怎样判断一元二次方程

合集下载

解一元二次方程——一元二次方程的根的判别式

解一元二次方程——一元二次方程的根的判别式
或方程有实数根;
2
当 − 4 < 0 时,方程没有实数根.
课后作业
1 利用判别式判断下列方程的根的情况.
3
2
2
1 2 − 3 − = 0,
2
3 − 4 2 + 9 = 0,
2
9
2
2 16 − 24 + = 0,
2
2
4 3 + 10 = 2 + 8.
2 在不解方程的情况下,判断关于 的一元二次方程
3 + 2 = − 2 2 − 1 +
2
4 + 2 2�� + 6 = 0.
9

2
3 + 2 = − 2 2 − 1 +
9

2
2
解: 化方程为 4 − 12 + 9 = 0.
= 4, = −12, = 9.
2
= − 4
2
= (−12) − 4 × 4 × 9

+ = 0.
移项,得
2

=−

.

2

+



=−

.

配方,得
2

+



+

2

+
2
2
2


=− +
2
− 4
=
.
2
4
2

,
2
2

+
2
2
− 4
=
.

一元二次方程根的判别式及韦达定理常见题型及注意事项

一元二次方程根的判别式及韦达定理常见题型及注意事项

一元二次方程根的判别式及韦达定理常见题型及注意事项一、一元二次方程跟的判别式的常见题型 题型1:不解方程,判断一元二次方程根的情况.6232)3(;0123)2(;0345)1(222x x x x x x =+=++=--题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。

题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.( 2011·重庆)已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )<2 B,a >2 <2且a ≠1 <-2·变式1:(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5变式2:(2010 ·成都)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数....值.变式3:已知关于x 的一元二次方程(12)10k x --=有两个实数根,求k 的取值范围二、一元二次方程根与系数的关系------韦达定理的常见题型 题型1:已知一元二次方程的一根,求另一根及未知系数k 的值已知2-是方程210x kx ++=的一根,则方程的另一根是 ,k = 。

题型2:求与一元二次方程根有关的代数式的值;1. 已知12,x x 是方程22430x x --=的两根,计算: (1)2212x x +; ⑵1211x x +;⑶212()x x -变式:已知,a b 是方程2201230x x -+=的两实根,求22(20103)(20103)a a b b -+-+的值题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于x 的一元二次方程22(21)10x k x k +-+-=的两个实根的平方和等于9,求k 的值变式1: (2011·荆州)关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 2变式2:(2010·中山)已知一元二次方程022=+-m x x .(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为1x ,2x ,且1x +32x =3,求m 的值。

一元二次方程的根的判别式

一元二次方程的根的判别式

一元二次方程的根的判别式Ting Bao was revised on January 6, 20021一元二次方程的根的判别式学习指导一、基本知识点:1.根的判别式:对于任何一个一元二次方程ax2+bx+c=0(a≠0)可以用配方法将其变形为:(x+)2=因为a≠0,所以4a2>0,这样一元二次方程ax2+bx+c=0的根的情况可由b2-4ac来判定。

我们把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,用希腊字母⊿来表示,即⊿=b2-4ac。

一元二次方程ax2+bx+c=0(a≠0),当⊿=b2-4ac>0时,有两个不相等的实数根;当⊿=b2-4ac=0时,有两个相等的实数根;当⊿=b2-4ac<0时,没有实数根。

上述性质反过来也成立。

2.判别式的应用(1)不解方程,判断方程的根的情况;(2)根据方程的根情况确定方程的待定系数的取值范围;(3)证明方程的根的性质;(4)运用于解综合题。

二、重点与难点一元二次方程的根的判别式的性质是初中数学中的一个重要内容,在高中数学中也有重要应用。

正确理解判别式的性质,熟练灵活地运用它,是本节的重点,同时也是难点。

三、例题解析例1不解方程,判断下列方程根的情况(1)2x2-5x+10=0(2)16x2-8x+3=0(3)(-)x2-x+=0(4)x2-2kx+4(k-1)=0(k为常数)(5)2x2-(4m-1)x+(m-1)=0(m为常数)(6)4x2+2nx+(n2-2n+5)=0(n为常数)解:(1)⊿=(-5)2-4×2×10=-55<0∴方程没有实数根(2)⊿=(-8)2-4×16×3=0∴方程有两个相等的实数根(3)⊿=(-)2-4(-)×=5-4+8>0∴方程有两个不相等实根(4)⊿=(-2k)2-4×1×4(k-1)=4k2-16k+16=4(k2-4k+4)=4(k-2)2≥0∴方程有实数根(5)⊿=〔-(4m-1)〕2-4×2×(m-1)=16m2-8m+1-8m+8=16m2-16m+9=4(2m-1)2+5>0∴方程有两个不相等实根(6)⊿=(2n)2-4×4(n2-2n+5)=4n2-16n2+32n-80=-12n2+32n-80=-12(n-)2-<0∴方程没有实数根说明:①解这类题目时,一般要先求出⊿=b2-4ac,然后对⊿=b2-4ac进行化简或变形,使⊿=b2-4ac的符号明朗化,进而说明⊿=b2-4ac的符号情况,得出结论。

一元二次方程的解法及判别

一元二次方程的解法及判别

一元二次方程的解法及判别一、一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为2的方程。

一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,且a ≠ 0。

二、一元二次方程的解法1.因式分解法:将一元二次方程进行因式分解,使其变为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。

