2019年江苏南京中考数学试题含详解

合集下载

2019年江苏省南京市中考数学真题试卷附解析

2019年江苏省南京市中考数学真题试卷附解析

2019年江苏省南京市中考数学真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若⊙O 1 和⊙O 2相交于A 、B 两点,⊙O 1 和⊙O 2的半径分别为2 和,公共弦长为 2,∠O 1AO 2的度数为( )A .105°B .75°或 15°C .105°或 15°D .15° 2.若半径为1cm 和2cm 的两圆相外切,那么与这两个圆都相切且半径为3cm 的圆的个数为( )A .5个B .4个C .3个D .2个 3.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d(天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )4.线段 PQ 的黄金分割点是R (PR>RQ ),则下列各式中正确的是( )A .PR RQ PQ PQ= B .PR QR PQ PR = C .PQ RQ PR PQ = D .PR PQ PQ QR = 5.二次函数28y x x c =−+的最小值是( )A .4B .8C .-4D .16 6.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( ) A .41x x >⎧⎨−⎩,≤ B .41x x <⎧⎨−⎩,≥ C .41x x >⎧⎨>−⎩, D .41x x ⎧⎨>−⎩≤, 7.把m 2(m-n )+m (n-m )因式分解等于( ) A .(m-n )(m 2-m ) B .m (m-n )(m+1) C .m (n-m )(m+1) D .m (m-n )(m-1)8.现有两根木棒,它们的长度分别是40 cm ,50 cm ,若要钉一个三角形的木架,则下列四根木棒中应选取( )A .lOcm 的木棒B . 40 cm 的木棒C . 90 cm 的木棒D. 100 cm 的木棒9. 一副三角板按如图方式摆放,且∠1 的度数比∠2 的度数大50°,若设∠1 =x °,∠2 =y °,则可得到方程组为( )A . 50180x y x y =−⎧⎨+=⎩B . 50180x y x y =+⎧⎨+=⎩C . 5090x y x y =−⎧⎨+=⎩D . 5090x y x y =+⎧⎨+=⎩10.如图,△BEF 是由△ABC 平移所得,点A ,B ,E 在同一直线上,若∠F=35°,∠E= 50°,则∠CBF 是( )A .35°B .60°C .80D .无法确定11.如图所示,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆孔,最后将正方形纸片展开,得到的图案是( )12.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是 ( )A .x ·40%×80%=240B .x (1+40%)×80%=240C .240×40%×80%=xD .x ·40%=240×80%13. 甲、乙、丙三筐青菜的质量分别是 102 kg 、97 kg 、99 kg ,若以 100 kg 为基准,并记为0,则甲、乙、丙三筐青菜的质量分别表示为( )A .2,3,1B .2,-3,1C .2,3,-1D .2,- 3,-1二、填空题14.在Rt △ABC 中,若∠C= 90°,AC=24,AB=25,则sinB= .15.如图,将矩形纸片ABCD 的一角沿EF 折叠,使点C 落在矩形ABCD 的内部C '处,若35EFC ∠=°,则DEC '∠= 度.16.计算题: (1) 12-18-5.0+31 (2) ⎪⎪⎭⎫ ⎝⎛−÷1213112 (3)221811139134187⎪⎭⎫ ⎝⎛−−⎪⎭⎫ ⎝⎛−17.等角的余角相等,改写成“如果……那么……”的形式: ,该命题是(填“真”或“假”)命题.18.如图,是一个圆形转盘,现按1:2:3:4分成四个部分,分别涂上红,黄,蓝,绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为 .19.方程组233410x y x y −=⎧⎨+=⎩的解是 ,方程组23431y x x y =−⎧⎨−=⎩的解是 . 20.判断下列说法是否正确,正确的打“√”,错误的打“×”.(1)面积相等的两个三角形全等. ( )(2)周长相等的两个三角形全等.’( )(3)三边对应相等的两个三角形全等. ( )(4)全等三角形的面积相等,周长相等. ( )21.有 3、4、-6、10四个数,每个数用且只用一次进行加减乘除运算,使其结果等于24,列式为 .三、解答题22.某市在城市建设中,要折除旧烟囱AB (如图所示),在烟囱正西方向的楼CD 的顶端C ,测得烟囱的顶端A 的仰角为45,底端B 的俯角为30,已量得21m DB =.(1)在原图上画出点C 望点A 的仰角和点C 望点B 的俯角,并分别标出仰角和俯角的大小.(2)拆除时若让烟囱向正东倒下,试问:距离烟囱东方35m 远的一棵大树是否被歪倒的烟囱砸着?请说明理由.23.如图所示,抛物线245y x x =−++与x 轴交于A 、B 两点,与y 轴交于D 点,抛物线的顶点为 C ,求四边形 ABCD 的面积.24.试写出一个实际生活中的反比例函数.25.推动信息技术的发展,举行了电脑设计作品比赛,各班派学生代表参加,现将所有比赛成绩(得分取整数,满分为100分)进行处理然后分成五组,并绘制了频数分布直方图,请结合图中提供的信息,解答下列问题:(1)参加比赛学生的总人数是多少?(2)80.5~90.5这一分数段的频数、频率是多少?(3) 根据统计图,请你也提出一个问题,并做出回答.26.如图,已知 B,A,E三点在同一直线上,AD⊥BC,垂足为 D,EG⊥BC,垂足为G,EG交AC于点F,且AE=AF,请说明AD平分∠BAC的理由.27.如图,△ACB 和△ECD都是等腰直角三角形,∠ACB= ∠ECD = 90°,D为 AB边上的一点,试说明:(1)△ACE≌△BCD;(2) AD2+BD2=DE2.28.画出如图所示的轴对称图形的对称轴,并回答下列问题:(1)连结BD,则对称轴和线段BD有怎样的位置关系?(2)原图形中有哪些相等的角?哪些全等的三角形?(3)分别作出图形中点F、G的对称点.29.某班同学去社会实践基地参加实践活动,一部分同学抬土,另一部分同学挑土. 已知全班共有竹筐 58 只,扁担 37 根,要使每一位同学都能同时参加抬土或挑土,应怎样分配抬土和挑土人数?30.在y kx b=+中,当 x=2 时,y=8;当 x=-1时,y=-7,求k,b 的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.B5.D6.B7.A8.B9.D10.A11.CB13.D二、填空题14.242515. 7016. ⑴227337−; ⑵12; ⑶ 0. 17.如果两个角是相等角的余角,那么这两个角相等18.52 19. 21x y =⎧⎨=⎩,45x y =⎧⎨=⎩ 20.(1)× (2)× (3)√ (4)√21.3(6104)24⨯−++=三、解答题22.解:(1)略;(2)画CG ⊥AB ,垂足为G ,连结CA ,CB ,在Rt AGC △中,45ACG =∠.()21m AG CG DB ∴===,在Rt BCG △中,)3tan 30tan 3021m 3BG CG DB =⋅=⋅=⨯=,∴烟囱高)()21m 33.124m AB =+≈,33.12435m m <,∴这棵大树不会被歪倒的烟囱砸着.连结OC ,令245=0x x −++,解得15x =,21x =−,∴A(- 1 ,0) ,B(5 ,0) , D(0 , 5).∵2245(2)9y x x x =−++=−−+,∴C(2,9).连结CO. ∴11115525930222AOD COD BOC ABCD s s s S ∆∆∆=++=⨯⨯+⨯⨯+⨯⨯=四边形 24.化肥厂生产化肥的总任务一定时,每天生产化肥 y(吨)和生产天数 x(天)之间成反比例关系 25.⑴52人;(2)80.5~90.5这一分数段的频数为10,频率是265 ;(3)答案不唯一,提问题举例: 90.5~100.5分数段内的学生与50.5~60.5分数段内的学生哪一个多?答:在90.5~100.5分数段内的学生多.26.略27.(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE ,即∠BCD=∠ACE , ∵△ACB 和△ECD 都是等腰直角三角形,∴AC=BC ,DC=EC ,∴△ACE ≌△BCD .(2)∵△ACB 是等腰直角三角形,∴∠B=∠BAC=45°.∵△ACE ≌△BCD ,∴∠CAE=∠B=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°. ∴△ADE 是直角三角形,∴AD 2+AE 2=DE 2.由(1)知,AE=BD ,∴AD 2+BD 2=DE 2.28.如图所示,连结BD ,作线段BD 的垂直平分线m ,直线m•就是所求的对称轴.(1)对称轴垂直平分线段BD ;(2)原图形中相等的角有:∠B=∠D ,∠BAC=∠DEC ,∠BCA=∠DCE ,∠CAE=∠CEA ,∠BCE=∠DCA ,∠BAE=∠DEA .全等的三角形有:△ABC 和△EDC ;(3)点F 、G 的对称点分别是F ′、G ′,如图所示.29.分配抬土 32 人,挑土21 人30.k=, b=-25。

