称为n
Rn={x=(x1,x2,…,xn) T|xi∈R})
在解析几何中,如果取定一个空间坐标系[o: x,y,z], 并以i,j,k分别表示与三个坐标轴方向一致的单位向量,那 么空间的任一向量α可分解为
称-α
a1 a2
为α的负向量。
an
例3.1.2 已知β=(1,0,1)T,γ=(3,2,-1) T,且
2x+3β=γ+4x,求x
解
x
1 2
(3β
γ)
1 2
1 3 0 1
0 1 2
3.1.3
定义3.1.2 给定向量组A: α1,α2,…,αm,向量k1α1+k2α2+…+kmαm称为向量组A 的一个线性组合,k1,k2,…,km称为这个线性组合的系数。 如果向量β
k1α1+k2α2+…+knαn=0 因为α1,α2,…,αn
k1=k2=…=kn=0
于是
β
k1 k
α1
k2 k
α2
kn k
αn
设有两组数k1,k2,…,kn和λ1,λ2,…,λn,使得 β=k1α1+k2α2+…+knαn
β=λ1α1+λ2α2+…+λnαn
(k1-λ1) α1+(k2-λ2) α2+…+(kn-λn) αn=0
表示。
证 必要性 设α1,α2,…,αm 线性相关,即有一组不
全为零的数k1,k2,…,km,使
《线性代数》课件-第3章 矩阵
§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。
大学高等数学及线性代数课件3-1
§1 矩阵的初等变换
定理1:(只记结论)
⎛ Er O ⎞ 设 A是m × n阶矩阵,则 A ~ ⎜ ⎜ O O ⎟ ,其中0 ≤ r ≤ min(m, n), ⎟ ⎝ ⎠ m×n ⎛ Er O ⎞ ⎜ ⎜ O O ⎟ 称为A的标准形或叫等价标准形。 ⎟ 这是个什么类 ⎝ ⎠ m×n 型的矩阵呢? 注释:所有n阶可逆方阵A的标准形都是n阶单位阵En
只能施行初等行变换
(
A
−1
)
只能用初等 列变换
⎛ A⎞ ⎛ E ⎞ ⎜ ⎟ → L → ⎜ −1 ⎟ ⎜E⎟ ⎜A ⎟ ⎝ ⎠ ⎝ ⎠
⎛ 1 2 3⎞ ⎟ ⎜ 例:设 A = ⎜ 2 2 1 ⎟, 求 A−1. ⎜ 3 4 3⎟ ⎠ ⎝
【1】此方法只能用初等行 变换!! 【2】若不知A是否可逆, 仍可用上述方法做,只要 矩阵[A E]左子块出现一 行(列)的元素全为零, 则A不可逆。
这三个 矩阵既 可理解 为行变 换,又 可理解 为列变 换得到 的。
定理: 设A是n × s阶矩阵; B是m × n阶矩阵;则 [1]E (i, j ) A表示互换 A的第 i, j行; BE (i, j ) 表示互换 B的第 i, j列; [ 2]E (i ( k )) A表示 A的第 i行乘以 k ( ≠ 0); BE (i ( k )) 表示 B的第 i列乘以 k ( ≠ 0); [3]E (ij ( k )) A表示 A的第 j行的 k倍加到第 i行; BE (ij ( k )) 表示 B的第 i列的 k倍加到第 j列.
⎛1 ⎞ ⎜ ⎟ ⎜ O ⎟ ⎛1 ⎜ ⎜ ⎟ 1 ⎜ ⎟ ⎜ 0 L 1 ⎜ ⎟ ⎜ ⎜ ⎟ 1 ⎜ ⎜ ⎟ E(i(k)) = ⎜ ⎟ E(i, j) = ⎜ M O M ⎜ ⎟ ⎜ 1 ⎜ ⎟ ⎜ ⎜ ⎟ 1 L 0 ⎜ ⎜ ⎟ 1 ⎜ ⎟ ⎜ ⎜ ⎟ ⎝ O ⎜ ⎟ ⎜ 1⎟ ⎝ ⎠
同济大学线性代数课件__第三章[1]
(i) 反身性 A ~ A ; (ii) 对称性 若A ~ B ,则B ~ A ; (iii) 传递性 若A ~ B , B ~ C ,则A ~ C 。
2021/10/10
9
线性方程组 2x1 x2 x3 x4 2, ①
x1
4 x1
x2 6x2
2 x3 2 x3
0
00
0
0
00 4
∴ R(B) = 3
2021/10/10
36
定理 3 若A ~ B, 则 R(A) = R(B) .