2.公式法:利用一元二次方程的求根公式(也称二次公式)求解。

求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)。

三、一元二次方程的判别式判别式是用来判断一元二次方程的根的情况的数值。

判别式的公式为:Δ = b^2 - 4ac。

四、判别式的性质与解的情况1.当Δ > 0时,方程有两个不相等的实数根。

2.当Δ = 0时,方程有两个相等的实数根,也称为重根。

3.当Δ < 0时,方程没有实数根,而是有两个共轭的复数根。

五、一元二次方程的解法比较1.因式分解法适用于方程的系数较小,且容易分解的情况。

2.公式法适用于任何形式的一元二次方程,无论系数的大小和是否容易分解。

六、一元二次方程的应用一元二次方程在实际生活中有广泛的应用,如物体的运动轨迹、投资收益、面积计算等方面。

总结:一元二次方程的解法及判别是中学数学中的重要知识点,掌握因式分解法和公式法求解一元二次方程,以及理解判别式的性质和解的情况,对于解决实际问题具有重要意义。

习题及方法:已知一元二次方程x^2 - 5x + 6 = 0,求解该方程。

这是一个一元二次方程,我们可以尝试使用因式分解法来解它。

首先,我们需要找到两个数,它们的乘积等于常数项6,而它们的和等于一次项的系数(-5)。

这两个数是-2和-3。

因此,我们可以将方程重写为:(x - 2)(x - 3) = 0。

根据零因子定律,我们得到x - 2 = 0或x - 3 = 0。

解得x1 = 2,x2 = 3。

给定一元二次方程2x^2 + 5x - 3 = 0,求解该方程。

一元二次方程的定义和根

一元二次方程的定义和根

一元二次方程的定义和根一、一元二次方程的定义和根1、一元二次方程等号两边都是整式,只含有一个未知数(一元)。

并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2、一元二次方程的一般形式一元二次方程的一般形式是$ax^2$+$bx$+$c$=0($a$≠0)。

其中$ax^2$是二次项,$a$是二次项系数;$bx$是一次项,$b$是一次项系数;$c$是常数项。

对于方程$ax^2$+$bx$+$c$=0,只有当$a$≠0时才是一元二次方程。

反过来,如果说$ax^2$+$bx$+$c$=0是一元二次方程,则必须含着$a$≠0这个条件。

3、一元二次方程的根使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。

利用方程的根求待定系数时,只需将方程的根代入原方程,再解关于待定系数的方程。

4、解一元二次方程(1)直接开平方法我们知道如果$x^2$=25,则$x$=$土\sqrt{25}$,即$x$=±5,像这种利用平方根的定义通过直接开平方求一元二次方程的解的方法叫做直接开平方法。

一般地,对于方程$x^2$=$p$,① 当$p$>0时,方程有两个不等的实数根$x_1$=$\sqrt{p}$ ,$x_2$=$-\sqrt{p}$。

② 当$p$=0时,方程有两个相等的实数根$x_1$=$x_2$=0。

③ 当$p$<0时,因为对任意实数$x$ ,都有$x^2\geqslant$0,所以方程无实数根。

(2)配方法通过配成完全平方的形式来解一元二次方程的方法,叫做配方法。

用配方法解方程是以配方为手段,以直接开平方法为基础的一种解一元二次方程的方法。

用配方法解一元二次方程的一般步骤:① 化二次项系数为1。

② 移项:使方程左边为二次项和一次项,右边为常数项。

③ 配方:方程两边都加上一次项系数一半的平方,原方程变为$(x+n)^2$=$p$的形式。

④ 直接开平方:如果右边是非负数,就可用直接开平方法求出方程的解。

人教版九年级数学:一元二次方程知识点总结及基础题型

人教版九年级数学:一元二次方程知识点总结及基础题型

一元二次方程知识点一:一元二次方程的定义等号两边都是整式,只含有一个未知数〔一元〕,并且未知数的最高次数是2〔二次〕的方程叫做一元二次方程,一般形式是),,,0(02为常数c b a a c bx ax ≠=++类型:()()()()⎪⎪⎩⎪⎪⎨⎧≠=++≠=+≠=+≠=000000002222a c bx ax a c ax a bx axa ax ④③②①判断一元二次方程的步骤例1:1.以下方程时一元二次方程的是 ①2032=+x x ;①04322=+-xy x ;①412=-x x ;①02=x ;①0332=+-xx ⑥x 2﹣1=y ⑦〔x+2〕〔x+1〕=x 2 ⑧ 6x 2=5 ⑨⑩2x +3x +y=0 ;⑪ x+y+1=0 ;⑫ 213122+=+x x ; ⑬ 0512=++x x⑭;⑮3y 2﹣2y=﹣1;⑯2x 2﹣5xy+3y 2=0;⑰⑱ 2x 2+3=3;⑲ x 2+5x =0;⑳ x 2+4xy?10=0;① √x +2x =3;① 2x (x −3)=2x 2+1; ① 1x +2x =x?6;① 2x 2+1=12x ;① abx 2+(a +b )x +1=0;① x 2−3√3x +4=0;1.把方程化成一般形式),,,0(02为常数c b a a c bx ax ≠=++2.最高次数=2① px 2+qx +m =0〔p ≠0〕.2.关于x 的方程mx 2+3x=x 2+4是一元二次方程,那么m 应满足条件是 _________ .3.关于x 的一元二次方程ax 2﹣3x+2=0中,a 的取值范围是 _________ .4.当m= _________ 时,方程〔m 2﹣1〕x 2﹣mx+5=0不是一元二次方程.5.假设关于x 的方程〔k ﹣1〕x 2﹣4x ﹣5=0是一元二次方程,那么k 的取值范围是__________ 例2:当=m 时,方程072)1(1=-+-+x x m m 为一元二次方程 6.假设是关于x 的一元二次方程,那么a= _________ .7.假设关于x 的方程〔m ﹣1〕﹣mx ﹣3=0是一元二次方程,那么m= _________ .8.当k= _________ 时,〔k ﹣1〕﹣〔2k ﹣1〕x ﹣3=0是关于x 的一元二次方程.9.方程〔m+2〕x |m|+3mx+1=0是关于x 的一元二次方程,那么m=__________10.关于x 的方程〔m ﹣2〕x |m|﹣mx+1=0是一元二次方程,那么m=___________ 知识点二:一元二次方程的一般形式一元二次方程的一般形式是),,,0(02为常数c b a a c bx ax ≠=++,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项①0≠a ;①指出二次项系数,一次项系数,常数项时,一定要带上前面的符号 ①一元二次方程化为一般形式时,假设没出现一次项bx ,并不是没有,而是0=b 例3: 把方程〔1〕()()1231=+-x x 〔2〕x (x −2)=4x 2−3x 〔3〕(x +8)2=4x +(2x −1)2〔4〕x23−x+12=−x−12化为一般形式,并写出它的二次项系数,一次项系数和常数项1.一元二次方程的二次项系数、一次项系数、常数项分别是_______________ 142=+xx的二次项系数,一次项系数,常数项分别是3.一元二次方程2x-3x = 4的一般形式是,一次项系数为。