2019年数学中考试题附答案

2019年数学中考试题附答案

2019年数学中考试题附答案一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D3.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是24.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分6.直线y =﹣kx +k ﹣3与直线y =kx 在同一坐标系中的大致图象可能是( )A .B .C .D .7.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .48.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x -=+B .5076010696020500x x -=+ C .1069605076050020x x-=+D .5076010696050020x x -=+ 9.下列二次根式中的最简二次根式是( ) A .30B .12C .8D .0.510.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=12.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1B.0,1C.1,2D.1,2,3二、填空题13.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD ⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.14.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.15.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.18.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43ABAC,DF+BF=8,如图2,求BF的长.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?24.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.25.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.3.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.4.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.5.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.B解析:B【解析】【分析】若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).7.C【解析】 【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确; ②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确; ③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确. 故选C .8.A解析:A 【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A .考点:由实际问题抽象出分式方程.9.A解析:A 【解析】 【分析】根据最简二次根式的概念判断即可. 【详解】A 30B 12=23C 8=22,不是最简二次根式;D 20.5=2,不是最简二次根式; 故选:A . 【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.10.B解析:B 【解析】 【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得【详解】AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=, DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o , 故选B . 【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.11.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.A解析:A 【解析】 【分析】 【详解】由题意得,根的判别式为△=(-4)2-4×3k , 由方程有实数根,得(-4)2-4×3k≥0, 解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.二、填空题13.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.14.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.15.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.16.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.三、解答题21.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.22.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到»»BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由»»BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12BD=3,PB=3PD=3,在Rt△DEP中,∵PD=3,DE=7,∴PE=22(7)(3)-=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:7,∴AE=57,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)2π⨯⨯-+⨯=932π-;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即23323x=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.23.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.24.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

2019年江苏省南京市中考数学真题合集试卷附解析

2019年江苏省南京市中考数学真题合集试卷附解析

2019年江苏省南京市中考数学真题合集试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一种彩票的中奖率为 1%,小胡买了100 张彩票,则( )A .他一定会中奖B .他一定不会中奖C . 他有可能会中奖D . 他再买 10000 张一定中奖 2.线段 PQ 的黄金分割点是R (PR>RQ ),则下列各式中正确的是( ) A .PR RQ PQ PQ = B .PR QR PQ PR = C .PQ RQ PR PQ = D .PR PQ PQ QR= 3.若3+x 在实数范围内有意义,则x 的取值范围是( )A .x >-3B .x <-3C .x ≥-3D .x ≤-3 4.如图,表示A 点的位置的准确说法是( )A .距0点3 km 的地方B .在O 点的东北方向上C .在O 点东偏北40°的方向D .在0点北偏东50°方向,距O 点3 km 的地方5.若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于( )A . 3B .12C . 7D . 4 6.下列说法中,正确的是( )A .同位角相等B .两条不相交的直线叫平行线C .三条直线相交,必产生同位角、内错角和同旁内角D .同旁内角互补,两直线平行7.如图,直线AB 、CD 交于点O ,OE 平分∠AOD ,OF ⊥OE 于点0,若∠BOC=80°,则∠DOF= ( )A .100°B .120°C . 130°D .140°8.如图所示扇形统计图中,有问题的是()A.B. C. D.9.如图,每个小正方形的边长都是1,图中A、B、C、D、E 五个点分别为小正方形的顶点,则下列说法不正确的是()A.△ABE 的面积为 3B.△ABD 的面积是4. 5C.线段 BE 与 DE 相等D.四边形 BCDE 不可能是正方形10.9416)A.34B.324C.223D1734二、填空题11.如图.创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为米2(精确到0.01米2).12.如图,⊙O中,AB、AC 是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D.E,若AC=2 cm,则⊙O的半径为 cm.13.已知直线a∥b,夹在a,b之间的一条线段AB的长为6 3 cm,AB与a的夹角为150°,则a与b之间的距离为 cm.14.如图,矩形ABCD中,点E,F分别在AB,CD上,BF∥DE,若AD=12cm,AB=7 cm,且AE:EB=5:2,则阴影部分面积S= cm2.15.用因式分解法解一元二次方程时,方程应具备的特征是:.16.一个盒子中有 10个完全相同的球,分别标以号码1,2,…,10,从中任意摸出一个球,则P(摸到球的标号为偶数)= .17.若219xx⎛⎫+=⎪⎝⎭,则21xx⎛⎫−⎪⎝⎭的值为.18.某市房产开发公司向中国建设银行贷年利率分别为 6% 和 8% 的甲、乙两种款共 500万元,一年后利息共 34 万元. 求两种贷款的数额各是多少?设甲、乙两种贷款分别为x万元,y 万元,根据题意可得方程组:.解答题19.甲、乙两人环绕长为 400 m 的环形跑道散步一如果两人从同一点背道而行,那么经过2 min 相遇;如果两人从同一点同向而行,那么经过 20 min 相遇,已知甲的速度比乙快,则甲、乙两人散步速度分别为 m/min, m/min.20.看图填空.(A、0、B在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C平分∠AOD,0E平分∠BOD,则∠AOD=2 =2 .∠BOE= =12.21.填表:代数式a2b c−12mn24a−系数三、解答题22.画出下图所示几何体的三视图.23.现有甲、乙两把不相同的锁,各配有 3 把钥匙,总共6把钥匙,从这 6 把钥匙中取2把,恰好能打开两把锁的概率是多少?要想打开甲、乙两把锁,至少取几把,至多取几把?24.如图,在四边形ABCD中,AB∥CD,且∠A=∠C,求证:四边形ABCD是平行四边形.(用两种方法证明)25.已知一次函数物图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上?26.如图所示,在直角坐标系xOy 中,A(一l ,5),B(一3,0),0(一4,3).(1)在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′;(2)写出点C 关于,轴的对称点C ′的坐标(_____,_______).27.(1)如图,已知∠AOB=Rt ∠,∠BOC=40°,0M 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON 的度数;(3)你能从(1)、(2)的结果中发现什么规律?28.2a ,小数部分为b 2()a a b +的值.29.求下列各式中x 的值:(1)9x 2=16 (2)27)3(83=−−x30.学校鼓励学生参加社会实践,小萌所在班级的研究性学习小组在假期对她们所在城市的一家晚报的读者进行了一次问卷调查,以便了解读者对这种报纸四个版面的喜欢情况.她们调查了男女读者各500名,要求每个读者选出自己喜欢的一个版面,并将得到的数据绘制成了下面尚未完成的统计图.(1)请直接将图①的统计图补充完整;(2)请分别计算出各版面的总人数,并根据计算的结果利用图②画出折线统计图;【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.2.B3.C4.D5.B6.D7.C8.A9.D10.D二、填空题11.12. 213. 3 314.2415.0A B ⋅=16.1217. 5 18.5006%8%34x y x y +=⎧⎨+=⎩19. 110,9020.(1)∠AOC ,∠COD ,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC ,∠COD ,∠DOE ,∠BOD21.1,-1,12,14−三、解答题22.23.(1)设 1、2、3是开甲锁的钥匙,4、5、6是开乙锁的钥匙,任取 2 把共有 12、13、14、15,16,23,24,25,26,34,35,36,45,46,56 十五种,所以能打开甲、乙两把锁的概率为93155P == (2)至少取2把,至多取4把 24.略25.解(1)解析式为y=2x+1;(2)点P(-l ,1)不在直线y=2x+1上解:(1)见右图;(2)C ′(4,3 ). 27.(2)12α;(3)∠MON 的度数是∠AOB 度(1)45°;MON=12∠AOB 数的一半,即∠28.由题意,得1a =,21b =−,于是原式=21(121}2⨯⨯+−= 29.(1)43x =±;(2)32x = 30.(1)略;(2)新闻版:310人,文娱版:200人,体育版:340人,生活版:150人;折线图略。

2019年数学中考试卷(含答案)

2019年数学中考试卷(含答案)
(2)如图 2,当 6<t<10 时,DE 是否存在最小值?若存在,求出 DE 的最小值;若不存 在,请说明理由. (3)当点 D 在射线 OM 上运动时,是否存在以 D,E,B 为顶点的三角形是直角三角形? 若存在,求出此时 t 的值;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
24.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
22.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小 江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在 附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江 与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
7.D
解析:D 【解析】 【分析】 【详解】
解:A 选项中,根据对顶角相等,得 1与 2 一定相等; B、C 项中无法确定 1与 2 是否相等;
D 选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1. 故选:D
8.A
解析:A 【解析】
【分析】
【详解】
该班男生有
x
人,女生有
y
人.根据题意得:
x y 30 3x 2y 78