事实上,若 A 经过一次初等变换变为 B,A的 k 阶子式全等于零, 则 B的 k 阶子式也全等于零。
(1) A ri rj B
(2) A r i k B (3) A ri krj B
2 3 4
5 1 3
1
r2 2r1 r3 3r1
0 0
2 2 2
3 5 6
2 1 2
5 9 12
1
r1 r2 r3 r2
0 0
0 2 0
2 5 1
1 1 1
4 9 3
r12r3 r2 5r3
1 0 0
0 2 0
0 0 1
3 4 1
2 6 3
2021/10/10
第i行
1
E(i, j)
1 10
第
j
行
1
1
2021/10/10
17
1
1
E(i(k))
k
第i 行
1
1
2021/10/10
18
1
E(i, j(k))
1 k
第i行
1
线性代数课件(第三章第一节)
数学与信息科学学院
由于R A R B 2,
故方程组有解,且有
x1 x2 x4 1 2 x1 x2 x4 1 2 x x 0x 2 2 4 x3 2 x4 1 2 x 3 0 x 2 2 x4 1 2 x4 0 x 2 x4
所以方程组的通解为
x1 1 0 1 2 x 1 2 k k 0 0 . x3 1 0 2 2 1 2 x 0 1 0 4
5 School of Mathematics & Information Science
数学与信息科学学院 三、线性方程组解的判定定理
必要条件是系数矩阵 A 的秩等于增广矩阵 B A, b 的秩.
证明:不失一般性,假设矩阵经过初等行变换化成: d1 1 0 0 c1, r 1 c1n 0 1 0 c c d 2, r 1 2n 2 dr 0 0 1 cr , r 1 crn 0 0 0 0 0 d r 1 0 0 0 0 0 0 0 0 0 0 0 0 0
数学与信息科学学院
商丘师范学院数学学院
1 School of Mathematics & Information Science
数学与信息科学学院 线性方程组 向量 ? (向量的有关 理论)
(线性方程组
有解的条件)
线性方程组 矩阵 (矩阵初等变 换、矩阵的秩) 线性方程(组)
线代3.1 线性代数课件
(2,1,1,1) 的线性组合?
例3:设向量
1
1
1, 2
1 0
,1
1 3
,2
31,
1
1
5
1
问1,
是否可以由
2
1,2
线性表示?
-13-
例4 设向量组 A: 1 (1 ,1,1)T , 2 (1,1 ,1)T , 3 (1,1,1 )T , 向量 (0,3, )T ,问 为何值时, 不能由 A 线性表示; 能由 A 唯一表示; 能由 A 有
无穷多种表示, 并求所有表示方法.
解 记 A [1 ,2 ,3 ] 只需讨论 Ax 解的情况.
具体解方程组过程略。
0 时,方程组无解, 不能由 A 表示. 0 且 3时, 方程组有唯一解, 可由 A 唯一表示.
-14-
3 时, 方程组有无穷多解, 可由 A 无穷多种表示.