一元二次方程的解的判断

一元二次方程的解的判断

一元二次方程的解的判断在数学中,一元二次方程是指形如ax^2+bx+c=0的方程,其中a、b、c是已知常数且a≠0。

解一元二次方程是求出方程的根或解的值,它的判断可以从以下几方面进行。

一、判别式的求解和判断一元二次方程的判断可以通过求解判别式来实现。

判别式是b^2-4ac,其中b、a和c是方程中的系数。

根据判别式的值可以判断方程的解的情况:1. 当判别式大于0时,即b^2-4ac>0,方程有两个不相等的实数根。

2. 当判别式等于0时,即b^2-4ac=0,方程有两个相等的实数根。

3. 当判别式小于0时,即b^2-4ac<0,方程没有实数根,而有两个共轭复数根。

通过判别式的求解和判断,可以清楚地了解一元二次方程的解的情况。

二、求解过程的列示除了通过判别式来判断方程解的情况外,还可以通过求解过程的列示来明确方程的解。

具体的求解过程如下:1. 将方程写成标准形式:ax^2+bx+c=0。

2. 如果a≠0,则将方程两边除以a,将方程化为x^2+(b/a)x+c/a=0。

3. 根据多项式因式分解规则,将方程左边的多项式进行因式分解。

这里需要分情况讨论:a. 如果方程可以写成完全平方的形式,即(x+a)^2=0,则解得x=-a。

b. 如果方程不能写成完全平方的形式,则需要使用配方法或求根公式对方程进行求解。

这里需要涉及一些数学知识和运算规则,具体的求解过程可以通过配方法或求根公式来完成。

4. 根据具体的求解过程,得到方程的解。

三、实际问题的应用一元二次方程的解不仅在数学中有重要的应用,在实际问题中也有广泛的应用。

例如,在物理学中,一元二次方程可用于描述自由落体运动、抛体运动等;在经济学中,一元二次方程可用于描述成本函数、收入函数等。

因此,通过解一元二次方程可以更加深入地理解和解决实际问题。

总之,一元二次方程的解的判断可以通过判别式的求解和判断来实现,同时也可以通过求解过程的列示来明确方程的解。

解一元二次方程不仅在数学中有重要的应用,同时也在实际问题中有广泛的应用。

-一元二次方程的解法(全)

-一元二次方程的解法(全)
2 2 2 配方,得x 4 x 3 1 1. 2 3 5 32 5 2 xx 1. x .所以 2) 即x 即 4x 4 1. 所以( 2 4 2 2 所以x 2 1或x 2 1. 3 5 所以 x 所以x1 3或 x2 2 1. 2 . 3 5 3 5 即x1 ,x1 . 2 2
2
此方程无解。
方程
ax c 0 a 0 一定有解吗?
2
2
c a0 x a ;
1当
c a
0时,方程的根是 x ;
c a
2当
c a
0时,原方程无实数根。
2 2
提问:下列方程有解吗?
(1) x 4 3; (2) 3x 1 3;
2
可见,上面的 2 x 4 实际 上就是求4的平 方根。
x 4 x 2 x1 2 ; x2 2
以上解某些一元二次方程的方法叫 做直接开平方法。
初试锋芒
用直接开平方法解下列方程:
(1) y 121 0 ;
2
将方程化成
(2) x 2 0 (3)
2
x b
2
(b≥0)的形 式,再求解
归纳 小结
用直接开平方法可解下列类型 的一元二次方程:
x b b 0 或
2
x a
2
b b 0 .
根据平方根的定义,要特别注意: 由于负数没有平方根, 所以,当b<0时,原方程无解。
(第2课时)
知识回顾
用直接开平方法可解下列类型的一元二次方程:
x b b 0 或
共同回顾:一元二次方程
只含有一个未知数,并且未知数的最 高次数是2的整式方程叫做一元二次方程。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
一元二次方程根的判别式、Байду номын сангаас根与系数的关系
一元二次方程根的判别式
一元二次方程根的判别式是一个比较重要的知识点,它的应用很广泛,既可以 用来判断一元二次方程根的情况,还是后续知识点的基础和准备。另一方面, 根的判别式也能独立形成综合题。
一元二次方程ax 2+bx+c=0(a≠0)的判别式:△=b 2-4ac
△>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. △≥0方程有两个实数根.
上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
; https:///product-selection/pushbutton/ 超小型按动开关 ; https:///product-selection/dip/ ck拨码开关 ; https:///contact-us/ ck开关代理商
分析:①方程有一个根是-1,需将x=-1代入原方程 ②方程有两个相等的实根,既△=0
例3:当m为何值时,方程(m-1)x²+2mx+m+3=0
①﹑无实根 ②﹑有实根
③﹑只有一个实根
④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析 (1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 ② △≥0 且m-1≠0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0