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)【一】单项选择题1.以下运算:①a2•a3=a6,②〔a3〕2=a6,③a5÷a5=a,④〔ab〕3 =a3b3,其中结果正确的个数为〔〕A. 1B. 2C. 3D. 4【来源】山东省滨州市2019年中考数学试题2.计算的结果是〔〕A. B. C. D.【来源】江苏省南京市2019年中考数学试卷【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:应选:B.点睛:此题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法那么和性质是解题的关键.3.以下计算结果等于的是〔〕A. B. C. D.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题4.以下运算正确的选项是〔〕A. B.C. D.【来源】湖南省娄底市2019年中考数学试题【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法那么逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,应选D.【点睛】此题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法那么是解题的关键.5.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省德州市2019年中考数学试题6.我国南宋数学家杨辉所著的«详解九章算术»一书中,用以下图的三角形解释二项式的展开式的各项系数,此三角形称为〝杨辉三角〞.A. 84B. 56C. 35D. 28【来源】山东省德州市2019年中考数学试题7.以下运算正确的选项是〔〕A. B. C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法那么逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,应选D.【点睛】此题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法那么是解题的关键.8.据省××局发布,2019年我省有效发明专利数比2019年增长22.1%假定2019年的平均增长率保持不变,2019年和2019年我省有效发明专利分别为a万件和b万件,那么〔〕A. B.C. D.【来源】安徽省2019年中考数学试题【解析】【分析】根据题意可知2019年我省有效发明专利数为〔1+22. 1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a,由此即可得.【详解】由题意得:2019年我省有效发明专利数为〔1+22.1%〕a万件,2019年我省有效发明专利数为〔1+22.1%〕•〔1+22.1%〕a万件,即b=〔1+22.1%〕2a万件,应选B.【点睛】此题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.以下运算正确的选项是〔〕A. B. C. D.【来源】山东省泰安市2019年中考数学试题10.按如下图的运算程序,能使输出的结果为的是〔〕A. B. C. D.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕11.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省宿迁市2019年中考数学试卷12.以下运算正确的选项是〔〕A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. 〔x﹣1〕2=x2﹣1【来源】江苏省连云港市2019年中考数学试题13.以下运算正确的选项是〔〕A. B. C. D.【来源】江苏省盐城市2019年中考数学试题14.以下计算正确的选项是〔〕A. B.C. D.【来源】湖北省孝感市2019年中考数学试题详解:A、,正确;B、〔a+b〕2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、〔a3〕2=a6,故此选项错误;应选:A、点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法那么是解题关键.15.假设单项式am﹣1b2与的和仍是单项式,那么nm的值是〔〕A. 3B. 6C. 8D. 9【来源】山东省淄博市2019年中考数学试题【解析】分析:首先可判断单项式am﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式am﹣1b2与的和仍是单项式,∴单项式am﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴nm=23=8.应选:C、点睛:此题考查了合并同类项的知识,解答此题的关键是掌握同类项中的两个相同.16.以下运算正确的选项是( )A. B. C. D.【来源】广东省深圳市2019年中考数学试题17.以下运算结果正确的选项是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos3 0°=【来源】湖北省黄冈市2019年中考数学试题【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.应选D、点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.以下计算正确的选项是〔〕A. B.C. D.【来源】四川省成都市2019年中考数学试题19.以下计算正确的选项是( )A. B. C. D.【来源】山东省潍坊市2019年中考数学试题【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法那么,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-〔b-a〕=2a-b,故C正确;D、〔-a〕3=-a3,故D错误.应选C、点睛:此题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法那么是解题的关键.20.计算〔﹣a〕3÷a结果正确的选项是〔〕A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2019年中考数学试题详解:〔-a〕3÷a=-a3÷a=-a3-1=-a2,应选B、点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法那么是解题关键.21.把三角形按如下图的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,那么第⑦个图案中三角形的个数为〔〕A. 12B. 14C. 16D. 18【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是〔〕A. ①B. ②C. ③D. ④【来源】2019年浙江省绍兴市中考数学试卷解析【二】填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,那么位于第45行、第8列的数是__________.【来源】山东省淄博市2019年中考数学试题∴第45行、第8列的数是2025﹣7=2019,点睛:此题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如下图的三角形,我们称之为〝杨辉三角〞,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2019年中考数学试题25.假设a-=,那么a2+值为_______________________.【来源】湖北省黄冈市2019年中考数学试题详解:∵a-=,∴〔a-〕2=6,∴a2-2+=6,∴a2+=8.点睛:此题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.,,,,,,…〔即当为大于1的奇数时,;当为大于1的偶数时,〕,按此规律,__________.【来源】四川省成都市2019年中考数学试题27.计算的结果等于__________.【来源】天津市2019年中考数学试题【解析】分析:依据单项式乘单项式的运算法那么进行计算即可.详解:原式=2x4+3=2x7.点睛:此题主要考查的是单项式乘单项式,掌握相关运算法那么是解题的关键.28.假设是关于的完全平方式,那么__________.【来源】贵州省安顺市2019年中考数学试题详解:∵x2+2〔m-3〕x+16是关于x的完全平方式,∴2〔m-3〕=±8,解得:m=-1或7,点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简〔x﹣1〕〔x+1〕的结果是_____.【来源】浙江省金华市2019年中考数学试题30.观察以下各式:请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2019年中考数学试题详解:由题意可得:=+1++1++ (1)=9+〔1﹣+﹣+﹣+…+﹣〕=9+=9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.【来源】湖南省娄底市2019年中考数学试题32.如图是一个运算程序的示意图,假设开始输入的值为625,那么第2019次输出的结果为__________.【来源】2019年甘肃省武威市〔凉州区〕中考数学试题【三】解答题33.先化简,再求值:a〔a+2b〕﹣〔a+1〕2+2a,其中.【来源】山东省淄博市2019年中考数学试题【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣〔a2+2a+1〕+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2〔+1〕〔-1〕﹣1=2﹣1=1.点睛:此题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法那么进行化简是解此题的关键.34.〔1〕计算:;〔2〕化简:(m+2)2 +4(2-m)【来源】浙江省温州市2019年中考数学试卷35.我们常用的数是十进制数,如,数要用10个数码〔又叫数字〕:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2019年中考数学试题【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:此题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.〔1〕计算:;〔2〕解不等式:【来源】江西省2019年中等学校招生考试数学试题37.计算或化简.〔1〕;〔2〕.【来源】江苏省扬州市2019年中考数学试题【解析】分析:〔1〕根据负整数幂、绝对值的运算法那么和特殊三角函数值即可化简求值.〔2〕利用完全平方公式和平方差公式即可.详解:〔1〕〔〕-1+|−2|+tan60°=2+〔2-〕+=2+2-+=4〔2〕〔2x+3〕2-〔2x+3〕〔2x-3〕=〔2x〕2+12x+9-[〔2x2〕-9]=〔2x〕2+12x+9-〔2x〕2+9=12x+18点睛:此题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,按照以上规律,解决以下问题:〔1〕写出第6个等式:;〔2〕写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2019年中考数学试题【解析】【分析】〔1〕根据观察到的规律写出第6个等式即可;〔2〕根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:〔1〕〔2〕【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,那么称n为〝极数〞.〔1〕请任意写出三个〝极数〞;并猜想任意一个〝极数〞是否是99的倍数,请说明理由;〔2〕如果一个正整数a是另一个正整数b的平方,那么称正整数a 是完全平方数,假设四位数m为〝极数〞,记D〔m〕=.求满足D〔m〕是完全平方数的所有m.【来源】【全国省级联考】2019年重庆市中考数学试卷〔A卷〕41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如下图的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=〔a+b〕2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=〔a+b〕2请你根据方案【二】方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2019年中考数学试卷。

2019年南京市中考数学试卷及答案(Word解析版)

2019年南京市中考数学试卷及答案(Word解析版)

2019年江苏省南京市中考数学试卷及解析(word版)一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2019年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.分析:根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2019年江苏南京)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.(2019年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.(2019年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.分析:根据无理数的定义进行估算解答即可.解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.(2019年江苏南京)8的平方根是()A.4 B.±4 C.2D.分析:直接根据平方根的定义进行解答即可解决问题.解:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2019年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4) D.(,)、(﹣,4)分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A 作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2019年江苏南京)﹣2的相反数是,﹣2的绝对值是.分析:根据相反数的定义和绝对值定义求解即可.解:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(2019年江苏南京)截止2019年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2019年江苏南京)使式子1+有意义的x的取值范围是.分析:根据被开方数大于等于0列式即可.解:由题意得,x≥0.故答案为:x≥0.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.(2019年江苏南京)2019年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.(2019年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.(2019年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.(2分)(2019年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.(2019年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.(2019年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16.(2019年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …10 5 2 1 2 …则当y<5时,x的取值范围是.分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2019年江苏南京)解不等式组:.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.解:,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.(2019年江苏南京)先化简,再求值:﹣,其中a=1.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解:原式=﹣==﹣,当a=1时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2019年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(2019年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(2019年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.解:(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(8分)(2019年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.(2019年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.24.(2019年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.25.(2019年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.26.(2019年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.27.(2019年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.。

