专题:数列的极限与函数的导数
导数在数列极限中的应用
导数在数列极限中的应用数列极限是数学中一种重要的概念,它可以帮助我们理解数学关系的本质,以及不同类型的数量间的联系。
导数在数列极限中也扮演着重要的角色。
其主要作用是描述数列中变化量的大小,从而使我们能够更好地分析数列的特征。
一般而言,导数可以是正数、负数或零。
当导数为正数时,数列的变化量是增大的,而当导数为负数时,数列的变化量是减小的。
此外,当导数为零时,数列的变化量是不变的。
这就是导数在数列极限中的应用函数的变化率可以用它来表示。
在数学分析中,导数还可以用来分析数列的特征。
例如,给定一个数列,当其第一项的导数大于零时,该数列一定是单调递增的;反之,当其第一项的导数小于等于零时,该数列一定是单调递减的。
此外,当一个数列的第二项的导数大于零时,该数列的变化量会越来越快,而当其第二项的导数小于零时,该数列的变化量会越来越慢。
这种性质很重要,因为它可以帮助我们更好地理解数列特征,从而使我们能够对特定数列进行更有效的分析。
此外,在研究极限和连续函数时,导数也可以发挥重要作用。
我们知道,连续函数在极限中是无穷小量,如果我们知道连续函数的导数值,那么就可以算出该函数的递增量,从而更好地理解其变化特征。
另外,导数在应用极限的概念时也有重要的作用。
在某些情况下,我们可以用导数来计算一个函数的极限。
这一点非常重要,因为极限有助于我们确定数列的构成以及数量的变化趋势。
总之,导数在数列极限中发挥着重要的作用。
它不仅可以帮助我们了解数列的特性,还可以用来计算连续函数的极限。
对于数学家而言,导数就像一个分析数学关系的桥梁,使我们能够理解更多的数学知识。
综上所述,导数是一种重要的数学概念,它在数列极限中的应用十分广泛。
要想更好地了解数列特征,必须熟练掌握导数的概念和计算方法,以及对导数的运用等方面的知识。
极限、导数与定积分
( f [ϕ ( x)])′ =
f ′[ϕ ( x)]ϕ ′( x) .
3. 导数的应用 (1)利用导数研究函数的单调性 ①在区间 (a, b) 内,若 f ′( x) > 0 ,则函数 y = f ( x) 在这个区间内单调递增.
②在区间 (a, b) 内,若 f ′( x) < 0 ,则函数 y = f ( x) 在这个区间内单调递减. (2)利用导数求函数的极值 ①极值的必要条件:若函数 f ( x) 在 x0 处可导,且在 x0 处取得极值,则
2
数学竞赛与自主招生专题讲义
第 讲 极限、导数与定积分
整理、编写:孟伟业
反思 感悟 拓展 提升:
(3)复合函数的导数 设函数 y = f (u ) , u = ϕ ( x) ,已知 ϕ ( x) 在 x 处可导, f (u ) 对应的点 u ( u = ϕ ( x) ) 处 可 导 , 则 复 合 函 数 y = f [ϕ ( x)] 在 点 x 处 可 导 , 且
第 讲 极限、导数与定积分
a
整理、编写:孟伟业
反思 感悟 拓展 提升:
①若 f ( x) 是 [−a, a ] 上的奇函数(如下图左) ,则 ∫ f ( x)dx = 0 ;
x0 x y0 y − 2 =1; a2 b
④设 P( x0 , y0 ) 是抛物线 y 2 = 2 px 上一点,则过 P( x0 , y0 ) 的抛物线切线方
程为 y0 y = p ( x + x0 ) .
2. 导数的运算 (1)常见函数的导数公式
① ( kx + b )′ = k ② C′ = 0 ③ ( xα )′ = α xα −1 ④ ( a x )′ = a x ln a ⑤ (log a x)′ = ( k , b 为常数) ( C 为常数) ( α 为常数) ⑥ ( e x )′ = e x
高中数学-极限与导数
1、数列的极限:设有数列12,,,,n x x x ⋅⋅⋅⋅⋅⋅与常数a ,如果n 无限增大时,n x 无限接近于a ,则称常数a 是数列的{}n x 的极限,记作lim n n x a →∞=或 ()n x a n →→∞.例如:1n a n=,则lim 0n n a →∞=;90.99n n a =⋅⋅⋅个,则lim 1n n a →∞=.2、数列的收敛与发散:若一个数列有极限,则称该数列是收敛的;否则称该数列是发散的. 定理:单调有界的数列必有极限. 例如:1n a n =收敛;()11n n a n=-⋅收敛;()1nn a =-发散;n a n =发散.3、函数的极限:设有函数()f x 和常数0,x A ,如果当x 无限接近于0x 时,()f x 无限接近于A ,则称常数A 是函数()f x 当0x x →时的极限,记作()0lim x x f x A →=或()()0f x A x x →→. 注:(1)可以用+∞或-∞代替0x ,表示x 无限增大或无限减小时()f x 的极限, (2)函数的极限不一定都存在,例如()11x Qf x x Q ∈⎧=⎨-∉⎩.4、极限的运算:若()()00lim ,lim xx x x f x A g x B →→==,则 (1)()()()0lim xx f x g x A B →±=±; (2)()()0lim x x f x g x A B →⋅=⋅; (3)()()()0lim 0x xf x AB g x B→=≠. 推论:①()0lim x x cf x cA →=; ②()()0lim nn x xf x A →=.5、夹逼定理(1)数列中的夹逼定理:设*,n n n a b c n N ≤≤∈,且lim lim n n n n a c a →∞→∞==,那么lim n n b a →∞=. (2)函数中的夹逼定理:设函数,f g 与h 在点0x 的近旁(不包含0x )满足不等式()()()f x h x g x ≤≤如果()()00lim lim x x x x f x g x A →→==,则()0lim x x h x A →=.6、两个重要极限 (1)0sin lim1x xx→=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭.【例1】(1)证明:数列{}n x :22221111123n x n =+++⋅⋅⋅+是收敛的. (2)证明:数列{}n x :1111123n x n=+++⋅⋅⋅+是发散的.(1)22022lim 232n n n n n →++++;(2)2222lim 232n n n n n →∞++++;(3)n ;(4)lim n →∞⎛⎫++⋅⋅⋅;(5)()()1321lim 242n n n →∞⋅⋅⋅⋅-⋅⋅⋅⋅.(1)3031lim 11x x x →⎛⎫- ⎪--⎝⎭;(2)322lim 2121x x x x x →+∞⎛⎫- ⎪-+⎝⎭;(3)3131lim 11x x x →⎛⎫- ⎪--⎝⎭;(4)1lim 12xx x →∞⎛⎫+ ⎪⎝⎭.一.定义1.函数的平均变化率:一般地,已知函数()y f x =,01,x x 是其定义域内不同的两点,记()()101000,x x x y y y f x x f x =-=-=+-,则当0x ≠时,商()()00f x x f x yxx+-=称作函数()y f x =在区间[]00,x x x +或[]00,x x x +的平均变化率.2.设函数()y f x =在0x 及其附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变()()00y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率()()00f x x f x yx x+∆-∆=∆∆趋近于一个常数l ,那么常数l 称为函数()f x 在点0x 的瞬时变化率. 记作()()000lim x f x x f x l x ∆→+∆-=∆或当0x ∆→时,()()00f x x f x l x+∆-→∆.3.