第三章 向量空间Rn
§3.1 向量及其线性组合 §3.2 一个n元向量组的线性相关性 §3.3 向量组的秩 §3.4 向量空间 §3.5 欧氏空间Rn
§3.1 向量及其线性组合
三维空间的向量: 有向线段。建立标准直角坐标系后,
P(x, y, z)
O
它由一点 P 或一个三元数组 (x,y,z) 唯一确定。
anen
-10-
线性方程组的向量表示
a11x1 a12x2 a1nxn b1
n元线性方程组
a21x1 a22x2 a2nxn b2
(1)
am1x1am2x2 amnxn bm
可以用向量形式表示为 x11 x22 xnn B
a11
a12
其中
1
a21
,
西北工业大学《线性代数》课件-第三章 矩阵的初等变换 (1)
可化为单位矩阵
A 可表为若干初等方阵乘积 A 没有零特征值
…… 有零特征值
A* 可逆 AT 可逆
A* 不可逆 AT 不可逆
Байду номын сангаас
§3.3 求解线性方程组的消元法
例
2 4
x1 x1
x2 2 x2
3x3 5x3
1 4
① ②
x1
x3 3 ③
②
③
2①
1 2
①
2
x1
x2
4x2
1 2
x2
3x3 1
注意:rank A rank B rank H
同理
A 初等列变换
初等列变换
B(列阶梯形)
H(列最简形)
例2
用初等列变换化
A
3 1
1 1
0 2
21为列阶梯形
1 3 4 4
和列最简形。
解
3 1
A 1 1
0 2
2 1
c1 c2
1 1
3 1
0 2
2 1
1 3 4 4
3 1 4 4
1 2
3 5
1 4
x1
x3 3 ③
1 0 1 3
②
③
2①
1 2
①
2
x1
x2
4x2
1 2
x2
3x3 1
x3 2
1 2
x3
5 2
①′ ②′ ③′
r2 2r1
r3
1 2
r1
2 0 0
1
4
1 2
3
1
1 2
1
2
5 2
③'
线性代数第三章课件
返回
上页
20
下页
m ( n ) 1 , 2 ,, m 分别是 A 的 是 A 的个彼此不同的特征值,
属于1 , 2 ,, m 的特征向量, 则 1 , 2 ,, m 线性无关。 定理3.5 设 A 是 n 阶方阵, 1 , 2 ,, m 是 A 的 i1 , i 2 ,, isi 是 A 的 m( n) 个彼此不同的特征值, 属于 i (i 1,2,, m) 的线性无关的特征向量组, 则
A E 称为 A 的特征矩阵.
返回 上页
4 下页
说明 (1) 求特征值 ,就是求特征方程 A E 0 的根; (2) A E 0 有 n 个根 (其中有些根可能相同), 其中的 k 重根也称为 k 重特征值. (3)A 的属于特征值 0 的全体特征向量是: ( A 0 E ) x O 的解集中除零向量外的全体解向量. (4) 特征方程可能有复数根,相应的,特征向量也 可能是复向量.
解 A 的特征多项式为
1 A E 4 1 1 3 0 0 0 2 (2 )(1 )2
令 A E 0 ,得 A 的 3 个特征值: 1 2 (单重特征值)
2 3 1 (二重特征值)
返回 上页
9 下页
将特征值分别代入 ( A E ) x O ,求出特征向量:
第一节 矩阵的特征值和特征向量
一、特征值和特征向量的概念 二、特征值和特征向量的性质
1
一、特征值和特征向量的概念
定义 1 设 A 是 n 阶矩阵,如果存在数 和非零向量 x, 使得 Ax x
则称: 是矩阵 A 的特征值;
x ቤተ መጻሕፍቲ ባይዱ A 的对应于(或属于)特征值 的特征向量.
线性代数课件第三章
定理 任何矩阵都可经过单纯的初等行变换化为行
最简形矩阵. 任何矩阵都可经过初等变换化为标准形矩 阵.
下面我们还是通过例子来说明该定理.
单击这里开始
从上面的例子可见, 任何矩阵经单纯的初等行变换 必能化为行阶梯形矩阵和行最简形矩阵, 但不一定能化 成标准形矩阵, 如果再使用初等列变换, 则一定能化成 标准形矩阵. 将矩阵化为行阶梯形矩阵的方法不是唯一 的, 所得结果也不唯一. 但一个矩阵的标准形是唯一的, 这反映了矩阵的另一个属性, 即矩阵的秩的概念.