一根普通的老茅草,也不知是红色还是绿色。”作者为什么要

初中数学 如何通过一元二次方程的系数判断其解的情况

初中数学  如何通过一元二次方程的系数判断其解的情况

初中数学如何通过一元二次方程的系数判断其解的情况通过一元二次方程的系数可以判断方程的解的情况。

在一元二次方程ax^2 + bx + c = 0中,系数a、b、c的值可以提供关于方程根的重要信息。

接下来,我们将详细讨论通过一元二次方程的系数判断其解的情况的方法。

1. 判别式的计算:一元二次方程的判别式是通过方程的系数a、b、c计算得出的。

判别式的表达式为Δ = b^2 -4ac。

判别式的值可以提供方程根的性质和个数的信息。

2. 判别式大于0的情况(Δ > 0):当判别式大于0时,方程有两个不相等的实根。

这意味着方程对应的抛物线与x轴相交于两个不同的点。

具体而言,如果Δ > 0,则方程有两个实根x1和x2,其中x1 = (-b + √Δ) / (2a),x2 = (-b - √Δ) / (2a)。

例如,考虑方程x^2 - 4x + 3 = 0,判别式Δ = (-4)^2 - 4(1)(3) = 16 - 12 = 4 > 0。

因此,方程有两个不相等的实根。

3. 判别式等于0的情况(Δ = 0):当判别式等于0时,方程有两个相等的实根。

这意味着方程对应的抛物线与x轴相切于一个点。

具体而言,如果Δ = 0,则方程有两个相等的实根x1 = x2 = -b / (2a)。

例如,考虑方程x^2 - 4x + 4 = 0,判别式Δ = (-4)^2 - 4(1)(4) = 16 - 16 = 0。

因此,方程有两个相等的实根。

4. 判别式小于0的情况(Δ < 0):当判别式小于0时,方程没有实根,但有两个共轭复根。

这意味着方程对应的抛物线与x 轴没有交点。

具体而言,如果Δ < 0,则方程没有实根,但有两个共轭复根,可以表示为x1 = (-b + i√(-Δ)) / (2a),x2 = (-b - i√(-Δ)) / (2a),其中i是虚数单位。

例如,考虑方程x^2 + 2x + 2 = 0,判别式Δ = (2)^2 - 4(1)(2) = 4 - 8 = -4 < 0。

17.3一元二次方程根的判别式

17.3一元二次方程根的判别式

例1:不解方程判别下列方程根的情况. (1)2x2+5x+7=0
(2)3x2+x=0
(3)4x2-4x+1=0
解:(1)因为△=b2-4ac=52-4×2×7=-31<0, 所以原方程无实数根.
(2)因为△=b2-4ac=12-4×3×因为△=b2-4ac=(-4)2-4×4×1=0, 所以原方程有两个相等的实数根.
\
想一想
通过解这三个方程,同学们可以发 现一元二次方程根的情况有哪几种,谁 能总结出来?根的情况由什么决定呢?
▪ 由此可以发现一元二次方程ax2+bx+c = 0 (a≠0)的根的情况可由 b2-4ac 来判定:
▪ 当 b2-4ac>0时,方程有两个不相等的实 数根;
▪ 当 b2-4ac = 0 时,方程有两个相等的实数 根;
一元二次方程ax2+bx+c = 0(a≠0)的根的 情况:
1.当 b2 4ac 0时,方程有两个不相等的实数根. 2.当 b2 4ac 0时,方程有两个相等的实数根. 3.当 b2 4ac 0时,方程没有实数根.
反过来:
1.当方程有两个不相等的实数根时, b2 4ac 0. 2.当方程有两个相等的实数根时, b2 4ac 0. 3.当方程没有实数根时, b2 4ac 0.
归纳小结
1.一元二次方程ax2+bx+c=0(a≠0)根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根.
2.根据根的情况,也可以逆推出Δ的情况,这方面 的知识主要用来求取值范围等问题.
课本第35页练习 1 2.
▪ 当 b2-4ac < 0 时,方程没有实数根. ▪ 我们把 b2-4ac 叫做一元二次方程ax2+bx