(真题)2019年南京市中考数学试题(有答案)

(真题)2019年南京市中考数学试题(有答案)

南京市2019年初中毕业生学业考试数学注意事项:1.本试卷共6页,全卷满分120分考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置.......上)1.计算12+(-18)÷(-6)-(-3)×2的结果是()A.7 B.8 C.21 D.36【答案】C.【考点】有理数的计算.【分析】利用有理数的运算法则直接计算,注意运算顺序和符号变化.【解答】解.原式=12+3-(-6).=15+6.=21.故:选C.2.计算106×(102)3÷104的结果是()A.103B.107C.108D.109【答案】C.【考点】幂的运算.【分析】利用幂的运算法则直接计算,注意运算顺序.【解答】解.原式=106×106÷104.=106+6-4.=108.故:选C.3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【答案】D.【考点】几何体的一般特征.【分析】分析4个选项中的各几何体的侧面、底面、棱的特征,即可得出正确选项.图形4.若 3 <a<10 ,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4【答案】B.【考点】估算.【分析】用平方法分别估算出 3 、10 的取值范围,借助数轴进而估算出a的取值范围.【解答】估算 3 :∵12=1,22=4.∴1< 3 <2.估算10 :∵32=9,42=16.∴3<10 <4.画数轴:故:1<a <4,选B .5.若方程(x -5)2=19的两根为a 和b ,且a >b ,则下列结论中正确的是( ) A .a 是19的算术平方根 B .b 是19的平方根 C .a -5是19的算术平方根 D .b +5是19的平方根 【答案】C .【考点】直接开平方法解一元二次方程、平方根、算术平方根的定义.【分析】分析4个选项中的各几何体的侧面、底面、棱的特征,即可得出正确选项. 【解答】解方程(x -5)2=19得:x -5=±19 .∴x 1=5+19 ,x 2=5-19 .∵方程(x -5)2=19的两根为a 和b ,且a >b . ∴a =5+19 ,b =5-19 .∴a -5=19 ,b -5=-19 ,b +5=10-19 . 【选法一】针对解方程的结果,判断各选项的准确性a =5+19 ,a 不是19的算术平方根,故:选项A 错;b =5-19 ,b 不是19的平方根,故:选项B 错;a -5=19 ,a -5是19的算术平方根,故:选项C 正确;b +5=10-19 ,b +5不是19的平方根,故:选项D 错.【选法二】针对各选项对应的a 、b 、a -5、b +5的结果,进行判断:对于选项:A .a 是19的算术平方根,则a =19 ,故:错; 对于选项:B .b 是19的平方根,则b =±19 ,故:错;对于选项:C .a -5是19的算术平方根,则a -5=19 ,故:正确; 对于选项:D .b +5是19的平方根,则b +5=±19 ,故:错.综上,故选:C .6.过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( )A .(4,176 )B .(4,3)C .(5,176 ) D .(5,3) 【答案】A .【考点】三角形外接圆圆心的确定、相似三角形的应用、平面直角坐标系中线段长的计算、数形结合. 【分析】在平面直角坐标系中绘制符合条件的图形(如图),并判断图形的特征,不难发现: (1)AB ∥x 轴,点C 在AB 的垂直平分线上,△ABC 是等腰三角形,且CA =CB ;(2)过A 、B 、C 三点的圆为△ABC 的外接圆,圆心M 为AB 、AC (或BC )两边垂直平分线EM 、CD 的交点; (3)欲计算M 的坐标,只要计算出线段DM (或CM )、AD 的长;(4)△CEM ∽△CDA ,可得相似比:CE CD =CM CA =EMDA ;(5)△CDA 的边长:AB =|6-2|=4,AD =12 AB =2,CD =|5-2|=3,AC =22+32 =13 ,△CEM 中的边长:CE =12 AC =132 ;把求得的线段长代入(4)中的比例式中即可求得CM 长,问题得解. 【简解】如题,根据题意得:C 点在AB 的中垂线上,CA =CB ;过A 、B 、C 三点的圆为△ABC 的外接圆,圆心M 为AB 、AC 两中垂线的交点M ;AB =4,AD =2,CD =3,AC =13 ,CE =132 . ∵Rt △CEM ∽Rt △CDA . ∴CE CD =CM CA .∴CE ·CA =CD ·CM .132 ×13 =3×CM . ∴CM =136 .DM =CD -CM =3-136 =56 .∴M 点的纵坐标为:2+56 =176 .故:M (4,176 ),选A .二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:|-3|=_________;(-3)2 =__________.【答案】3;3.【考点】|-3|是绝对值的计算、(-3)2 是二次根式的运算.【分析】根据绝对值的定义和二次根式运算的要求进行化简,注意符号的变化.|a |=⎩⎨⎧a (a >0时)0(a =0时)-a (a <0时) ; a 2 =|a |=⎩⎨⎧a (a >0时)0(a =0时)-a (a <0时)【解答】|-3|=-(-3)=3;(-3)2 =|-3|=3.8.2016年南京实现GDP 约10 500亿元,成为全国第11个经济总量超过万亿的城市.用科学记数法表示10 500是________________. 【答案】1.05×104. 【考点】科学记数法.【分析】把一个大于10或小于1的正数写成a ×10n 的形式,其中:1≤a <10,n 是整数.应用方法:把小数点移动到第一个不是0的数字后面,移几位就乘以10的几次幂(小数点向左移则指数为正,向右移则指数为负。

2019年中考数学试题含答案

2019年中考数学试题含答案

2019年中考数学试题含答案一、选择题1.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ C .()()222323m n ++= D .()222349m n ++= 2.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .185.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是()A.10B .5C .22D.36.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A 、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.127.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A.B.C.D.9.下列各曲线中表示y是x的函数的是()A.B.C.D.10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tan tanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,正比例函数1y=k x与反比例函数2ky=x的图象相交于点A、B两点,若点A的坐标为(2,1),则点B的坐标是()A.(1,2)B.(-2,1)C.(-1,-2)D.(-2,-1)12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题13.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x 的图象上,则k 的值为________.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .18.若一个数的平方等于5,则这个数等于_____.19.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.22.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 23.直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接EF ,过点F 作FG∥ED 交AB 于点G .(1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE 的面积.24.解方程:3x x +﹣1x =1. 25.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 2.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。

(完整word版)2019年江苏省南京市中考数学试卷(word版含详解)

(完整word版)2019年江苏省南京市中考数学试卷(word版含详解)

南京市2019年初中学业水平考试数学注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置.......上)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13 000亿美元,用科学计数法表示13 000是()A.0.13×105B.1.3×104C.13×103D.130×102【答案】B.【考点】科学记数法.【分析】把一个大于10或小于1的正数写成a×10n的形式,其中:1≤a<10,n是整数.应用方法:把小数点移动到第一个不是0的数字后面,移几位就乘以10的几次幂(小数点向左移则指数为正,向右移则指数为负。