第三章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换 第二节 矩阵的秩 第三节 线性方程组的解 知识要点 释疑解难 习题课
第三章 矩阵的初等变换与线性方程组
本章先引进矩阵的初等变换, 建立矩阵的秩的概念; 然后利用矩阵的秩讨论齐次线性方程组有非零解的充要 条件和非齐次线性方程组有解的充要条件, 并介绍用初 等变换解线性方程组的方法.
(i) 对调两行(对调 i, j 两行, 记作 ri rj ); (ii) 以数 k 0 乘某一行中的所有元素
(第 i 行乘 k , 记作 ri k ); (iii) 把某一行所有元素的 k 倍加到另一行对应的元素 上去(第 j 行的 k 倍加到第 i 行上,记作 ri + krj).
把定义中的“行”换成“列”,即得矩阵的初等列变 定义换. 的矩阵的初等行变换与初等列变换, 统称初等变换.
①
①-② ②-③
x2 x3 3, x4 3,
② ③
(B5)
0 0. ④
至此消元结束, 且得到 (1) 的同解方程组 (B5), (B5) 是方程组 (1) 的所有同解方程组中最简单的一个, 其中
线性代数第三章线性空间课件
将线性方程组
a11x1 a12 x2
a21x1
a22 x2
am1x1 am2 x2
a1n xn b1, a2n xn b2 ,
amn xn bm
(1)
的系数矩阵按列进行分块, 即 A 1, 2, , n ,
则方程组(1)可以写成
1x1 2 x2 n xn 线性方程组(1)有解当且仅当方程组的常数 项向量可以由其系数矩阵的列向量组线性表出.
并且,定义向量 与 的减法为
( ).
容易验证,向量的加法和数量乘法满足下面8条性质:
1)加法交换律: ;
2)加法结合律:( ) ( ) ;
3)对于任意的 n ,均有 0 ;
4)对于任意的 n,均存在负向量 ,使得
5) 1 ;
( ) 0;
II : 1, 2, , t 线性表出,且线性无关,则有 s t.
推论2 如果 I :1,2 , ,s 与 II : 1, 2, , t 等
价,且两个向量组均线性无关,则有 s t.
推论3 任意 n+1 个 n 维向量均线性相关.
定理5 设向量组 I :1,2 , ,s 线性无关,且
i (a1i , a2i , , ani )T , i 1, 2, , s.
于是,单个向量 组成的向量组线性相关当且仅当
0;
换句话说, 单个向量组 成的向量组线性无关当
且仅当
0.
定理2 如果向量组 I :1,2, ,s 的一个部分组线
性相关,那么这个向量组 I 就线性相关.
这个命题的逆否命题为:
如果向量组 I :1,2, ,s 线性无关,那么它任
何一个部分组也线性无关.
组系数矩阵的列向量组是线性相关的.或者说 齐次线性方程组(3)只有零解当且仅当方程
工学四川大学线性代数课件第三章第一节 可逆矩阵
A32=-4 A33=2
得 所以
b1
B
b2
b3
1/ b1
如b1b2b30,
B可逆,
且
B1
1/ b2
1/ b3
求逆运算容易出错, 在求得A1后, 可验证 AA1=E, 保证结果是正确的.
可逆矩阵的性质:
(1)如果方阵A可逆,则其逆矩阵唯一。
(2) 若 A E 或 B B E , 则 A B A 1 .
3若 A 可,则 逆 A 有 1A 1.
4 若 A 可 ,则 A 逆 1 亦 ,且 可 A 1 1 A 逆 .
5 若A, B为同阶方阵且均可逆,则AB亦可逆,且
AB 1 B 1 A 1
证明 A B 1 A B 1 A B 1 A 1 B
AE1AAA 1E,
A 1 B B 1 A 1 .