一元二次方程的判别式及跟与系数的关系

一元二次方程的判别式及跟与系数的关系

一元二次方程的根的判别式及根与系数的关系要点一、一元二次方程的判别式1.定义:在一元二次方程()ax bx c a 2++=0≠0中,只有当系数a 、b 、c 满足条件△≥b ac 2=−40时才有实数根.这里b ac 2−4叫做一元二次方程根的判别式,记作△.2.判别式与根的关系:在实数范围内,一元二次方程()ax bx c a 2++=0≠0的根的情况由△b ac 2=−4确定. 设一元二次方程为()ax bx c a 2++=0≠0,其根的判别式为:△b ac 2=−4,则①△>0⇔方程()ax bx c a 2++=0≠0有两个不相等的实数根,x 12.②△=0⇔方程()ax bx c a 2++=0≠0有两个相等的实数根b x x a12==−2. ③△<0⇔方程()ax bx c a 2++=0≠0没有实数根. 特殊的:(1)若a ,b ,c 为有理数,且△为完全平方式,则方程的解为有理根;(2)若△为完全平方式,同时b −±2a 的整数倍,则方程的根为整数根.【例1】(1)不解方程,直接判断下列方程的解的情况: ①x x 27−−1=0 ②()x x 29=43−1 ③x x 2+7+15=0④()mx m x 2−+1+=02(m 为常数)(2)已知a 、b 、c 分别是三角形的三边,则方程()()a b x cx a b 2++2++=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【解析】(1)①△>0,有两个不等实根;②△=0,有两个相等实根; ③△<0,无实根;④△m 2=+1>0,方程有两个不等实根. (2)由题()()()()△c a b a b c c a b 22=2−4+=4++−−∵a b c ++>0,c a b −−<0,故方程没有实根.选A .【点评】这道题(1)主要考察判别式与根的关系,属于特别基础的题,锻炼孩子们的思维,(2)结合三角形三边关系来考察一元二次方程的判别式和根的个数的关系.【例2】(1)若关于x 的一元二次方程()k x x 21−1+−=04有实根,则k 的取值范围为______. 【解析】(1)≥k 0且≠k 1;【变式2-1】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( ) A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,且k≠0. 则k 的非负整数值为1.【变式2-2】已知关于x 的一元二次方程有实数根,则m 的取值范围是________ 【答案】且m≠1 【解析】因为方程有实数根,所以,解得, 同时要特别注意一元二次方程的二次项系数不为0,即, ∴ m 的取值范围是且m≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即,m≠1.【例3】已知:关于x 的方程有两个不相等的实数根,求k 的取值范围. 【答案】.【变式3-1】关于x的一元二次方程()k x 21−2−−1=0有两个不相等的实数根,则k 的取值范围______.≤k −1<2且k 1≠2, 由题意,得()()k k k k 4+1+41−2>0⎧⎪+1≥0⎨⎪1−2≠0⎩,解得≤k −1<2且k 1≠2;2(1)10m x x −++=54m ≤2(1)10m x x −++=214(1)450m m =−−=−+≥△54m ≤(1)0m −≠54m ≤(1)0m −≠2(1)04kkx k x +++=102k k ≠>-且【变式3-2】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【答案与解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.【变式3-2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0, 解得:k <2且k≠1. 故答案为:k <2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.【例4】当a 、b 为何值时,方程()x a x a ab b 222+21++3+4+4+2=0有实根?(3)要使关于x 的一元二次方程()x a x a ab b 222+21++3+4+4+2=0有实根,则必有△≥0,即()()≥a a ab b 22241+−43+4+4+20,得()()a b a 22+2+−1≤0.又因为()()a b a 22+2+−1≥0,所以()()a b a 22+2+−1=0,得a =1,b 1=−2.【变式4-1】已知关于x 的一元二次方程()a x ax 213−1−+=04有两个相等的实数根,求代数式a a a21−2+1+的值.【解析】由题,一元二次方程()a x ax 213−1−+=04有两个相等的实数根, 所以a a 2−3+1=0.所以有a a a 2−2+1=,a a 2+1=3.代入a a a21−2+1+,得a a a a a a a a a 2211+13−2+1+=+===3.【点评】这道题主要是考察判别式与代数式的结合,难度不大.【变式4-2】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【例5】在等腰△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x mx m 21++2−=02的两个实数根,求△ABC 的周长.【解析】当b c =时,方程有两个相等的实数根,则=△m m 21⎛⎫−42−=0 ⎪2⎝⎭,∴m 1=−4,m 2=2.若m =−4,原方程化为x x 2−4+4=0, 则x x 12==2,即b c ==2, ∴△ABC 的周长为2+2+3=7. 若m =2,原方程化为x x 2+2+1=0, 则x x 12==−1,不合题意.当a b =或a c =时,x =3是方程的一个根, 则m m 19+3+2−=02,则m 22=−5,原方程化为x x 22221−+=055,解得x 1=3,x 27=5, ∴ABC △的周长为7373+3+=55.综上所述,ABC △的周长为7或375. 【点评】这道题主要考察学生们的分类讨论能力,应对多种情况是要理清思路.要点二、一元二次方程的根与系数关系(韦达定理)1.韦达定理:如果()ax bx c a 2++=0≠0的两根是x 1,x 2,则b x x a 12+=−,cx x a12=.(使用前提:△≥0)特别地,当一元二次方程的二次项系数为1时,设x 1,x 2是方程x px q 2++=0的两个根,则x x p 12+=−,x x q 12=. 2.韦达定理的逆定理:如果有两个数x 1,x 2满足b x x a 12+=−,cx x a12=,那么x 1,x 2必定是()ax bx c a 2++=0≠0的两个根.特别地,以两个数x 1、x 2为根的一元二次方程(二次项系数为1)是()x x x x x x 21212−++=0. 3.韦达定理与根的符号关系:在△≥b ac 2=−40的条件下,我们有如下结论: (1)当ca<0时,方程的两根必一正一负. ①若≥b a −0,则此方程的正根不小于负根的绝对值;②若ba−<0,则此方程的正根小于负根的绝对值.(2)当ca>0时,方程的两根同正或同负. ①若b a −>0,则此方程的两根均为正根;②若ba−<0,则此方程的两根均为负根.注意:(1)若ac <0,则方程()ax bx c a 2++=0≠0必有实数根.(2)若ac >0,方程()ax bx c a 2++=0≠0不一定有实数根.【例6】(1)已知一元二次方程ax ax c 2+2+=0的一根x 1=2,则方程的另一根______x 2=.(2)已知x 1,x 2是方程x x 2−3+1=0的两个实数根,则:①x x 2212+;②()()x x 12−2⋅−2;③x x x x 221122+⋅+;④x x x x 2112+;⑤x x 12−;⑥x x 2212−;⑦x x 1211−.【解析】(1)−4;(2)()x x x x x x 2222121212+=+−2⋅=3−2⨯1=7, ()()()x x x x x x 121212−2⋅−2=⋅−2++4=1−2⨯3+4=−1, ()x x x x x x x x 22211221212+⋅+=+−⋅=9−1=8,x x x x x x x x 2221211212+7+===7⋅1,()()x x x x x x 222121212−=+−4⋅=3−4⨯1=5,∴x x 12−=,∴()()(x x x x x x 22121212−=+−=3⨯=x x x x x x 21121211−−==.