)注意:本题要审题,用科学记数法表示的数:是不带单位的13 000,而不是13 000亿.【解答】解:13 000=1.3×104.故选B.2.计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【答案】D.【考点】幂的运算:(a m)n=a mn,(ab)n=a n b n.【分析】利用幂的运算法则直接计算.【解答】解:原式=a2×3×b3.=a6b3.3.面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【答案】B.若x2=a(a≥0),则x叫做a的平方根,a(a≥0)的平方根表示为± a ;正数的正的平方根也叫它的算术平方根,a(a≥0)的算术平方根表示为 a ;若x3=a,则x叫做a的立方根,a的立平方根表示为3a ;求一个数a的平方根的运算,叫做开平方,求一个数的立方根的运算叫做开立方;a(a≥0)开平方的结果表示为± a .【分析】正方形的边长是正数,所以边长为正方形面积的算术平方根.【解答】边长为正方形面积的正的平方根,即:算术平方根,故选:B.4.实数a、b、c满足a>b,且ac<bc,它们在数轴上的对应点的位置可以是()【答案】A.【考点】在数轴上,右边的点表示的数大于左边的点表示的数.不等式的性质:(1)不等式的两边都加上(或都减去)同一个数或同一个整式,不等号的方向不变.如:a>b→a±c>b±c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,如a>b,c>0→ac>bc;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,如a>b,c<0→ac<bc.【分析】由a>b得:在数轴上数a表示的点在数b表示的点的右边;由ac<bc得:a、b同时乘以数c后,不等号改变了方向,所以数c是负数.【解答】在数轴上数a表示的点在数b表示的点的右边,数c是负数,故选:A.5.下列整数中,与10-13 最接近的是()A.4 B.5 C.6 D.7【答案】C.【考点】估算.【分析】用平方法分别估算13 的取值范围,借助数轴进而估算出10-13 的近似值.【解答】□解法1:估算10 :∵32=9,42=16.∴3<13 <4.∵3.52=12.25.∴6<10-13 <6.5 .□解法2:借助数轴估算:13 的近似值.画数轴:观察数轴可得:3.5<13 <4.∴6<10-13 <6.5.故选:C.6.如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【答案】D.【考点】轴对称的有关性质:如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.平移的有关性质:对应线段平行(或在同一条直线上)且相等,对应点所连的线段平行(或在同一条直线上)且相等.旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心连线所成的角彼此相等.中心对称的有关性质:成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. 【分析】利用轴对称、旋转的性质,先进行1次旋转或轴对称,计作△A″B″C″,不妨将B与B′经过一次变换先重合,再进行二次变换,看二次变换后△A″B″C″能否与△A′B′C′重合.【解答】■结论①1次旋转:不妨以线段BB′的中点O为旋转中心.故①错,A错■结论②1次旋转和1次轴对称:1次旋转——以线段BB′的中点O为旋转中心.1次轴对称——以A′A″的中垂线为对称轴.或1次轴对称——以C′C″的中垂线为对称轴.故②错,B、C错至此,通过排除法即可得:选项D正确,验证如下. ■结论③2次旋转.1次旋转:以线段BB′的中点O为旋转中心;2次旋转:以线段A ″A ′的中点为旋转中心.两次旋转后图形重合.■结论④2次轴对称.1次轴对称:以BB ′的中垂线为对称轴;2次轴对称:以C ″C ′的中垂线为对称轴. 两次轴对称后图形重合.故选:D.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相....应位置...上) 7.-2的相反数是______;12 的倒数是_________. 【答案】2;2.【考点】相反数、倒数的概念.若两个数的积等于1,这两个数互为倒数;a ≠0时,a 的相反数表示为1a ,0没有倒数.表示为-a.【分析】利用相反数、倒数的概念直接写出答案.【解答】-2的相反数是-(-2)=2;∵12×2=1,∴12的倒数是2.8.计算147-28 的结果是_____________.【答案】0.【考点】二次根式的化简.【分析】根据二次根式运算法则进行化简,掌握常用化简方法、结论即可;本题涉及到的运算法则:(a)2=a(a≥0);常用结论:m2n =m n (m≥0,n≥0).【解答】147-28 .=1477 ·7-22×7 . =1477-27 .=27 -27 .=0.9.分解因式(a-b)2+4ab的结果是________________.【答案】(a+b)2.【考点】完全平方公式:(a±b)2=a2±2ab+b2及逆用完全平方公式分解因式:a2±2ab+b2=(a±b)2.【分析】本题无公因式可提取,也不能直接应用公式进行解法分解因式,先将(a-b)2应用完全平方公式展开,再合并同类项,会发现,其可逆用完全平方公式进行分解因式.【解答】(a-b)2+4ab.=a2-2ab+b2+4ab.=a2+2ab+b2.=(a+b)2.10.已知2+ 3 是关于x的方程x2-4x+m=0的一个跟,则m=____________.【答案】1.一元二次方程a x 2+b x +c =0(a ≠0)根与系数的关系:x 1+x 2=-b a ,x 1·x 2=ca . 【分析】解法有2种:解法一:根据根的定义,把根“2+ 3 ”代入原方程中,得到两个关于m 的方程,解此方程即可求解;解法二:根据一元二次方程a x 2+b x +c =0(a ≠0)根与系数的关系,设另一个根为:x 1. 根与系数的关系列出含有x 1与m 的方程组,解此方程组即可.【解答】解法一:根据题意,得:(2+ 3 )2-4(2+ 3 )+m =0. 解这个方程,得:m =1. 解法二:设这个方程的另一个根为x 1.根据题意得:⎩⎨⎧2+ 3 +x 1=4 ①(2+ 3 )x 1=m ②.由①得:x 1=2- 3 ③.把③代入②得:m =(2+ 3 )(2- 3 ). 即:m =1.比较上述两种解法,解法一、二都比较便捷.11.结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______________________ ∴a ∥b.【答案】∠1+∠3=180°.【考点】三线八角——同旁内角的识别:在截线c 的同侧,夹在截线a 、b 之间,呈“U ”字型.【分析】图形中呈现了不同关系的角:对顶角(如∠2与∠4)、邻补角(如∠2与∠3)、同位角(如∠1与∠2)、内错角(如∠1与∠4)、同旁内角(∠1与∠3);考试时需要根据题意进行识别. “同旁内角互补,两直线平行”的符号语言只能选择“∠1与∠3”. 【解答】∵∠1+∠3=180°.∴a ∥b.12.无盖圆柱形杯子的展开图如图所示,将一根长20cm 的细木筷斜放在杯子内,木筷露在杯子外面的部分至少有_________cm.【答案】5.【考点】圆柱的侧面展开图,勾股定理等.【分析】如图1,画出圆柱体及其侧面展开图,确定对应线段的长度;图1 图2 图3根据题意“细木筷斜放在杯子内,木筷露在杯子外面的部分至少多少cm ”,确定细木筷斜放在杯子内中位置——最多在杯子内的长度,显然应置杯底与杯口斜对角位置(如图2),即圆柱体截面图中的对角线位置(如图3),其与杯高与底面直径构成直角三角形(图3中Rt △ABC ),利用勾股定理即可求出此时杯内木筷的长度.【解答】AB =12²+9² .=15.露在外面的长度=20-15=5(cm ).13.为了了解某区初中生学生视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:根据抽样调查结果,估计该区12 000名初中学生视力不低于4.8的人数是_____________. 【答案】7200. 【考点】样本估计总体.【分析】利用样本中“视力不低于4.8人数的频率”可以近似看做总体中“视力不低于4.8人数的频率”;样本中“视力不低于4.8人数的频率”=视力不低于4.8人数样本容量 .【解答】12000×80+93+127500 =7200.14.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,点C 、D 在⊙O 上,若∠P =102°,则∠A +∠C =_____°.【答案】219.【考点】圆的切线垂直于经过切点的半径,同(等)弧所对的圆周角等于它所对的圆心角的一半,直径所对的圆周角是直角等;常规辅助线:过切点的半(直)径,构造直径所对的圆周角等;由特殊到一般的数学思想方法等.【分析】本题求“∠A +∠C 等于多少度”,显然其是一个定值,其与点D 在圆上的位置没有关系,根据图示,只要点D 在图中优弧︵AC 上即可,根据由特殊到一般的数学思想方法,可将点D 在优弧︵AC 上移动到一个特殊位置,即弦AD (或AC )经过圆心,不妨让弦AD 经过圆心,即AD 为⊙O 的直径,如图1;AD 为直径时:(1)由于PA 为切线,所以∠A =90°;(2)AD 所对圆周角为直角,连接AC ,∠C =∠1+∠2=90°+∠2,如图2;∠2等于︵AB 所对圆心角的一半,所以连接OB ,∠2=12 ∠3,∠4=90°,如图3; ∠3放在四边形OAPB 中即可求得为39°. ∴“∠A +∠C ”=90°+90°+39°=219°.如果是一般的图形,只要作直径AE 连接EC ,如图4.由于∠1=∠2,所以∠DAP +∠DCB =∠EAP +∠ECP ,也就转化为图1了.图1 图2 图3 图4【解答】以下给出的是一般情况下的求解过程,在考试时,可选择用特殊情况下的图形来求解,其结果是不变的.如图,作直径AE ,连接EC 、AC 、OB .∵∠1=∠2.∴∠DAP +∠DCB =∠EAP +∠ECP. ∵PA 、PB 为切线. ∴∠OAP =∠5=90°.∴∠4=360°-∠OAP -∠5-∠P. ∵∠P =102°. ∴∠4=78°. ∴∠3=12 ∠4=39°. ∵AE 为直径. ∴∠ECA =90°.∴∠EAP +∠ECP =∠EAP +∠ECA +∠3.=90°+90°+39°. =219°.即:∠DAP +∠DCB =219°.15.如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB.若AD =2,BD =3,则AC 的长为_____________.【答案】10 .