函数()y f x =在点0x 的瞬时变化率,通常称为()f x 在点0x 处的导数,并记作()0f x '.这时又称()f x 在点0x 处是可导的.于是上述变化过程,可以记作()()()0000limx f x x f x f x x∆→+∆-'=∆.4.如果()f x 在开区间(),a b 内每一点x 都是可导的,则称()f x 在区间(),a b 可导.这样,对开区间(),a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(),a b 内,()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y ').导函数通常简称为导数. 注:①x 可正可负.②不是所有函数在每一点都有导数,例如:()f x x =,()11x Qf x x Q∈⎧=⎨-∉⎩.【例4】用定义求下列函数的导函数:(1)()f x c =(c 为常数);(2)()f x kx b =+(,k b 为常数);(3)()sin f x x =;(4)()cos f x x =;(5)()ln f x x =.【例5】若函数()f x 在R 上可导,且()'21f =,则()()222lim2h f h f h h→+--=__________.【例6】己知()f x 在0x 处可导,则()()220003limh f x h f x h h→+--=____________.二.导数的运算法则1.()'''f g f g +=+.例如:()2sin '2cos x x x x +=+.2.()'''f g f g fg ⋅=+.例如:()()()22222'''213x x x x x x x x x x ⋅=⋅+⋅=⋅+⋅=.3.2'''f f g fg g g ⎛⎫-= ⎪⎝⎭.例如:2sin cos sin 'x x x x x x -⎛⎫= ⎪⎝⎭.【例7】求下列函数的导函数:(1)cos ln y x x =+;(2)sin y x x =;(3)1y x x=+;(4)tan y x =;(5)21xy x =+;(6)sin ln y x x x =⋅⋅.4.若函数()u g x =与函数()y f u =均可导,则复合函数()()y f g x =可导,且xu x y y u '''=⋅,或记成dy dy dudx du dx=⋅.【例8】求下列函数的导函数:(1)()()221f x x =+;(2)()2sin f x x =;(3)()()2ln 23f x x x =++;(4)()()sin f x a bx c =+;(5)()()22cos 253f x x x =++;(6)()()2sin sin f x x =.【例9】已知函数()()()()12100f x x x x =--⋅⋅⋅-,则()'1f =__________.【例10】证明:若f 是一个恒取正值的可导函数,则()()()()'ln 'f x f x f x =.【例11】求下列函数的导函数:(1)()af x x =,()0x >;(2)()()0,1xf x a a a =>≠;(3)()()g x y f x =,()f x 在它的定义域上恒有()0f x >;(4)()()cos sin xf x x =,0,2x π⎛⎫∈ ⎪⎝⎭;(5)()xx f x x =,()0x >5.设()y f x =在包含0x 的区间I 上连续且严格单调,如果它在0x 处可导,且()0'0f x ≠,那么它的反函数()1x f y -=在()00y f x =处可导,且()()()11''fy f x -=.【例12】求下列函数的导函数:(1)()af x x =;(2)()()0,1xf x a a a =>≠;(3)()arcsin f x x =;(4)()arctan f x x =;6.高阶导数设函数f 在区间I 上可导,那么()()'f x x I ∈在I 上定义了一个函数'f ,称之为f 的导函数.如果'f 在区间I 上可导,那么'f 的导函数()''f ,记为''f 称为f 的二阶导函数.一般的,对任何正整数n N +∈,可以定义f 的导函数()n f .(Leibniz )设函数f 与g 在区间I 上都有n 阶导数,那么乘积fg 在区间I 上也有n 阶导数,并且()()()()0nn n k kk n k fg C f g -==∑,这里()()00,f f g g ==.【例13】求下列函数的n 阶导函数:(1)()xf x e λ=;(2)()2cos f x x x =(3)()n xf x x e =;【习题1】求下列函数的极限 (1)22251lim 1n n n n →∞+++;(2)220251lim 1n n n n →+++;(3)1123lim 23n n n nn ++→∞++;(4)211lim 31x x x x→---+;(5)201cos lim x xx →-.【习题2】求下列函数的导数(1)5432()5432f x x x x x x =++++;(2)31()f x x =;(3)()ln f x x x =;(4)()3()2f x x =+;(5)1()f x x=;(6)()3()sin 2f x x =+;(7)()ax bf x cx d+=+;(8)()tan ln x f x a bx c dx =+;(9)sin ()xx xf x e =;(10)()f x【习题3】 求()()cos n x e x 和()()sin n x e x .【习题4】若()f x 是定义在R 上的偶函数,且()'0f 存在,则()'0f =___________.【习题5】设()02f x '=,则()()000limh f x h f x h h→+--=( )A .2-B .2C .4-D .4【习题6】设函数()12sin sin2sin n f x a x a x a nx =++⋅⋅⋅+,其中12,,,,n a a a R n N +⋅⋅⋅∈∈. 已知对一切x R ∈,有()sin f x x ≤,证明:1221n a a na ++⋅⋅⋅+≤.。
数列和函数的导数
数列和函数的导数导数是微积分中的重要概念之一,它描述了函数在某一点的变化率。
在数学中,我们经常使用导数来研究数列和函数的性质。
本文将深入探讨数列和函数的导数,并介绍一些相关的概念和方法。
一、数列的导数数列是由一系列有序的数按照规律排列而成的序列。
对于数列中的每一个元素,我们可以计算其相邻两项之差,称为差分。
差分表示了数列的递推关系和变化趋势。
对于数列{an},如果其相邻两项之差始终趋近于一个常数,即存在一个常数k,使得an+1 - an = k,那么我们称数列{an}是等差数列。
等差数列的导数为常数k。
同样地,如果数列{an}的差分an+1 - an 的极限存在,那么我们称这个极限为数列{an}的导数,并用an'表示。
数列的导数表示了数列的变化率和变化趋势。
二、函数的导数函数是一种将自变量映射到因变量的关系。
对于函数f(x),我们可以通过求取其导数来描述函数在某一点的变化率。
函数的导数可以用以下两种方式表示:一阶导数和高阶导数。
一阶导数表示了函数在某一点的切线斜率,表示为f'(x)或df/dx。
高阶导数表示了函数的变化率变化率,表示为f''(x)、f'''(x)等。
使用导数的定义来计算函数的导数是一种常见的方法。
根据导数的定义,函数f(x)在点x处的导数可以表示为极限lim(x->a)[f(x) - f(a)]/(x- a),其中a为x的一个邻近点。
另一个常用的方法是使用导数的性质和求导法则来计算函数的导数。
一些常见的求导法则包括:常数规则、幂函数规则、和差规则、乘积规则和商规则等。
通过运用这些规则,我们可以更便捷地计算函数的导数。