【点评】第三小题,主要是考察韦达定理的灵活运用,包含了各种变形情况.【例7】(1)已知关于x 的方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,且x x x x 121211+=+,求k 值.(2)已知x 1,x 2是方程ax ax a 24−4++4=0的两实根,是否能适当选取a 的值,使得()()x x x x 1221−2−2的值等于54.【解析】(1)∵方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,∴()()△≥k k k 22=2−3−4−3=21−120得:≤k 74. 由韦达定理得,()x x k x x k 12212+=−2−3⎧⎪⎨⋅=−3⎪⎩. ∵x x x x 121211+=+,∴x xx x x x 121212++=,x x 12+=0或x x 12=1,当x x 12+=0时,k 3−2=0,k 3=2,∵k 37=<24,所以k 3=2符合题意. 当x x 12=1时,k 2−3=1,k =±2,∵k 7≤4,∴k =2舍去.∴k 的值为32或−2. (2)显然a ≠0由()△a a a 2=16−16+4≥0得a <0, 由韦达定理知x x 12+=1,a x x a12+4=4, 所以()()()()()a x x x x x x x x x x x x a 2221221121212129+4−2−2=5−2+=9−2+=−24a a+36=4 若有()(),x x x x 12215−2−2=4则a a +365=44,∴a =9,这与0a <矛盾, 故不存在a ,使()()x x x x 12215−2⋅−2=4. 【点评】这道题主要锻炼孩子们的过程,以及有两个实根,解出来别忘了限制条件,这种类型的题比较常见,一定不要忽视∆的限定条件以及用韦达定理可得到的限定条件.【例8】(1)若m ,n 是方程x x 2+−1=0的两个实数根,则m m n 2+2+−1的值为________.(2)已知a ,b 是方程x x 2+2−5=0的两个实数根,则a ab a b 2−+3+的值为__________.(3)已知m 、n 是方程x x 2+2016+7=0的两个根,则()()m m n n 22+2015+6+2017+8= ________.【解析】(1)∵m ,n 是方程x x 2+−1=0的两个实数根,∴m n +=−1,m m 2+−1=0,则原式()()m m m n 2=+−1++=−1=−1,(2)∵a 是方程x x 2+2−5=0的实数根,∴a a 2+2−5=0,∴a a 2=5−2,∴a ab a b a ab a b a b ab 2−+3+=5−2−+3+=+−+5, ∵a ,b 是方程x x 2+2−5=0的两个实数根,∴a b +=−2,ab =−5,∴a ab a b 2−+3+=−2+5+5=8. 故答案为8.(3)∵m 、n 是方程x x 2+2016+7=0的两个根,∴m n +=−2016,mn =7;∴m m 2+2016+7=0,n n 2+2016+7=0,()()()()m m n n m m m n n n 2222+2015+6+2017+8=+2016+7−−1+2016+7++1()()()()m n mn m n =−+1+1=−+++1=−7−2016+1=2008故答案是:2008.【点评】这道题主要考查韦达定理根系关系的应用,进一步强化孩子对于韦达定理应用的理解.【例9】(1)已知一元二次方程()ax a x a 2+3−2+−1=0的两根都是负数,则k 的取值范围是_________.(2)已知二次方程342x x k 2−+−=0的两根都是非负数,则k 的取值范围是__________.【解析】(1)此方程两实根为,x x 12,由已知得a x x x x 1212≠0⎧⎪∆0⎪⎨+<0⎪⎪>0⎩≥,∴()()a a a a a a a a2≠0⎧⎪3−24−10⎪⎪2−3⎨<0⎪⎪−1⎪>0⎩-≥g ,即a 91<8≤.(2)此方程两实根为,x x 12,由已知得≥x x x x 1212∆≥0⎧⎪+≥0⎨⎪0⎩,得:∴2()43()k k ⎧⎪−4−⨯−2≥0⎪4⎪>0⎨3⎪−2⎪≥0⎪3⎩即k 102≤≤3. 【点评】这道题主要考查韦达定理和判别式结合不等式组的形式去判定根的具体情况,这类题是比较常见一类题,要将这种不等的思想传授给孩子.【课后作业】1.已知关于x 的一元二次方程()()k x k x 22−1+2+1+1=0有两个不相等的实数根,则k 的取值范围为_____________. A .k 1≥4 B .k 1>4且≠k 1 C .k 1<4且≠k 1 D .k 1≥4且≠k 1【解析】B .2.已知关于x 的一元二次方程x m 2−=0有两个不相等的实数根,则m 的取值范围__________.3.关于x 的方程()()m x m x 22−4+2+1+1=0有实根,则m 的取值范围__________.【解析】2.由题意可知,原方程的判别式(m m m 21∆=+4=1+3>0⇒>−3.又≥≤m m 1−0⇒1, 故≤m 1−<13.3.题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分0m 2−4=和m 2−4≠0,两种情形讨论:当m 2−4=0即m =±2时,()m 2+1≠0,方程为一元一次方程,总有实根; 当m 2−4≠0即m ≠±2时,方程有根的条件是: [()]()≥m m m 22=2+1−4−4=8+20∆0,解得m 5≥−2.∴当m 5≥−2且m ≠±2时,方程有实根.综上所述:当m 5≥−2时,方程有实根.4.已知关于x 的方程()x k x k 2−+1+2−2=0. (1)求证:无论k 为何值,方程总有实根;(2)若等腰ABC △,底边a =3,另两边b 、c 恰好是此方程的两根,求ABC △的周长.【解析】(1)()()()≥△k k k 22=+1−42−2=−30,∴无论k 为何值,方程总有实根.(2)当a =3为底,b ,c 为腰时,b c =,∴方程有两个相等的实根,∴∆=0,即()k 2−3=0,k =3,此时方程为x x 2−4+4=0,解x x 12==2,∴ABC △的周长为3+2+2=7,当a =3为腰,则方程有一根为3,将x =3代入方程,得k =4,方程为x x 2−5+6=0,解得x 1=2,x 2=3,∴ABC △的周长为2+3+3=8,综上所述,ABC △的周长为7或8.5.关于x 的方程x kx 22+=10的一个根是−2,则方程的另一根是_______;k =________.6.已知a ,b ,c 为正数,若二次方程ax bx c 2++=0有两个实数根,那么方程a x b x c 2222++=0的根的情况是( ) A .有两个不相等的正实数根 B .有两个异号的实数根 C .有两个不相等的负实数根D .不一定有实数根7.设α,β是一元二次方程x x 2+3−7=0的两个根,则ααβ2+4+=________.【解析】5.设另一根为x ,由根与系数的关系可建立关于x 和k 的方程组,解之即得.x 5=2,k =−1. 6.a x b x c 2222++=0的()()D b a c b ac b ac 42222=−4=+2−2, ∵二次方程ax bx c 2++=0有两个实数根, ∴≥b ac 2−40, ∴b ac 2−2>0,∴()()△b a c b ac b ac 42222=−4=+2−2>0∴方程有两个不相等的实数根,而两根之和为负,两根之积为正. 故有两个负根.故选C .7.∵α,β是一元二次方程x x 2+3−7=0的两个根, ∴αβ+=−3,αα2+3−7=0, ∴αα2+3=7,∴ααβαααβ22+4+=+3++=7−3=4,故答案为:4.11 8.已知关于x 的方程()x m x m 22+2+2+−5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.【解析】有实数根,则∆≥0,且x x x x 221212+−=16,联立解得m 的值.依题意有:()2()3()()x x m x x m x x x x m m 12212121222+=−2+2⎧⎪=−5⎪⎨+−=16⎪⎪∆=4+2−4−5≥0⎩,解得:m =−1或m =−15且m 9≥−4, ∴ m =−1.韦达定理说明了一元n 次方程中根和系数之间的关系。