即 A1 1 A A
定理1
矩阵 A可逆的充要条件是 A 0 ,且 A1 1 A, A
其A 中 为矩 A的 阵伴随 . 矩阵
例1 下列矩阵A,B是否可逆? 若可逆, 求其逆矩阵.
b1
B b2
b3
解 因为
2 A 2 0
所以A-1存在。
同理可得
A12=-3 A22=10 A13=1 A23=-4
2
又 A 2 A 由 2 E 0
A 2 E A 3 E 4 E 0 所以A A 22E E可逆1 4,A A 32 E E 1 E A 12E A 13E
4
课后思考: 设方阵满足方程 A 2 3 A 1 E 0 0 证:明 A和 A4E都可逆,并逆 求矩 出阵
例5:设方阵B为幂等矩阵,
满足什么条件的方阵是可逆的 ?
设n阶方阵A可逆,由 A A-1= A-1 A=E 有
第三章线性代数ppt课件
二. Gauss消元法 • 阶梯形线性方程组的有三中基本类型 2x1+3x2 x3 = 1 2x2+x3 = 2 无解 0=1 x1x2+2x3 = 8 2x2 +x3 = 1 x3 = 5 x1+2x2+x3 + x4 = 2 x3+4x4 = 3 有唯一解
有无穷多解
第三章 ·线性方程组
§3.1线性方程组和Gauss消元法
第三章 线性方程组
§3.3 非齐次线性方程组
§3.3 非齐次线性方程组
一. 非齐次线性方程组的相容性
定理3.4. 设ARmn, bRm, 则
(1) Ax = b有解秩([A, b]) = 秩(A);
(2) 当秩([A, b])=秩(A)=n时, Ax = b有 唯一解; (3) 当秩([A, b])=秩(A)<n时, Ax = b有 无穷多解, 且通解中含有n秩(A) 个自由未知量.
第三章线性代 数
第三章 ·线性方程组
§3.1线性方程组和Gauss消元法
Ax = b 齐次线性方程组( b = 0)
线性方程组的分类 非齐次线性方程组 (b 0)
线性方程组的解
无解 (不相容) 有解 (相容)
唯一解 无穷多解 (通解)
表示全部解的表达式
第三章 ·线性方程组
§3.1线性方程组和Gauss消元法
第三章 线性方程组
§3.2 齐次线性方程组
§3.2 齐次线性方程组 齐次线性方程组 a11x1+a12x2+…+a1nxn = 0 a21x1+a22x2+… a2nxn = 0 … … … … … … … am1x1+am2x2+…+amnxn = 0 零/平凡解, 非零/平凡解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相当于把行列式按第一行展开
2、性质
a 11 a12 a1n
deAt
a21
a 22
a2n det AT ,
an1 an2 a nn
a 11 a21 an1
a12 a 22 an2
a1n a2n a nn
性质1 行列式与它的转置行列式相等.
deAtdeAtT
说明 行列式中行与列具有同等的地位,因此行列式的性质
a11 a21
a21 a22
—
a12 a22
+
a 1 1 1 1 1 d S 1 e 1 a 1 t 2 1 1 2 d S 1 e 2t
a1a 122 a1a 221
1 3 7
例
设
A
2
4
3
,
计算
det
A
的值.
3 7 2
解
a11
det A
a1n def
n
1 k
a1k 1 det S1k
表示一个与 A 相联系的数,
a n1 a nn
常把上述表达式称为 A 的行列式 (determinant), 记作det A
或用大写字母 D 表示,而把相联系的那个数称为行列式的值.
今后,称上述具有n 行n 列的表达式为n 阶行列式.
a11 a1n
定义
对一n阶矩阵 A
an1 ann
a n 1 a n 2 a nn
请问若给n阶行列式的每一个元素都乘以同 一数k,等于用 乘以此行列式.
推论 对 n 阶行列式A ,有 detA n det A
推论 行列式中若有两行(列)元素成比例,则此行列式为零.