函数的导数在数学中具有广泛的应用。
它可以用来求解函数的极值、判断函数的增减性、研究函数的曲线形状等。
导数在物理学、经济学等领域也有着重要的应用价值。
三、数列和函数的关系数列和函数之间存在着密切的联系。
实际上,数列可以看作是一种特殊的函数,即定义域为自然数集的函数。
高中数学学习中的极限与导数概念解析
高中数学学习中的极限与导数概念解析在高中数学中,极限和导数都是重要的概念,它们是微积分的基础,也是后续学习数学的关键。
本文将分别对极限和导数进行解析,帮助同学们更好地理解和掌握这两个概念。
首先,我们来探讨一下极限的概念。
极限是一种数学概念,用来描述一个函数或数列在某一点附近的变化情况。
具体来说,当自变量逐渐靠近某个确定的数值时,函数值或数列的值也趋近于某个确定的数。
在数学符号中,我们用lim来表示极限。
例如,lim (n→∞) (1/n) = 0,表示当n无限趋近于正无穷时,1/n的极限是0。
极限在高中数学中的应用非常广泛。
它被用来证明和推导各种数学定理,例如求导和积分等。
同时,在几何学中,极限也被用来描述函数的图像在某一点的切线斜率。
因此,理解和掌握极限的概念对进一步学习数学非常重要。
接下来,我们来讨论导数的概念。
在数学中,导数被定义为函数在某一点的变化速率。
它描述了函数在某一点的附近的变化趋势。
导数常用f'(x)或df(x)/dx来表示,表示函数f(x)对自变量x的变化率。
导数可以帮助我们找出函数的极值点、确定切线斜率以及解决最优化问题等。
导数的计算通常使用导数公式和导数法则。
常见的函数求导公式包括常数函数求导公式、幂函数求导公式、指数函数求导公式、对数函数求导公式和三角函数求导公式等。
通过运用这些公式和法则,我们可以求得各种复杂函数的导数。
了解导数的概念对于数学的深入学习和应用具有重要意义。
在物理学中,导数被广泛应用于描述速度、加速度等物理量的变化。
在经济学和金融学领域,导数被用来描述成本、收益、市场需求曲线等的变化关系。
在生物学和医学领域,导数被应用于描述生长速率、变化趋势和药物浓度的变化等。
在学习极限和导数的过程中,我们还需要注意一些重要的性质和定理。
例如,极限有唯一性和保序性的性质,导数具有线性性、乘积法则、链式法则等等。
了解这些性质和定理可以帮助我们更好地理解和运用极限与导数。
极限和连续、导 数
【极限和连续】解决两个问题:○1如何求极限;○2如何解读、应用极限 (一)数列极限1、常用数列的极限:①lim n →∞C=C (常数列的极限就是这个常数)②1lim0n n→∞= ③设||1q <,则lim 0n n q →∞=;1,lim 1nn q q →∞==;,1-=q 或nn q q ∞→>lim ,1不存在。
其它不数列常常通过以下方式:○1分子分母同时除以n 的最高次项(最该次项系数比);○2分子分母同时除以 |底数|大的,从而产生设||1q <,则lim 0n n q →∞=进行应用; ○3分子分母有理化 ○4若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为: 2、数列极限的运算法则:如果lim n n a A →∞=,lim n n b B →∞=,那么见右上注意:数列极限运算法则运用的前提:(1)参与运算的各个数列均有极限;(2)运用法则,只适用于有限个数列参与运算,当无限个数列参与运算时不能直接运算,应该先华无 限为有限。
如:数列求和等。
【典型题目】1、求极限:○1n n n n 2312lim 22++∞→= ; ○2 22322lim n n n n n→∞+++= ○3135(21)lim 2462n n n →∞+++⋅⋅⋅+-+++⋅⋅⋅+=_____ ○4lim n →∞(3221n n --2)21n n =+ ○5 1123lim 23n n n n n --→∞-=- ○6)n n →∞= 2、s 表示(12)n x +展开式中各项系数和,t 表示(13)nx +的二项式系数之和,则._____lim =+-∞→ts ts n3、设等差数列{}n a 的前n 项和为n S ,若6312a S ==,则2lim nn S n →∞=4、n a 是(1)nx +展开式中含2x 的项的系数,则)111(lim 32nn a a a +⋅⋅⋅++∞→等于 【函数极限】:分清楚类型1、lim ()x f x →+∞、lim ()x f x →-∞、lim ()x f x →∞的理解;lim ()lim ()lim ()x x x f x a f x f x a →∞→+∞→∞=⇔==、(存在且相等)思考:“lim ()x f x →+∞存在且lim ()x f x →-∞存在”是“lim ()x f x →∞存在”的什么条件?(必要不充分)求法:数列极限是函数极限的特殊情况,所以数列极限求法相似可以类推到函数极限中,但是也得注意函数极限的一般性,如:lim 2xx →∞、1lim()2x x →∞、小心lim xx a →∞2、0lim ()x x f x →、0lim ()x x f x +→、0lim ()x x f x -→的理解;000lim ()lim ()lim ()x x x x x x f x a f x f x a -+→→→=⇔==、(存在相等)求法:代入求值,如果代入分母出现零因式,一般通过因式分解把零因式约掉,在从新代入;(洛比达法则):00//()()lim lim ()()x x x x f x f x g x g x →→== 到无零因式为止,在代入求极限。
导数在数列极限中的应用
导数在数列极限中的应用数列极限是数学中一个重要的概念。
它可以用来描述渐近演化和分析数字运动,从而对数学和物理问题进行建模。
通常,求解数列极限所需要的主要工作是确定它的收敛进度、确定它是否有极限值,以及求出其具体值。
在这一过程中,导数发挥着极为重要的作用。
导数在极限的应用中可以说是无处不在,大多数的极限问题,如极限的唯一性定理,都需要导数的运用。
导数是一种描述现有数据的函数,可以让我们快速求得函数的斜率,而且可以更进一步通过斜率来求出极限值。
有时,通过极限的定义可以把求导数转化成求极限的问题,这样就能更进一步理解数列极限以及它们之前的关系。
除此之外,导数在数列极限中还可以用来验证一个序列是不是连续或是分段连续的。
例如,如果一个函数f除外某个点x0外在x0附近可以连续导数,那么就可以说明f在x0处是连续的。
而如果函数f在x0处的导数不存在,那么就可以说明f在x0处是分段连续的。
这一点也可以用来验证极限的存在性,如果一个序列在极限处的导数存在,那么就可以说明极限存在。
此外,导数在极限中还可以用来确定函数的单调性,这种方法叫做代数极限法。
如果在某个点处函数的导数为正,则说明该函数在该点处是单调递增的;如果在某个点处函数的导数为负,则说明该函数在该点处是单调递减的;如果有极限存在,而且该极限等于函数的某处的定值,则说明该函数是有界的;如果极限不存在,则说明该函数是无界的。
通过以上分析,可以看出,导数在数列极限中发挥着重要的作用,它可以用来解决许多实际问题,特别是极限的存在性和函数的单调性,它们可以用来确定函数的行为。
在这方面,导数比极限更易于理解和应用,所以在数列极限中,它给了我们更多的思考空间。
高中数学知识点归纳数列与函数的极限
高中数学知识点归纳数列与函数的极限高中数学知识点归纳:数列与函数的极限数列与函数的极限是高中数学中的重要部分,它们涉及到数学分析和数学推理的重要思想。
本文将对数列和函数的极限理论进行归纳总结,以帮助学生更好地理解和掌握这一知识点。
一、数列的极限数列是由一系列实数按照一定规律排列而成的序列。
在数学中,数列的极限是指随着自变量无限接近某个值时,函数值的变化趋势。
下面将分别介绍数列的极限的两个重要概念。