【考点】线段垂直平分线性质及基本图形,如图1,角平分线性质及基本图形如图2、图3,图形的相似等图1中:DB=DC,两个Rt△全等;图2中:作DG⊥AC,则DE=DG,△DCE≌△DCG等;图3中:作DF∥AC,则∠1=∠2=∠3,DF=FC,△BDF∽△BAC等;综合图1~3,除了上述结论外,还可应用勾股定理等.【分析】与已知条件中长度联系最紧的是相似,依此逐步推理:如图4,DF∥AC→△BDF∽△BAC→DFAC=BDBA=35,设DF=3k,AC=5k,则FC=DF=3k.;DF∥AC→△BDF∽△BAC→BFBC=BDBA→BFFC=BDDA=32→BF=92k,则BC=152k,BE=EC=154k,EF=34k;根据勾股定理:BD²-BE²=DF²-EF²=DE²即可求出k的值.据上分析,本题不需要应用图2的结论.【解答】如图,作DF∥AC交BC于点F,设MN交BC于点E.则:∠2=∠3.∵DC平分∠ACB.∴∠1=∠2.∴∠1=∠3.∴DF=FC.∵DF∥AC.∴△BDF∽△BAC.DF AC=BDBA=BFBC.∵AD=2,BD=3∴DFAC=BFBC=35,设DF=3k.则AC=5k,FC=DF=3k.∵BFBC=35.∴BFFC=32.∴BF =92 k. 则BC =152 k. ∵E 为BC 中点. ∴BE =EC =154 k. EF =EC -FC =34 k. 在Rt △ADE 与Rt △DFE 中. BD ²-BE ²=DF ²-EF ²=DE ².∴3²-(154 k )²=(3k )²-(34 k )². 解得:k =105 (负值舍去). ∴AC =5k =10 .16.在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是____________________. 【答案】4<BC ≤8 33 .【考点】线段的运动与变化,三角函数,斜边大于直角边等.【分析】■可利用含60°的三角板直观演示点A 运动过程中线段AB 、BC 的变化规律,注意AB 在运动过程中的特殊位置,即△ABC 为直角三角形、等腰三角形等.图1 图2 图3 图4 图5图1:起始图,点A 与点C 重合,初步演示观察,不难发现:点A 沿三角板斜边所在的射线向左上方的运动过程中,∠A 逐渐减小,∠B 逐渐增大,BC 长线增大,然后又逐渐减小;图2:点A 沿三角板斜边所在的射线运动,此时∠A 为钝角,此过程中∠A >∠B ,BC 逐渐增大; 图3:点A 运动到第一个特殊位置,∠A =90°,此过程中∠A >∠B ,BC 达到最大,应用三角函数可求得其最大值为8 33 ;图4:点A 运动到第二个特殊位置,∠A =60°,此过程中∠A >∠B ,BC 逐渐减小,当∠A =60°时,∠B =60°;可见BC >4图5:点A 继续运动,则∠BAC <60°,∠B >60°,此过程中,∠A <∠B ,不满足题意.■也可从特殊的三角形开始分析,即∠A =∠B ,此时△ABC 为等边三角形,如图6;此时,若点A 沿射线CA 方向运动,则∠A <60°(如图7),故点A 只能沿射线AC 方向运动,其运动过程中的特殊位置为∠A =90°(如图9);满足条件的一般图形分两类:60°<∠A <90°,90°<∠A <180°,即∠A 分别为锐角或钝角(如图9、10).图6 图7 图8 图9 图10 【解答】(1)当∠A =60°时.△ABC 为等边三角形,BC =AB =4. (2)当∠A =90°时.△ABC 为Rt △,BC =AB sinC =8 33 . (3)当60°<∠A <90°.作BD ⊥AC 于D. BD =BC ·sinC. 在Rt △ABD 中. BD <AB. ∴BC ·sinC <AB. BC ·sin60°<4. 即:BC <8 33 .(4)当90°<∠A <180°.作BD ⊥AC 交CA 延长线于D.同(3)解法:BC <8 33 . 综上:4<BC ≤8 33 .三、解答题(本大题共11小题,共88分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x +y )(x 2-xy +y 2). 【考点】多项式乘以多项式,合并同类项.【分析】直接应用多项式乘以多项式法则,注意不要漏乘. 【解答】原式=x 3-x 2y +xy 2+x 2y -xy 2+y 3.=x 3+y 3.【考点】多项式乘以多项式,合并同类项.【分析】直接应用多项式乘以多项式法则,注意不要漏乘. 【解答】18.(7分)解方程x x -1 -1=3x 2-1 .【考点】分式方程的解法.【分析】根据解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1、检验等即可得解 .注意点主要有:去分母时不要漏乘,去分母后分子如是多项式需要添加括号.本题将x 2-1分解因式,确定最简公分母后,去分母即可转化为整式方程. 【解答】原方程可转化为:x x -1 -1=3(x +1)(x -1). 方程两边乘(x +1)(x -1),得:x (x +1)-(x +1)(x -1)=3. 整理,得:x +1=3. 解得:x =2.检验:当x =2时,(x +1)(x -1)≠0. ∴原分式方程的解为:x =2.19.(7分)如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F. 求证:△ADF ≌CEF.【考点】中点的定义;三角形全等的判定:SAS、ASA、AAS、SSS,HL;平行四边形的判定:两组对边分别平行,两组对边分别相等,一组对边平行且相等,对角线互相平分.【分析】对照已知条件,观察图形不难发现四边形DBCE是平行四边形,根据D为AB中点,即可得到AD =BD=CE,欲证的两个三角形由平行可得两组内角(均为内错角)相等.【解答】证明:∵DE∥BC,CE∥AB.∴四边形DBCE是平行四边形.∴BD=CE.∵D是AB中点.∴AD=BD.∴AD=CE.∵CE∥AB.∴∠A=∠1,∠2=∠E.∴△ADF≌CEF.20.(8分)下图是某市连续5天的天气情况(1)利用方差判断该市这五天的日最高气温波动大还是日最低气温波动大;(2)根据上图提供的信息,请再写出两个不同类型的结论.【考点】从图中获取信息,方差的意义与计算,数据与客观世界之间的联系,分析与综合的能力.【分析】问题(1)利用方差计算公式直接计算,方差越大,波动越大;方差计算分两步,先求平均数,再计算方差:-x =1 n (x 1+x 2+…x n ).s 2=1 n 〔(x 1--x )2+(x 2--x )2+…(x n --x )2〕.问题(2)数据与客观世界之间的联系,可以从不同的角度来分析:天气现象与最高气温、天气现象与最低气温,天气现象与温差、天气现象与空气质量等. 【解答】这五天的日最高气温和日最低气温的平均数分别为: (1)-x 高=1 5 (23+25+23+25+24)=24 -x 低=1 5 (21+22+15+15+17)=18. 方差分别为:s 2高=15 〔(23-24)2+(25-24)2+(23-24)2+(25-24)2+(24-24)2〕=0.8.s 2低=1 5 〔(21-18)2+(22-18)2+(15-18)2+(15-18)2+(17-18)2〕=8.8.∵s 2高< s 2低.∴这五天的日最低气温波动较大.(2)本题答案不唯一,下列解法供参考.如:①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是2℃、3℃、8℃、10℃、7℃,可以看出雨天的日温差较小;②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了;③27日、28日、29日天气现象依次是晴、晴、多云,最低气温分别为15℃、15℃、17℃,说明晴天的最低气温较低.21.(8分)某校计划在暑期第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动. (1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天.....,其中有一天是星期二的概率是_________. 【考点】概率的计算方法,枚举法、树状图、列表法在求概率中的应用.【分析】选用适当分析工具(枚举法、列表法、树状图)确定所有等可能的结果与符合条件的结果是解决此类问题的常用方法.选择不同的分析工具,解答过程会有差异, 繁简程度也有区别.【解答】(1)枚举法:甲同学随机选择两天,所有可能出现的结果共有6中,即:(星期一,星期二)、(星期一,星期三)、(星期一,星期四)、(星期二、星期三)、(星期二、星期四)、(星期三、星期四).这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有3种,即(星期一,星期二)、(星期二、星期三)、(星期二、星期四).∴P (A )=36 =12 . 列表法:所有可能出现的结果共有12中,这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有6种.∴P (A )=612 =12 . 树状图:所有可能出现的结果共有12中,这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有6种.∴P (A )=612 =12 .(2)枚举法:乙同学随机选择连续的两天,所有可能出现的结果共有3中,即:(星期一,星期二)、(星期二、星期三)、(星期三、星期四).这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有2种,即(星期一,星期二)、(星期二、星期三).∴P (A )=23 . 列表法:所有可能出现的结果共有6中,这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有4种.∴P (A )=46 =23 . 树状图:所有可能出现的结果共有6中,这些结果出现的可能性相等,所有的结果中,满足有一天是星期二(记为事件A )的结果有4种.∴P (A )=46 =23 .22.(7分)如图,⊙O 的弦AB 、CD 的延长线相交于点P ,且AB =CD 求证:PA =PC.【考点】弦、弧之间的关系,圆周角与弧之间的关系,垂径定理,三角形全等等.【分析】本题条件比较简单,需要结合圆的有关知识进行一般推理:弦等可以得出弧等、圆周角相等,弦可以联想垂径定理,构造垂径定理的基本图形,可进一步得到全等三角形.据此分析,由弦等连接AC,只要证∠A=∠C;若构造垂径定理的基本图形,可用全等来证.【解答】方法一:如图,连接AC.∵AB=CD.∴︵AB =︵CD .∴︵AB +︵BD =︵CD +︵BD .即︵AD =︵BC .∴∠A=∠C.∴PA=PC.方法二:如图,连接AD、BC.∵AB =CD. ∴︵AB =︵CD .∴︵AB +︵BD =︵CD +︵BD . 即︵AD =︵BC . ∴AD =BC. ∵∠1=∠2. ∴∠3=∠4. 又∵∠A =∠C. ∴△PAD ≌△PCB. ∴PA =PC. 