证
a 11 a 12 a 1 n
a 11 a 12 a 1 n
a i 1 a i 2 a in
a 31 a 32 a 33 a 34
a41 a42 a43 a44
a11 a12 a14
A23123detS23det S23 det S23 a31 a32 a34
a11 a12 a13
a41 a42 a44
det S44 M44 a21 a22 a23 A 44144M 44M 44
结论 n 阶行列式的值是 n!个不同项的代数和,其中的每 一项都是处于行列式不同行又不同列的n 个元之乘积.
定义 对 n 阶行列式 det A,称 det Sij 为元 aij 的余子式 ,
称 Aij 1ij detSij为元 aij 的代数余子式.
例如
a11 a12 a13 a14
a 21 a 22 a 23 a 24 D
凡是对行成立的对列也同样成立.
行列式的值
定理
对n 阶矩阵 A ,有 det A
n
ak1 Ak1
也可按第1列 展开计算.
k 1
性质2 互换行列式的两行(列),行列式值反号.
175 175 例如 6 6 2 3 5 8,
358 662
17 5 715 6 6 2 6 6 2. 35 8 538
a22 a32
a23 a33
a12
1
12
a21 a31
a23 a33
a13
1
13
a21 a31
a22 a32
a 1a 12a 2 3 3a 2a 3 32 a 1a 23a 1 2 3a 2a 1 33 a 1a 32a 1 3 2a 3a 1 22
a 1a 1 2a 23 3a 1a 1 2a 33 2a1a 22a 3 3 1a 1a 22a 1 33 a 1a 32a 1 3 2a 1a 32a 231
n
1 k
a1k 1 det S1k
k 1
an1 ann
a11
det A
a1n def
n
1 k
a1k 1 det S1k
k 1
an1 ann
例 设 D a11 a12 ,计算该行列式的值
a21 a22
解 因有 S11 = [ a22 ], S12 = [ a21 ], 故
de tA a11 a12
把删去第i 行及第j 列后所得的(n–1)阶子矩阵称为对应于元
aij 的余子矩阵,并以Sij 记之.
定义 一阶矩阵 [a11 ]的行列式之值定义为数a11 ,即
def
det [ a11 ]
a11
对 n = 2, 3, … , 用以下公式递归地定义 n 阶行列式之值:
a11
det A
a1n def
以下表的形式记 3 阶行列式值的计算公式
a11 a12 a13 a 21 a 22 a 23 a 31 a 32 a 33
a11a22a33 a12a23a31 a13a21a32
a13a22a31a12a21a33 a11a23a32
说明 三阶行列式包括3!项,每一项都是位于不同行,不同列 的三个元素的乘积, 其中三项为正, 三项为负.
k 1
an1 ann
1 3 7
2 4 3 111 1433112 2 3
72
3 2
3 7 2
7113 2 4
3 7
8 2 3 1 4 9 7 1 1 4 1 29
若写出计算3 阶行列式值的公式为
a11 a21 a31
a12 a22 a32
a13
a23 a33
a11
1 11
推论 若行列式有两行(列)完全相同,则此行列式为零.
性质3 行列式的某一行(列)中所有的元素都乘以同一数k, 等于用数 k 乘此行列式.
a 11 a 12 a 1 n
a 11 a 12 a 1 n
ka i 1 ka i 2 ka in k a i 1 a i 2 a in
a n 1 a n 2 a nn
a i 1 a i 2 a in k 0.
ka i 1 ka i 2 ka in
a i 1 a i 2 a in
a n 1 a n 2 a nn
线性代数第三章第一节
本章的主要内容
§2.1 行列式的概念和性质 §2.2 行列式值的计算 §2.3 若干应用(逆阵公式、克拉默法则等) 重点内容 行列式的计算
§2.1 行列式的概念和性质
1、概念 2、性质
一、 概念
a11 a1n
对任一n
a 11 a 1 n
a31 a32 a33
注 行列式的每个元素都分别对应一个余子式和一个 代数余子式.
根据该定义,可重新表达行列式的值
a11
det A
a1n def
n
1 k
a1k 1 det S1k
an1 ann
k 1
n
a1k A1k
k 1
其中 A1k 是元 a1k 对A 或 det A 的代数余子式.