1.1 数列的收敛对于数列{an},如果存在实数a,使得对于任意给定的正数ε(无论多么小),都存在一个正整数N,使得当n>N时,满足|an - a| < ε,那么称数列{an}收敛于a,记为lim(n→∞)an = a。
简单来说,数列的极限是指数列中的元素随着序号的增大无限接近一个固定的值。
1.2 数列的发散如果不存在实数a,使得对于任意给定的正数ε,都存在一个正整数N,当n>N时,满足|an - a| < ε,那么称数列{an}发散。
换句话说,发散的数列没有随着序号的增大趋于一个确定的数。
二、函数的极限函数是一种关系:对于给定的自变量值,通过某种规则可以确定唯一的函数值。
函数的极限是指当自变量无线贴近某个值时,函数值的变化趋势。
下面将介绍函数的极限的概念。
2.1 函数在无穷远处的极限对于定义在区间(a, +∞)上的函数f(x),如果存在实数L,对于任意给定的正数ε,存在实数M,当x>M时,满足|f(x) - L| < ε,那么称函数f(x)在无穷远处的极限为L,记为lim(x→+∞)f(x) = L。
2.2 函数在有限点的极限对于定义在区间(a, b)上的函数f(x),如果存在实数L,对于任意给定的正数ε,存在一个实数δ,当0 < |x - x0| < δ时,满足|f(x) - L| < ε,那么称函数f(x)在点x0处的极限为L,记为lim(x→x0)f(x) = L。
导数与函数的数列极限与级数
导数与函数的数列极限与级数在微积分学中,导数与函数的数列极限与级数是两个核心概念。
导数描述了函数在某一点上的变化率,而数列极限与级数则涉及了数列和无穷级数的性质与收敛性。
本文将深入探讨这两个概念以及它们之间的关联。
一、导数与函数导数是描述函数变化率的概念。
对于函数y=f(x),在某一点x处的导数用f'(x)或dy/dx表示,表示函数在该点的瞬时变化率。
具体地,导数可以通过函数的极限来定义。
对于函数f(x),x的增量为Δx时,其相应的函数增量为Δy=f(x+Δx)-f(x)。
当Δx趋近于0时,如果这个极限存在,就称函数在x处可导。
此时,导数f'(x)等于这个极限值。
导数的存在保证了函数在某一点的光滑性,反映了函数在该点的局部变化情况。
导数在数学和物理中都有广泛的应用,例如曲线的切线斜率、速度和加速度等。
通过导数的计算,我们可以推导函数的最值、拐点和凹凸性等重要信息。
二、函数的数列极限与级数数列极限是数列中每一个项趋近于某个值(可以是实数、无穷大或无穷小)的过程。
如果对于任意给定的ε>0,存在正整数N,使得当n>N时,数列的项a_n与极限L的距离小于ε,则称该数列收敛于L,记作lim(a_n)=L。
数列极限的性质包括唯一性、有界性和保号性等。
此外,数列的收敛性还可以通过逐项比较判别法、夹逼准则和拉链定理等方法来判断。
级数是由数列的项所组成的无穷和。
设有数列a_n,级数S_n=a_1+a_2+...+a_n。
如果数列S_n的部分和有极限,即lim(S_n)=S存在,则称级数收敛于S。
否则,级数发散。
常见的级数包括等比级数和调和级数。
等比级数是由等比数列的项所组成的级数。
当公比|r|<1时,等比级数收敛于a_1/(1-r);当|r|>=1时,等比级数发散。
调和级数是由倒数数列的项所构成的级数。
调和级数发散,即无穷大。
三、导数与数列极限和级数的关联导数与数列极限和级数之间存在着紧密的联系。
高考数学专题复习数列极限与导数教案
高考数学专题复习数列极限与导数教案一、教学目标1. 理解数列极限的概念,掌握数列极限的性质及求解方法。
2. 掌握导数的定义,了解导数的几何意义和物理意义。
3. 熟练运用导数求解函数的单调性、极值、最值等问题。
4. 能够运用数列极限和导数解决实际问题。
二、教学内容1. 数列极限的概念及性质2. 数列极限的求解方法3. 导数的定义及性质4. 导数的几何意义和物理意义5. 导数的求解方法及应用三、教学重点与难点1. 数列极限的概念及性质2. 数列极限的求解方法3. 导数的定义及性质4. 导数的几何意义和物理意义5. 导数的求解方法及应用四、教学方法1. 采用讲授法,讲解数列极限和导数的基本概念、性质和求解方法。
2. 利用示例,展示数列极限和导数的应用。
3. 引导学生进行自主学习,通过练习巩固所学知识。
4. 组织课堂讨论,提高学生的参与度和思维能力。
五、教学过程1. 导入:回顾数列极限和导数的基本概念,引导学生进入复习状态。
2. 讲解数列极限的概念及性质,举例说明数列极限的求解方法。
3. 讲解导数的定义及性质,展示导数的几何意义和物理意义。
4. 讲解导数的求解方法,举例说明导数在实际问题中的应用。
5. 课堂练习:布置相关习题,让学生巩固所学知识。
6. 课堂讨论:组织学生进行讨论,解答学生提出的问题。
7. 总结:对本节课的内容进行总结,强调数列极限和导数的重要性。
8. 布置作业:布置相关作业,巩固所学知识。
六、教学评价1. 课堂讲解:观察学生在课堂上的参与程度和理解程度,评估学生对数列极限和导数概念的理解。
2. 课堂练习:通过学生完成的练习题,评估学生对数列极限和导数求解方法的掌握。
3. 课后作业:评估学生对课堂所学知识的巩固情况,以及学生运用数列极限和导数解决实际问题的能力。
七、教学策略1. 针对数列极限和导数的概念,采用生动的例子和实际问题,帮助学生形象理解。
2. 通过分步骤的讲解和练习,引导学生逐步掌握数列极限和导数的求解方法。
极限和导数拓展讲义
极限和导数并指导相对于本讲义编写的目的是对于高中物理中常用的微积分知识做一个相对体系的介绍,同学在实际的物理情景中应用。
讲义在内容上注重讲清数学知识的概念与思维方式, 野蛮的“摔公式”教学方法,同学们能一定程度上领略微积分的奇妙与美感。
本节知识提纲1数列极限:数列极限的定义,数列极限的计算2函数极限:函数极限的定义,物理中极限的使用3导数:导数扩展了物理量的定义。
掌握导数的几何意义,基本求导公式,求导运算法则最后我们一贯的反对学习数学只关心数学公式怎么使用的态度,这种情况在喜欢物理的同学中非常普遍,这种心态的学习在物理上一定也是走不远的。
本讲义实际讲解的是很不严密的,代替不了真正的数学课,建议有兴趣的同学课后阅读提升对于数学的理解。
第一部分数列极限©知识点睛先思考这个问题0.9999IH和1哪个大?纯洁而朴素的想法如下:0.9 <1,0.99 <1,0.999 < 1,所以无限循环小数0.9999川小于1。
然而事实并非如此。
令x =0.9999||],则有:10x 9.9999 川x =0. 9 9 9)9相减得到:9x=9所以x =1 =0.9999 川为了解释这样的事情,我们做如下分析,构造数列a n:內=0.99 (9)n显然数列里面的每一项都是小于1的。
但是0.99991 H并不在这个数列中。
因为数列里面每一项都是有限小数,0.9999川是无限小数。
当项数n不断增大的时候a n不断靠近0.9999川,却一直不等于0.9999川。
我们这样定义数列的极限:如果存在一个实数p使得:对于任意的实数;・0,都存在一个整数n,使得对于任意m・n , |a m-p|:::;,那么就叫p是数列a n的极限,记作p-lim a n。
否则叫数列a n没有极限。
可以这样形象地理解这个定义:当n很大的时候,a n与p要多靠近就有多靠近;n越大,a n与p就越靠近。
但是并不要求a n要等于p。
《高等数学》第一章函数与极限第二节 数列的极限
所失矣”
——(魏晋)刘徽
5
第1 章 函数与极限
1.2 数列的极限
正六边形的面积 A1 正十二边形的面积 A2
n 1
R
正62
形的面积 An
A1 , A2 , A3 ,, An ,
S
刘徽从圆内接正六边形开始,逐次边数加倍到 正3072边形得到圆周率 的近似值为3.1416
6
第1 章 函数与极限
第1 章 函数与极限
1.2 数列的极限
三、数列极限的定义
定义 已知数列 xn , A是一个常数. 如果当n无限增大时,
也称数列 xn收敛于A.