一元二次方程的判定条件

一元二次方程的判定条件

题目怎样判断一元二次方程答案解析只含有一个未知数(即“元”),并且未知数的最高次数为2(即“次”)的整式方程叫做一元二次方程(英文名:quadratic equation of one unknown),一元二次方程的标准形式(即所有一元二次方程经整理都能得到的形式)是ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0).求根公式:x=[-b±√(b²-4ac)]/2a.一元二次方程的求根公式中文名:一元二次方程外文名:quadratic equation of one unknown类型:整式方程标准形式:ax²+bx+c=0(a≠0)求根公式:x=-b±√(b²-4ac)/2a定义只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.性质一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式,方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.一元二次方程的一般形式(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b 和常数项c可取任意实数.二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.一元二次方程的解(根)的意义(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0)(3)对一元二次方程ax²+bx+c=0(a≠0)来说当判别式△=b²-4ac>0时方程有两个解△=b²-4ac=0时方程有一个解△=b²-4ac。

初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)

初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)

初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。

(完整版)一元二次方程根的判别式知识点

(完整版)一元二次方程根的判别式知识点

一元二次方程根的判别式知识点及应用1、一元二次方程ax²+bx+c=0(a≠0)的根的判别式定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若△>0则方程有两个不相等的实数根若△=0则方程有两个相等的实数根若△<0则方程没有实数根2、这个定理的逆命题也成立,即有如下的逆定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若方程有两个不相等的实数根,则△>0若方程有两个相等的实数根,则△=0若方程没有实数根,则△<0特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。

(2)一元二次方程ax²+bx+c=0(a≠0)(Δ=b²4ac)一、不解方程,判断一元二次方程根的情况。

例1、判断下列方程根的情况2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0二、已知一元二次方程根的情况,求方程中字母系数所满足的条件。