方法三:如图,连接OA 、OC 、OP ,作OE ⊥AB 于E ,OF ⊥CD 于F.∵OE ⊥AB ,OF ⊥CD. ∴AE =12 AB ,CF =12 CD. ∵AB =CD. ∴AE =CF. ∵OA =OC.∴Rt △AOE ≌Rt △COF ∴OE =OF. 又∵OP =OP.∴Rt △POE ≌Rt △POF. ∴PE =PF.∴PE +AE =PF +CF 即:PA =PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x-3.(1)当k=-2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图像,直接写出k的取值范围.【考点】一次函数的图像和性质,三个“一次”的关系,一次函数图像与k、b值之间的关系等.【分析】问题(1)可用代入法并建立不等式解答,也可利用函数图像解答.问题(2)关键积累并熟悉函数图像随着k值的变化,y=kx(k≠0)、y=kx+b(k≠0)函数图像变化规律,即“操作实践经验”:实数范围内,当k>0时,在k值逐渐增大过程中,y=kx(k≠0)位于第一象限的图像与x轴正方向的夹角逐渐增大,并且向y轴无限接近,简单的看成其图像绕原点作逆时针旋转;k<0时,在k值逐渐增大过程中,y=kx(k≠0)位于第二象限的图像与x轴正方向的夹角逐渐增大,并且向x轴无限接近,简单的看成绕原点作逆时针旋转,如图1.图1 图2y=kx+b(k≠0)的图像即把y=kx(k≠0)的图像平移|b|单位后所得,在k值逐渐增大过程中,其图像的变化与y=kx(k≠0)的图像类似:当k>0时,在k值逐渐增大过程中,y=kx+b(k≠0)位于x轴上方的图像与x轴正方向的夹角逐渐增大,并且向y轴无限接近,简单的看成其图像绕点(0,b)作逆时针旋转;k<0时,在k值逐渐增大过程中,y=kx+b(k≠0)位于x轴上方的图像与x轴正方向的夹角逐渐增大,并且向过点(0,b)且平行于x轴的直线无限接近,简单的看成绕点(0,b)作逆时针旋转,如图2.两个图像不重合的一次函数y1=k1x+b1(k1≠0)与y2=k2x+b2(k2≠0)且b1≠b2的位置关系:当k1≠k2时,y1与y2相交,当y1=y2时,y1与y2平行,如图3.图3本题首先求出x =1时,两函数图像的交点坐标为A (1,-2),此点是分析问题的关键点,同时过点(1,0)作垂直于x 轴的直线l ;y 1 的b =2,可知y 1 过点(0,2),设为点B ,此时y 1即为直线AB ,可以求出此时k =-4,发现当x <1时,即在直线l 的左侧y 1>y 2,故k =-4是符合题意的解,如图4;只要点A 沿着y 1的图像向右上方移动,即y 1绕点B 逆时针旋转,所得到的k 值均符合题意,如图5、图6;随着k 的增大,A 沿着y 1的图像向右上方移动,当k =1时,y 1的图像∥y 2的图像,符合题意,如图7; 当k >1时, y 1与y 2图像交点在第四象限,如图8,此时图像上存在y 1<y 2的点,即当x <x A ′时,y 1<y 2,故不符合题意.图4(k =-4) 图5(k =-1) 图6(k =14 ) 图7(k =1)图8(k =3)注意,已知条件中k ≠0.综上分析,k 的取值范围为:-4≤k ≤1,且k ≠0. 【解答】-4≤k ≤1,且k ≠0.24.(8分)如图,山顶有一塔AB ,塔高33m.计划在塔的正下方沿直线CD 开通穿山隧道EF.从与点E 相距80m 的C 处测得A 、B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度.(参考数据:tan22°≈0.40,tan27°≈0.51)【考点】三角函数的应用.【分析】三角函数的应用通常需要构造直角三角形,解法有两种,其一为直接计算,其二为不能直接计算时需要建立方程(组)进行解答,方程模型通常有:线段的和差、三角函数式、勾股方程等.本题可以通过延长AB 交CD 于点G ,则AG ⊥AD 来构造直角三角形,如图1.图1已知条件中CE =80,DF =50,只要求出CD 长,即可求出EF 长.从而构造出三个直角三角形中,公共边AG 是连接三个三角形之间的桥梁,不难发现DG =AG ,Rt △ACG 、Rt △BCG 的公共边CG 是联系两个直角三角形的桥梁,方程可以由:AG -BG =AB (33m )建立,只要选择一个线段长为未知数(x ),把AG 、BG 分别用x 的代数式表示出来即可求解,显然,选择CG 为未知数最为合适.【解答】如图,延长AB 交CD 于点G ,则AG ⊥AD ,设CG =x .在Rt △ACG 中,∠ACG =27° ∵kan ∠ACG =AG CG .∴AG =CG ·tan ∠ACG =x ·tan27°. 在Rt △BCG 中,∠BCG =22°∵kan ∠BCG =BGCG .∴BG =CG ·tan ∠ACG =x ·tan22°. ∵AB =AG -BG.x ·tan27°-x ·tan22°=33. 解得:x ≈300. ∴CG ≈300.∴AG =x ·tan27°≈153. 在Rt △ADG 中,∠ADG =45° ∵kan ∠ADG =AGDG . ∴AD =AG =153. ∴EF =CD -CE -DF.=CG +DG -CE -DF. =300+153-80-50. =323.∴隧道EF 的长度约为323m .25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m.要求扩充后的矩形广场长与宽的比为3∶2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩建区域都铺设地砖.铺设地砖费用每平方米100元.如果计划总费用642 000元,扩充后广场的长和宽应分别是多少米?【考点】二元一次方程组的应用.【分析】根据题意描述的相等关系,选择适当的设未知数的方法进行解答即可.本题描述的数量关系有:扩充后:矩形广场长∶宽的比=3∶2;扩建费用+铺地砖的费用=642 000.【解答】设扩充后广场的长为3xm ,宽为2xm.根据题意,得:30(3x ·2x -50×40)+3x ·2x ·100=642 000. 解得:x 1=30,x 2=-30(不合题意,舍去). ∴3x =90,2x =60.答:扩充后广场的长和宽应分别为90m 和60m.26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【考点】菱形的判定,直线与圆的位置关系,相似三角形,实践与操作经验等.【分析】问题(1)由已知可得DG∥EF,DG=DE=EF,易证四边形DEFG是菱形;问题(2)随着点D的位置变化,DG的长度也在变化,作法的第2步,弧与直线AB和线段AB交点的个数也发生变化,弧与直线AB和线段AB交点的个数由弧的半径(DE长)与点D到直线AB的距离(表示为DM)大小关系来决定,不妨看作点D从点C开始沿CA方向移动,随着CD的增大,DE长度逐渐增大,D到直线AB的距离(DM长)逐渐减小:当DM>DG时,弧与AB没有交点,不能作出菱形,如图1;当DM=DG时,弧与AB相切,只有1个公共点M,即点E,可作出1个菱形DEFG,如图2;当DM<DG时,分为以下几种情况:1)弧与线段AB有2个交点,点E1、E2,可作出2个菱形DE1F1G和DE2F2G,如图3;2)弧与线段AB有2个交点,点E1、E2,其中点E1与点A重合,可作出2个菱形DE1F1G和DE2F2G,此时DG=DA,如图4;3)弧与直线AB有2个交点,与线段AB只有1个交点,点E1、E2,其中点E1在直线AB上,不在线段AB上(即在点A的左侧),可作出1个菱形DE2F2G,如图5;4)弧与直线AB有2个交点,与线段AB只有1个交点,点E1、E2,其中点E1在直线AB上,不在线段AB上(即在点A的左侧),DE2与BC平行,即点F2与点B重合,可作出1个菱形DE2F2G,如图6;5)弧与直线AB有2个交点,与线段AB没有交点,不能作出菱形,如图7.图1 图2 图3图4 图5 图6图7只要求出图2、图4、图6中线段CD的长即可,根据△CDG∽△CAB及相似三角形的有关性质即可求得对应的CD长.【解答】(1)证明:∵DG=DE,DE=EF.∴DG=EF.∵DG∥EF.所有四边形DEFG是平行四边形.又∵DE=EF.∴□DEFG是菱形.(2)参考解法:图2中:设DG=x.DG=DM,四边形DMFG为特殊菱形,即正方形.作CH⊥AB于H,交DG于点N.则:DG=DE=NH=x.由DG∥AB可得:△CDG∽△CAB.AC=3,BC=4,根据勾股定理:AB=5AB·CH=AC·BC=2S△ABC,求得:CH=12 5.由△CDG ∽△CAB 得: DG AB =CN CH →DG AB =CH -NH CH →x 5 =125 -x 125 →x =6037 →DG =6037 .由△CDG ∽△CAB 得:CD CA =DG AB →CD 3 =60375 →CD =3637 . 图4中:AD =DG.由△CDG ∽△CAB 得:DG AB =CD CA →DG CD =AB CA =53 . 【注:也可用cos ∠CDG =cos ∠CAB →CD DG =CA AB =35 】 设DG =5y ,CD =3y. 则AD =DG =5y.由CD +AD =AC →3y +5y =3→y =38 →CD =3y =98 . 图6中:DG =BG.与图4的解法一样:DG CG =AB BC =54 . 设DG =5n ,CG =4n. 则BG =DG =5n.由CG +BG =BC →5n +4n =4→n =49 →CG =169 ,DG =209 . 由DG CD =AB CA =53 →CD =43∴当0≤CD <3637 或43 <CD ≤3时,菱形的个数为0; 当CD =3637 或98 <CD ≤43 时,菱形的个数为1; 当3637 <CD ≤98 时,菱形的个数为2.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1-x2|+|y1-y2|.【数学理解】(1)①已知点A(-2,1),则d(O,A)=__________;②函数y=-2x+4(0≤x≤2)的图像如图①所示,B是图像上一点,d(O,B)=3,则点B的坐标是___________________.①②③(2)函数y=4x(x>0)的图像如图②所示.求证:该函数的图像上不存在点C,使d(O,C)=3.(3)函数y=x2-5x+7(x≥0)的图像如图③所示,D是图像上一点,求d(O,D)的最小值及对应的点D 的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【考点】.新概念的理解与应用,含绝对值的代数式的化简,分式方程的解法,一元二次方程根与系数的关系,二次函数最值的解法,【分析】.问题(1)①根据新概念直接代入计算即可.②根据函数表达式,设B(x,-2x+4),根据新概念,。