记作
n
xn无限接近于A, 则称当n 时, 数列 xn的极限为A,
lim xn A 或 xn A (n )
说明 这是数列极限的描述性定义。按照定义,通过观察
n n
证
任给 0,
lim xn a ,
n
N 使得当n N时, 恒有 xn a ,
从而有
n
xn a
xn a xn a
xn a a
a
故 lim xn a .
23
第1 章 函数与极限
1.2 数列的极限
四、极限存在的两个准则 准则Ⅰ 夹逼准则
如果数列 xn, yn , zn 满足条件:
(1) xn yn zn ( n 1, 2, 3 ) (2) lim xn A, lim zn A
n n
yn A 那么数列 yn 收敛, 且 lim n
24
第1 章 函数与极限
1.2 数列的极限
1 1 1 1 1 1 xn 2 2 1 2 2 3 nn 1 2! 3! n! 1 1 1 1 1 1 2 1 3 3. 2 2 3 n1 n n
专题10:数列的极限与函数的导数word资料7页
专题十:数列的极限与函数的导数瓶窑中学 童国才【考点审视】极限与导数作为初等数学与高等数学的衔接点,新课程卷每年必考,主要考查极限与导数的求法及简单应用。
纵观近年来的全国卷与各省市的试卷,试题呈“一小一大”的布局,“小题”在选择、填空题中出现时,都属容易题;“大题”在解答题中出现时,极限通常与其它数学内容联系而构成组合题,主要考查极限思想与方法的灵活应用能力;导数的考查常给出一个含参的函数或应用建模,通过求导、分析函数的单调性与最值,考查“数形结合”、“分类讨论”等数学思想方法的综合运用能力。
从2019年各地的高考试卷看,考生在备考时,应从下列考点夯实基础,做到以不变应万变:(1)从数列或函数的变化趋势了解极限概念,理解三个基本极限: 1)c c c n (lim =∞→是常数),2)01lim=∞→nn ,3)∞→n lim )1|(|0<=q q n .(2)明确极限四则运算法则的适用条件与范围,会求某些数列和函数的极限。
(3)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值。
(4)了解导数的概念,掌握函数在一点处的导数定义,理解导函数的概念。
(5)熟记八个基本导数公式,掌握求导的四则运算法则,理解复合函数的求导法则,会求简单函数的导数。
(6)掌握导数的几何意义与物理意义,理解可导函数的单调性、极值与导数的关系,强化用导数解决实际问题的能力。
【疑难点拨】:1,极限的四则运算法则,只有当两数列或两函数各自都有极限时才能适用。
对00、∞∞、∞-∞、∞∙0型的函数或数列的极限,一般要先变形或化简再运用法则求极限。
例如(2019年辽宁,14)πππ--→x x x x cos )(lim=【分析】这是00型,需因式分解将分母中的零因子消去,故πππ--→x x x x cos )(lim=x x x cos )(lim ππ+→=π2-。
2,极限的运算法则仅可以推广到有限个数列或函数,对于无穷项的和或积必须先求和或积再求极限;商的极限法则,必须分母的极限不为零时才适用。
高考(理科)导数的定义,极限,几何意义应用以及导数的综合应用(以2011年高考题为例题讲解经典)
导数及其应用(理)(一)导数导数的基本知识点:(一).极限的基础知识:1.特殊数列的极限(1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 .(3)()111lim11nn a q a S qq→∞-==--(S 无穷等比数列}{11n a q - (||1q <)的和).2. 函数的极限定理lim ()x x f x a →=⇔0lim ()lim ()x x x x f x f x a -+→→==.3.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x 0的附近满足:(1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则0lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立.4.几个常用极限 (1)1lim0n n →∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →=.5.两个重要的极限(1)0sin lim1x x x →=; (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…). 6.函数极限的四则运算法则若0lim ()x x f x a →=,0lim ()x x g x b →=,则(1)()()0lim x x f x g x a b →±=±⎡⎤⎣⎦; (2)()()0lim x x f x g x a b →⋅=⋅⎡⎤⎣⎦; (3)()()()0lim0x x f x ab g x b→=≠. 7.数列极限的四则运算法则 若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±; (2)()lim n n n a b a b →∞⋅=⋅;(3)()lim0n n na ab b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞⋅=⋅=⋅( c 是常数).基本方法和数学思想1.数列极限(1)掌握数列极限的直观描述性定义;(2)掌握数列极限的四则运算法则,注意其适用条件:一是数列{a n }{b n }的极限都存在;二是仅适用于有限个数列的和、差、积、商,对于无限个数列的和(或积),应先求和(或积),再求极限;(3)常用的几个数列极限:C C n =∞→lim (C 为常数);01lim=∞→nn ,0lim =∞→n n q (a <1,q为常数); (4)无穷递缩等比数列各项和公式qa S S nn -==∞→1lim 1(0<1<q )2.函数的极限:(1)当x 趋向于无穷大时,函数的极限为a a x f x f n n ==⇔-∞→+∞→)(lim )(lim(2)当0x x →时函数的极限为a a x f x f x x x x ==⇔+-→→)(lim )(lim 0: (3)掌握函数极限的四则运算法则;3..函数的连续性:(1)如果对函数f(x)在点x=x 0处及其附近有定义,而且还有)()(lim 00x f x f x x =→,就说函数f(x)在点x 0处连续;(2)若f(x)与g(x)都在点x 0处连续,则f(x)±g(x),f(x)g(x),)()(x g x f (g(x)≠0)也在点x 0处连续;(3)若u(x)在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处也连续;4..初等函数的连续性:①指数函数、对数函数、三角函数等都属于基初等函数,基本初等函数在定义域内每一点处都连续;②基本初等函数及常数函数经有限次四则运算和复合后所得到的函数,都是初等函数.初等函数在定义域内每一点处都连续;③连续函数的极限运算:如果函数在点x 0处有极限,那么)()(lim 00x f x f x x =→(二)导数的定义:1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy ∆∆的 ,即)(x f '= = .2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法(1) 八个基本求导公式)('C = ; )('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a = )(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u = ])(['x Cf = )('uv = ,)('vu = )0(≠v (3) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u x u y y '⋅'='.例题讲解:求极限的方法1.约去零因子求极限例1:求极限11lim 41--→x x x2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m mm n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x例4、(1)1lim2n a n n a ∞++=+→,则a =例5、)已知函数f(x)= 23(0(0x x a x +≠⎧⎨=⎩当时)当时) ,点在x=0处连续,则2221lim x an a n n →∞+=+ .