例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0 有两个实数根?三、证明方程根的性质。

例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。

四、判断二次三项式能否在实数范围内因式分解。

例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围内因式分解。

五、判定二次三项式为完全平方式。

例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。

例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是完全平方式。

六、利用判别式构造一元二次方程。

例7、已知:(z-x)2-4(x-y)(y-z)=0(x≠y)求证:2y=x+z七、限制一元二次方程的根与系数关系的应用。

例8、已知关于x的方程x2-(k-1)x-3k-2=0的两个实数根的平方和为17,求k的值。

一元二次方程根的判别式讲解

一元二次方程根的判别式讲解

一元二次方程根的判别式讲解一元二次方程,这个名字听上去是不是有点严肃啊?其实呢,它就是我们在数学中常常遇到的那种形如ax² + bx + c = 0 的方程。

别看它外表冷冰冰的,里面可藏着不少宝藏哦!说到这里,咱们得提到一个重要的概念,那就是根的判别式。

哎,听着就觉得高深莫测,实际上就是个简单的公式,平时用得上就能救急。

要是你看到一个方程,想知道它的根是什么,那就得求个判别式D = b² 4ac,简单吧?这就像一把钥匙,能打开不同的门,带你去不同的地方。

当你算出这个 D 的值时,你会发现它的神奇之处。

如果 D 大于零,那就说明这个方程有两个不相同的实根,像是两位好朋友,彼此不打扰,独立存在。

这种情况就像生活中,两个小伙伴各自追逐自己的梦想,互不相干却又各有精彩。

如果 D 等于零,那就意味着这方程有一个重根,简单说就是有一个“朋友”,不过这位朋友特别特别粘人,总是和你形影不离。

就像你的室友,天天都在一起,没日没夜。

如果 D 小于零,那就有点儿麻烦了,这说明方程没有实根。

哎,生活中有时候就像这样,有些事情就是无法实现,尽管我们努力去追寻,但结果却是空欢喜一场。

你说这根的判别式真是个有趣的小家伙,它能帮你判断方程的根是怎样的状态。

就像你去餐厅点菜,服务员问你喜欢什么口味,而判别式就是帮你选择的那位朋友。

比如,想要辣的、酸的,还是甜的,方程的根也是有不同的味道。

碰上两个不同的实根,像是酸甜苦辣,各有各的风味;遇上重根,哦,那就是一锅汤,味道浓郁;而没有实根的情况,就好比菜单上没有你想吃的菜,真是让人失望透顶。

再说说这个b² 4ac,它可不是随便来的,里面的 a、b、c 就是你方程的系数,代表着不同的意义。

就像人生的各种经历,a 可能代表你的一步步成长,b 是你生活的起伏,而 c 则是你现在所处的状态。

把这三者结合在一起,咱们就能看出根的世界。

这就像一幅画,色彩丰富,层次分明,让人忍不住多看几眼。

15、一元二次方程根的判别式

15、一元二次方程根的判别式

一元二次方程知识点7、一元二次方程根的判别式1、一元二次方程有无解的判定:对于一元二次方程)0(02≠=++a c bx ax a c x a b x c x a b x a c bx ax -=+⇒-=+⇒-=+⇒222)(2222244)2()2(a ac b a b a c a b x a b x -=+-=++⇒22244)2(a ac b a b x -=+⇒0402≥⇒≠a a (1)当042≥-ac b 时:2244a ac b -≥0,有意义根据平方根的定义,有x +a b 2=±2244a ac b -即x =a ac b b 242-±-;(2)当042<-ac b 时:负数没有平方根在实数范围内x 的值不存在,所以方程没有实数根。

2、判别式的定义:把ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 根的判别式,通常用符号“∆”来表示,即ac b 42-=∆。

3、判别式的作用:判定一元二次方程根有无情况和根的个数一般地,一元二次方程)0(02≠=++a c bx ax :①0>∆,方程有两个不相等的实数根;②0=∆,方程有两个相等的实数根;③0<∆,方程没有实数根。

例13、不解方程,直接判断方程根的情况例14、应用根的判别式确定系数中所含字母的取值范围例15、证明方程根的存在性问题例16、根的判别式在实际问题中的应用例17、一元二次方程判别式的综合探究题知识点8、一元二次方程根与系数关系1、韦达定理:若方程)0(02≠=++a c bx ax 的两根为21,x x ,则ac x x a b x x =⋅-=+2121;。

推论1.若方程02=++q px x 的两根为21,x x ,则q x x p x x =⋅-=+2121;;推论2.以两个数21,x x 为根的一元二次方程是0)(21212=++-x x x x x x 。

3一元二次方程根的判别 二次三项式的因式分解

3一元二次方程根的判别  二次三项式的因式分解

一元二次方程根的判别 二次三项式的因式分解 1,一元二次方程根的判别式我们把ac b 42-叫做一元二次方程()002≠=++a c bx ax 的根的判别式,记作ac b 42-=∆例:求一元二次方程5322+=x x 的根的判别式。

2,利用根的判别式判断一元二次方程根的情况对于一元二次方程()002≠=++a c bx ax ,当0〉∆时,方程有两个不相等的实数根;当0=∆时,方程有两个相等的实数根; 当0〈∆时,方程没有实数根。

例:判别一元二次方程()()011212=+-+--m x m x m 的根的情况3,利用一元二次方程根的情况来判断根的判别式的符号对于一元二次方程()002≠=++a c bx ax当方程有两个不相等的实数根时,0〉∆; 当方程有两个相等的实数根时,0=∆; 当方程没有实数根时,0〈∆例:已知关于x 的方程()024412=-+-+m mx x m 有两个实数根,求m 的取值范围4,一元二次方程应用(1)二次三项式的因式分解把二次三项式c bx ax ++2分解时,如果042≥-ac b ,那么()()212x x x x a c bx ax --=++(其中21,x x 是方程02=++c bx ax 的两个实数根);如果042〈-ac b ,那么c bx ax ++2在实数范围内不能分解例:在实数范围内分解因式:(1)132++x x (2)22243y xy x -+(3)624--x x (4)34222-+xy y x5,一元二次方程根与系数关系如果方程()002≠=++a c bx ax 的两个根是21,x x 。

那么a b x x -=+21, ac x x =⋅21 一元二次方程根与系数关系有很广泛的用途。

一般,可解决以下几类问题:(1)已知一元二次方程的一个根,可求另一个根(2)已知两根,可写出这个二次方程; (3)求已知二次方程的根的对称式;(4)与根的判别式结合起来,可不解方程判断两根的性质和正负号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎样判断一元二次方程?
什么是一元二次方程?是不是看到一个未知数有一项的次数是二次的方程就是一元二次方程呢?请看以下几个方程:
①(m -2)x 2+mx -1=0;
②(2x -1)(3x+1)=6x 2+5;
对于这几个方程,如果认为都是一元二次方程,那就错了.判别一个方程是不是一元二次方程要注意两点:
(1)经过整理化简后,符合ax 2+bx+c=0(a≠0)的形式.方程①从表面上看含有x 2的项,但是二次项的系数是m -2,由于不能判断m -2是否为零,所以这个方程不能判定必为一元二次方程.方程②经过化简后,成为不含未知数的二次项,当然不是一元二次方程了.
(2)一元二次方程首先必须是一个整式方程,显然方程③与方程④不符合这个条件. 熟练判别一元二次方程对于学习解一元二次方程及研究有关一元二次方程的其他问题很有好处.
如果一看到有一个3,就想到两边平方,把它当成无理方程来解,这种解题的错误往往是由于对方程的类型判断错误所致.“一把钥匙开一把锁”,其实这是一个一元二次方程,3知识一个项的系数,用“公式法”就可以解。

解略.
例2 a 取何值时,方程ax 2-(2a+1)x+(a -1)=0:
(1)有两个实数根;(2)有实数根.
解:(1)[]2(21)4(1)810a a a a ∆=-+--=+≥,即18
a ≥-,且0a ≠时,方程有两个实数根。

注意:这里a≠0很容易被遗忘,如果不加这个条件,当a=0时原方程变为x+1=0,是个一元一次方程,不可能有两个实数根.
(2)这题与上一问比较,少了两个字“两个”,不言而喻,解这题时有两种情况:

1
8
a≥-,且0
a≠时,方程有两个实数根;当a=0时,方程只有一个实数根。

相关文档
最新文档