例6、(2007湖北理)已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→A .0B .1C .pqD .11p q --练习:极限及其运算1.(1)5lim(7)10n n →∞-= ;(2)1lim n n n →∞+= ;(3)2(1)lim (1)n n nn →∞-+= ;(4)1lim ()2x x +→∞= ;(5)21lim()2x x →= ;(6)2211lim 21x x x x →---= ;(7) 24lim()1n n n n →∞--+= ;(8)32lim 32n n n n n →∞+-=;(9)1x →= ;(10)lim )x x +→∞= ;(11)111lim[(1)(1)(1)]23n n n→∞--⋅⋅⋅-= .2.设函数1(0)()0(0)1(0)x x f x x x x +>⎧⎪==⎨⎪-<⎩,则0lim()x f x +→= ; 0lim ()x f x -→= ; 0lim ()x f x →= . 3.已知0a >,则1lim 1n n a →∞+= ;lim 1nnn a a →∞+= .4.下列说法正确的是 A,若()f x =,则lim ()0x f x →∞=; B若()f x 则1lim ()0x f x →=; C 若22()2x x f x x +=+,则2lim ()2x f x →-=-;D,若0)()1(0)x f x x x ≥=+<⎪⎩,则0lim ()0x f x →=.5.下列函数在1x =处没有极限的是A,32()1x x f x x -=- B,3()21g x x =+C,2(1)()0(1)x x h x x ≥⎧=⎨<⎩ D,1(1)()1(1)x x v x x x ->⎧=⎨-+<⎩导数的几何意义应用:一、知识点:1. 函数)(x f y =在点0x 处的导数的几何意义是________________________________.2. 若函数)(x f y =在点0x 处的导数存在,则它所对应的曲线上点))(,(00x f x 处的切线方程是___________________________.3.曲线423+-=x x y 在点(1,3)处的切线的倾斜角为_______.4.曲线12++=x xe y x 在点(0,1)处的切线方程是_______________________.5.曲线2-=x xy 在点1=x 处的切线方程是______________________________. 例题:1.已知函数ax x x f +=32)(与c bx x g +=2)(的图像都过点P(2,0),且在点P 处有相同的切线。
新课标下的高中数列极限以及导数
新课标下的高中数列极限以及导数下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!新课标下的高中数列极限以及导数引言随着新课标的推出,高中数学教学迎来了一场革命性的变革。
高中书数列的常考知识点:函数的极值与导数的关系
高中书数列的常考知识点:函数的极值与导数的关系极值的定义: (1) 极大值:通常情况下,假设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x) (2) 极小值:通常情况下,假设函数f(x)在x0附近有定义,如果对x0附近的所有点,都有f(x) > f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值 = f(x0),其中x0是极小值点。
极值的某质: (1) 极值是一个局部概念,根据定义可知,极值仅仅是某点的函数值与其附近点的函数值比较中最大或最小的情况,不代表在整个函数定义域内最大或最小; (2) 函数的极值不是唯一的,即在某区间或整个定义域内,一个函数可能有不止一个极大值或极小值; (3) 极大值与极小值之间没有确定的大小关系,即一个函数的极大值未必大于极小值; (4) 函数的极值点一定出现在区间的内部,而区间的端点不可能是极值点。
而使函数取得最大值或最小值的点可能在区间内部,也可能在区间的端点。
求函数f(x)的极值的步骤: (1) 确定函数的定义区间,并求导数f′(x); (2) 解方程f′(x)=0,找出导数为0的根; (3) 将函数的定义区间根据导数为0的点分割成若干小开区间,并列成表格。
检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,即都为正或都为负,则f(x)在这个根处无极值。
第2篇:高中数学知识点:函数的极值与导数的关系数学是各门学科的基础,下面小编为大家带来了函数的极值与导数的关系,希望能够帮助到大家。
极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
高数第二章极限知识点(精选3篇)
高数第二章极限知识点(精选3篇)以下是网友分享的关于高数第二章极限知识点的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一:高中数学知识点总结第十三、四章极限与导数高中数学第十三章-极限考试内容:教学归纳法.数学归纳法应用.数列的极限.函数的极限.根限的四则运算.函数的连续性.考试要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(2)了解数列极限和函数极限的概念.(3)掌握极限的四则运算法则;会求某些数列与函数的极限.(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.§13. 极限知识要点1. ⑴第一数学归纳法:①证明当n 取第一个n 0时结论正确;②假设当n =k (k ∈N +, k ≥n 0)时,结论正确,证明当n =k +1时,结论成立.⑵第二数学归纳法:设P (n ) 是一个与正整数n 有关的命题,如果①当n =n 0(n 0∈N +)时,P (n ) 成立;②假设当n ≤k (k ∈N +, k ≥n 0)时,P (n ) 成立,推得n =k +1时,P (n ) 也成立. 那么,根据①②对一切自然数n ≥n 0时,P (n ) 都成立. 2. ⑴数列极限的表示方法:①lim a n =an →∞②当n →∞时,a n →a . ⑵几个常用极限:①lim C =C (C 为常数)n →∞②limn →∞1nk=0(k ∈N , k 是常数)③对于任意实常数,当|a | 1时,lim a n =0n →∞当a =1时,若a = 1,则lim a n =1;若a =-1,则lim a n =lim (-1) n 不存在n →∞n →∞n →∞当a 1时,lim a n 不存在n →∞⑶数列极限的四则运算法则:如果lim a n =a , lim b b =b ,那么n →∞n →∞①lim (a n ±b n ) =a ±bn →∞②lim (a n ⋅b n ) =a ⋅bn →∞③lima n a=(b ≠0)n →∞b n b特别地,如果C 是常数,那么n →∞lim (C ⋅a n ) =lim C ⋅lim a n =Ca .n →∞n →∞⑷数列极限的应用:求无穷数列的各项和,特别地,当q 1时,无穷等比数列的各项和为S =a 1(q 1) . 1-q(化循环小数为分数方法同上式)注:并不是每一个无穷数列都有极限. 3. 函数极限;⑴当自变量x 无限趋近于常数x 0(但不等于x 0)时,如果函数f (x ) 无限趋进于一个常数a ,就是说当x 趋近于x 0时,函数f (x ) 的极限为a . 记作lim f (x ) =a 或当x →x 0时,f (x ) →a .x →x 0注:当x →x 0时,f (x ) 是否存在极限与f (x ) 在x 0处是否定义无关,因为x →x 0并不要求x =x 0. (当然,f (x ) 在x 0是否有定义也与f (x ) 在x 0处是否存在极限无关. ⇒函数f (x ) 在x 0有定义是lim f (x ) 存在的既不充分又不必要条件. )x →x 0如P (x ) =⎨⎧x -1x 1在x =1处无定义,但lim P (x ) 存在,因为在x =1处左右极限均等于零.x →1⎩-x +1x 1⑵函数极限的四则运算法则:如果lim f (x ) =a , lim g (x ) =b ,那么x →x 0x →x 0①lim (f (x ) ±g (x )) =a ±bx →x 0②lim (f (x ) ⋅g (x )) =a ⋅bx →x 0③limx →x 0f (x ) a=(b ≠0) g (x ) b特别地,如果C 是常数,那么x →x 0lim (C ⋅f (x )) =C lim f (x ) .x →x 0x →x 0lim [f (x )]n =[lim f (x )]n (n ∈N +)x →x 0注:①各个函数的极限都应存在.②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. ⑶几个常用极限:1①lim =0 n →∞x ②lim a x =0(0<a <1);lim a x =0(a >1)x →+∞x →-∞③limsin x x=1⇒lim =1x →0x x →0sin x1④lim (1+) x =e ,lim (1+x ) x =e (e =2. 71828183)x →0x →∞x14. 函数的连续性:⑴如果函数f (x ),g (x )在某一点x =x 0连续,那么函数f (x ) ±g (x ), f (x ) ⋅g (x ), 在点x =x 0处都连续.⑵函数f (x )在点x =x 0处连续必须满足三个条件:①函数f (x )在点x =x 0处有定义;②lim f (x ) 存在;③函数f (x )在点x =x 0处的极限值x →x 0f (x )(g (x ) ≠0) g (x )等于该点的函数值,即lim f (x ) =f (x 0) .x →x 0⑶函数f (x )在点x =x 0处不连续(间断)的判定:如果函数f (x )在点x =x 0处有下列三种情况之一时,则称x 0为函数f (x )的不连续点. ①f (x )在点x =x 0处没有定义,即f (x 0) 不存在;②lim f (x ) 不存在;③lim f (x ) 存在,x →x 0x →x 0但lim f (x ) ≠f (x 0) .x →x 05. 零点定理,介值定理,夹逼定理:⑴零点定理:设函数f (x )在闭区间[a , b ]上连续,且f (a ) ⋅f (b ) 0. 那么在开区间(a , b ) 内至少有函数f (x ) 的一个零点,即至少有一点ξ(a <ξ<b )使f (ξ) =0.⑵介值定理:设函数f (x ) 在闭区间[a , b ]上连续,且在这区间的端点取不同函数值,f (a ) =A , f (b ) =B ,那么对于A , B 之间任意的一个数C ,在开区间(a , b ) 内至少有一点ξ,使得f (ξ) =C (a <ξ<b ).⑶夹逼定理:设当0 |x -x 0| δ时,有g (x ) ≤f (x ) ≤h (x ) ,且lim g (x ) =lim h (x ) =A ,则x →x 0x →x 0必有lim f (x ) =A .x →x 0注:|x -x 0|:表示以x 0为的极限,则|x -x 0|就无限趋近于零. (ξ为最小整数) 6. 几个常用极限:①lim q n =0, q 1 n →+∞a n=0(a 0) ②limn →+∞n !③limn k ann →+∞=0(a 1, k 为常数)④lim ⑤limln n=0n →+∞n(lnn ) k n εn →+∞=0(ε 0, k 为常数)高中数学第十四章导数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数) 、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.§14. 导数知识要点1. 导数(导函数的简称)的定义:设x 0是函数y =f (x ) 定义域的一点,如果自变量x 在x 0处有增量∆x ,则函数值y 也引起相应的增量∆y =f (x 0+∆x ) -f (x 0) ;比值∆y f (x 0+∆x ) -f (x 0)称为函数y =f (x ) 在点x 0到x 0+∆x 之间的平均变化率;如果极限=∆x ∆x f (x 0+∆x ) -f (x 0) ∆y存在,则称函数y =f (x ) 在点x 0处可导,并把这个极限叫做=lim∆x →0∆x ∆x →0∆x limy =f (x ) 在x 0处的导数,记作f … (x 0) 或y … |x =x 0,即f … (x 0) =lim注:①∆x 是增量,我们也称为“改变量”,因为∆x 可正,可负,但不为零.②以知函数y =f (x ) 定义域为A ,y =f … (x ) 的定义域为B ,则A 与B 关系为A ⊇B . 2. 函数y =f (x ) 在点x 0处连续与点x 0处可导的关系:⑴函数y =f (x ) 在点x 0处连续是y =f (x ) 在点x 0处可导的必要不充分条件. 可以证明,如果y =f (x ) 在点x 0处可导,那么y =f (x ) 点x 0处连续. 事实上,令x =x 0+∆x ,则x →x 0相当于∆x →0.于是lim f (x ) =lim f (x 0+∆x ) =lim [f (x +x 0) -f (x 0) +f (x 0)]x →x 0∆x →0∆x →0f (x 0+∆x ) -f (x 0) ∆y. =lim∆x →0∆x ∆x →0∆xf (x 0+∆x ) -f (x 0) f (x 0+∆x ) -f (x 0)⋅∆x +f (x 0)]=lim ⋅lim +lim f (x 0) =f … (x 0) ⋅0+f (x 0) =f (x 0).∆x →0∆x →0∆x →0∆x →0∆x ∆x⑵如果y =f (x ) 点x 0处连续,那么y =f (x ) 在点x 0处可导,是不成立的. =lim [例:f (x ) =|x |在点x 0=0处连续,但在点x 0=0处不可导,因为∆y ∆y ∆y不存在. =1;当∆x <0时,=-1,故lim∆x →0∆x ∆x ∆x∆y |∆x |,当∆x >0时,=∆x ∆x注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义:函数y =f (x ) 在点x 0处的导数的几何意义就是曲线y =f (x ) 在点(x 0, f (x )) 处的切线的斜率,也就是说,曲线y =f (x ) 在点P (x 0, f (x )) 处的切线的斜率是f … (x 0) ,切线方程为y -y 0=f … (x )(x -x 0).4. 求导数的四则运算法则:(u ±v ) … =u … ±v … ⇒y =f 1(x ) +f 2(x ) +... +f n (x ) ⇒y … =f 1‟ (x ) +f 2‟ (x ) +... +f n … (x )(uv ) … =vu … +v … u ⇒(cv ) … =c … v +cv … =cv … (c 为常数)vu … -v … u ⎛u ⎫(v ≠0) ⎪=v 2⎝v ⎭…注:①u , v 必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.22例如:设f (x ) =2sin x +,g (x ) =cos x -,则f (x ), g (x ) 在x =0处均不可导,但它们和x xf (x ) +g (x ) =sin x +cos x 在x =0处均可导.5. 复合函数的求导法则:f x … (ϕ(x )) =f … (u ) ϕ‟ (x ) 或y … x =y … u ⋅u … x 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数y =f (x ) 在某个区间内可导,如果f … (x ) >0,则y =f (x ) 为增函数;如果f … (x ) <0,则y =f (x ) 为减函数. ⑵常数的判定方法;如果函数y =f (x ) 在区间I 内恒有f … (x ) =0,则y =f (x ) 为常数.注:①f (x ) 0是f (x )递增的充分条件,但不是必要条件,如y =2x 3在(-∞, +∞) 上并不是都有f (x ) 0,有一个点例外即x =0时f (x )= 0,同样f (x ) 0是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么 f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在x 0附近所有的点,都有f (x ) <f (x 0) ,则f (x 0) 是函数f (x ) 的极大值,极小值同理)当函数f (x ) 在点x 0处连续时,①如果在x 0附近的左侧f … (x ) >0,右侧f … (x ) <0,那么f (x 0) 是极大值;②如果在x 0附近的左侧f … (x ) <0,右侧f … (x ) >0,那么f (x 0) 是极小值.也就是说x 0是极值点的充分条件是x 0点两侧导数异号,而不是f … (x ) =0. 此外,函数不①可导的点也可能是函数的极值点. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).②注①:若点x 0是可导函数f (x ) 的极值点,则f … (x ) =0. 但反过来不一定成立. 对于可导函数,其一点x 0是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数y =f (x ) =x 3,x =0使f … (x ) =0,但x =0不是极值点.②例如:函数y =f (x ) =|x |,在点x =0处不可导,但点x =0是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:…I. C … =0(C 为常数)(sinx ) =cos x (arcsinx ) =…1-x2(x n ) … =nx n -1(n ∈R )(cosx ) … =-sin x (arccosx ) … =- 1-x2II. (lnx ) … =1‟ 11(loga x ) … =log a e (arctanx ) =2 x x x +11x 2+1(e x ) … =e x (a x ) … =a x ln a (arc cot x ) … =-III. 求导的常见方法:①常用结论:(ln|x |)‟ =1. x②形如y =(x -a 1)(x -a 2)...(x -a n ) 或y =求代数和形式. (x -a 1)(x -a 2)...(x -a n )两边同取自然对数,可转化(x -b 1)(x -b 2)...(x -b n )③无理函数或形如y =x x 这类函数,如y =x x 取自然对数之后可变形为ln y =x ln x ,对两边y (1)求导可得=ln x +x ⋅⇒y … =y ln x +y ⇒y … =x x ln x +x x . y x篇二:高等数学(同济五版)第一章函数与极限知识点第一章函数与极限一、对于函数概念要注意以下几点:(1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】 数列 是首项为 ,公比是 的等比数列,∴ = = ,解得 =2。
4,当且仅当 时, , 时 可有定义也可无定义。例如下列命题正确的是……………………………………………()
)。(Ⅰ)用 和 表示 ;(Ⅱ)当 时,
求 的值;(Ⅲ)在(Ⅱ)的条件下,求 的取值范围。
【例5】过点(2,0),求与曲线 相切的直线方程。
【例6】(2004全国卷二,22)已知函数 , 。
(Ⅰ)求函数 的最大值;
(Ⅱ)设 ,证明 。
【例7】(2004广东卷,21)设函数 = ,其中常数 为整数。
(Ⅰ)当 为何值时, ;
12、 ,则 ;
13、已知 是 的一个三次多项式,若 = =1,
则 =
14、如图, 是一块半径为1的半圆形纸板,在 的左下端剪去一个半径为 的半圆后得图形 ,然后剪去更小的半圆(其直径为前一被剪掉半圆的半径)得图形 , ,……, ,……,记纸板 的面积为 ,则 =
(Ⅱ)定理:若函数 在[ ]上连续,且 与 异号,则至少存在一点 使 。试用上述定理证明:当整数 时,方程 =0,在[ ]内有两个实根。
【例8】溶液自深18 ,顶直径12 的圆锥形漏斗中漏入一直径为10 的圆柱形容器中,开始时漏斗中盛满水,已知当溶液在漏斗中之深为12 时,其水平下落的速度为1 ∕ ,问此时圆柱形容器中水面上升的速度是多少?
( )0 1 -1;
6、设 是函数 的导函数, 的图象如图所示,则 的图象最有可能的是…………………………………………………………………( )
(A) (B) (C) (D)
7、函数 有极值的充要条件是……………………………( )
( ) ( )
8、(2004江苏卷,10)函数 在区间[-3,0]上的最大值、最小值分别是………………………………………………………………………………( )
(6)掌握导数的几何意义与物理意义,理解可导函数的单调性、极值与导数的关系,强化用导数解决实际问题的能力。
【疑难点拨】:1,极限的四则运算法则,只有当两数列或两函数各自都有极限时才能适用。对 、 、 、 型的函数或数列的极限,一般要先变形或化简再运用法则求极限。例如(2004年辽宁,14) =
【分析】这是 型,需因式分解将分母中的零因子消去,故
专题:数列的极限与函数的导数
———————————————————————————————— 作者:
———————————————————————————————— 日期:
专题十:数列的极限与函数的导数
瓶窑中学 童国才
【考点审视】
极限与导数作为初等数学与高等数学的衔接点,新课程卷每年必考,主要考查极限与导数的求法及简单应用。纵观近年来的全国卷与各省市的试卷,试题呈“一小一大”的布局,“小题”在选择、填空题中出现时,都属容易题;“大题”在解答题中出现时,极限通常与其它数学内容联系而构成组合题,主要考查极限思想与方法的灵活应用能力;导数的考查常给出一个含参的函数或应用建模,通过求导、分析函数的单调性与最值,考查“数形结合”、“分类讨论”等数学思想方法的综合运用能力。从2004年各地的高考试卷看,考生在备考时,应从下列考点夯实基础,做到以不变应万变:
【经典题例】
【例1】求下列数列的极限:
(1) ;(2) ( );
(3) ;
(4)已知 ,数列{ }满足 ,若{ }的极限存在且大于零,求 的值。
【例2】求下列函数的极限:
(1) (2)
(3) (4)
【例3】求下列函数的导函数:
(1) = ;(2) = ;
(3) = ;(4)已知 = ,求 。
【例4】设 ( ), ( +
= = 。
2,极限的运算法则仅可以推广到有限个数列或函数,对于无穷项的和或积必须先求和或积再求极限;商的极限法则,必须分母的极限不为零时才适用。例如:
(2004年广东,4) …+ )的值为…()
( )-1( )0( ) ( )1
【分-1,故选 。
【分析】 ,
∴ 在( , )处的导数不存在。
7,导数的求法要熟练、准确,须明确(1)先化简,再求导,(2)复合函数灵活处理,(3)有时要回到定义中求导。
8,导数的几何意义是曲线切线的斜率,物理意义是因变量对自变量的变化率。导数的应用应尽可能全面、深入,注重掌握以下几方面的问题:曲线切线方程的求法、函数单调性与函数作图、函数极值与最值求法、有关方程与不等式问题、有关近似计算问题、实际应用题。
(1)从数列或函数的变化趋势了解极限概念,理解三个基本极限:
1) 是常数),2) ,3) .
(2)明确极限四则运算法则的适用条件与范围,会求某些数列和函数的极限。
(3)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值。
(4)了解导数的概念,掌握函数在一点处的导数定义,理解导函数的概念。
(5)熟记八个基本导数公式,掌握求导的四则运算法则,理解复合函数的求导法则,会求简单函数的导数。
( )若 ,则 , 若 ,则 , 若 ,则 ,(D)若 ,则 。
【分析】 ( )中 无定义,( )中 无定义,而(D) , ,故 是正确的。
5,函数 在 处连续是指 ,注意:有极限是连续的必要条件,连续是有极限的充分条件。
6,导数的概念要能紧扣定义,用模型解释,记住典型反例。例如 在( , )处的导数存在吗?为什么?
【热身冲刺】
一、选择题:
1、下列数列极限为1的是…………………………………………………………( ) ; ;
; 。
2、已知 ,则常数 的值为…………………………………( )
( ) ;
3、 ]的值是………………………………………………( )
不存在;
4、若 在点 处连续,则 ( )
5、若 为偶函数,且 存在,则 ……………………( )
(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-19
9、 、 分别是定义 上的奇函数和偶函数。当 时, ,且 ,则不等式 的解集是( )
( )(-3,0) (3, )
( )
10、三次函数 = 在[1,2]内恒为正值的充要条件为…………( )
( ) ;
二、填空题:
11、曲线 与 在交点处的切线夹角是(以弧度数作答);