2019年南京市中考数学试题、答案(解析版)

2019年南京市中考数学试题、答案(解析版)

2019年南京市中考数学试题、答案(解析版)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13 000亿美元.用科学记数法表示13 000是( ) A .50.1310⨯B .41.310⨯C .31310⨯D .213010⨯ 2.计算()32a b 的结果是( )A .23a bB .53a bC .6a bD .63a b 3.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根4.实数a 、b 、c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( )ABC D5.下列整数中,与10( )A .4B .5C .6D .76.如图,'''A B C △是由ABC △经过平移得到的,'''A B C △还可以看作是ABC △经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④第Ⅱ卷(非选择题 共108分)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填在题中的横线上) 7.2-的相反数是 ;12的倒数是 .8.的结果是 .9.分解因式()24a b ab -+的结果是 .10.已知2是关于x 的方程240x x m +﹣=的一个根,则m = .11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵ ,∴a b ∥.12.无盖圆柱形杯子的展开图如图所示.将一根长为20 cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 cm .13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:根据抽样调查结果,估计该区12 000名初中学生视力不低于4.8的人数是 .14.如图,P A 、PB 是O 的切线,A 、B 为切点,点C 、D 在O 上.若102P ∠︒=,则A C ∠+∠= .15.如图,在ABC △中,BC 的垂直平分线MN 交AB 于点D ,CD 平分ACB ∠.若=2AD ,3BD =,则AC 的长 .16.在ABC △中,4AB =,60C ∠=,A B ∠>∠,则BC 的长的取值范围是 . 三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分7分)计算()22()x y x xy y +-+18.(本小题满分7分) 解方程:23111x x x -=--.19.(本小题满分7分)如图,D 是ABC △的边AB 的中点,DE BC ∥,CE AB ∥,AC 与DE 相交于点F .求证:ADF CEF ≌.20.(本小题满分8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大; (2)根据如图提供的信息,请再写出两个不同类型的结论.21.(本小题满分8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是 .22.(本小题满分8分)如图,O 的弦AB 、CD 的延长线相交于点P ,且AB CD =.求证:PA PC =.23.(本小题满分8分)已知一次函数12y kx =+(k 为常数,0k ≠)和23y x =-. (1)当2k =-时,若12y y >,求x 的取值范围.(2)当1x <时,12y y >.结合图象,直接写出k 的取值范围.24.(本小题满分8分)如图,山顶有一塔AB ,塔高33 m .计划在塔的正下方沿直线CD 开通穿山隧道EF .从与E 点相距80m 的C 处测得A 、B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度. (参考数据:tan220.40︒≈,tan270.51︒≈.)25.(本小题满分8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充后的矩形广场长与宽的比为32:.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642 000元,扩充后广场的长和宽应分别是多少米?26.(本小题满分9分)如图①,在Rt ABC △中,90C ∠=︒,3AC =,4BC =.求作菱形DEFG ,使点D 在边AC 上,点E 、F 在边AB 上,点G 在边BC 上.图1(1)证明小明所作的四边形DEFG 是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D 的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD 的长的取值范围.27.(本小题满分11分) 【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间距离:()1212,d A B x x y y +--=. 【数学理解】(1)①已知点()2,1A -,则(),d O A = .②函数()2402y x x =-+≤≤的图象如图①所示,B 是图象上一点,(),3d O B =,则点B 的坐标是 .图1 图2 图3(2)函数4(0)y x x=>的图象如图②所示.求证:该函数的图象上不存在点C ,使(),3d O C =.小明的作法1.如②,在边AC 上取一点D ,过点D 作DG AB ∥交BC 于点G .图22.以点D 为圆心,DG 长为半径画弧,交AB 于点E . 3.在EB 上截取EF ED =,连接FG ,则四边形DEFG 为所求作的菱形.(3)函数()2570y x x x +-=≥的图象如图③所示,D 是图象上一点,求(),d O D 的最小值及对应的点D 的坐标. 【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)图22019年南京市中考数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】B【解析】413000 1.310=⨯,故选B. 【考点】用科学记数法表示较大的数 2.【答案】D 【解析】原式()32363=a b a b ⋅=,故选D.【考点】积的乘方,幂的乘方 3.【答案】B【解析】面积为4,2是4的算术平方根,故选B. 【考点】算术平方根的意义 4.【答案】A【解析】由a b >,ac bc <知0c <,根据此条件可以判断A 图正确,故选A. 【考点】由数的大小及符号确定点在数轴上的位置 5.【答案】C【解析】因为,所以3.54,所以 3.54-->,所以10 3.510104-->,即6.5106>,所以最接近6,故选C.用有理数估计无理数的大小,要借助完全平方数实现。

江苏省南京市2019年中考数学试题及参考答案与解析

江苏省南京市2019年中考数学试题及参考答案与解析

2019年江苏省南京市中考数学试题及参考答案与解析(全卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:13000=1.3×104故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方法则解答即可.【解答过程】解:(a2b)3=(a2)3b3=a6b3.故选:D.【总结归纳】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【知识考点】平方根;算术平方根;立方根.【思路分析】已知正方形面积求边长就是求面积的算术平方根;【解答过程】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【总结归纳】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【知识考点】实数与数轴.【思路分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答过程】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【总结归纳】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.7【知识考点】估算无理数的大小.【思路分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答过程】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【总结归纳】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【知识考点】几何变换的类型.【思路分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答过程】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【总结归纳】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

2019年中考数学试卷带答案

2019年中考数学试卷带答案
∴该组数据的众数是80分或90分.
故选D.
【点睛】
本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.
7.C
解析:C
【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
故轴对称图形有4个.
故选C.
考点:轴对称图形.
8.A
解析:A
【解析】
【分析】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°= ,构建方程即可解决问题.
【详解】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.
在Rt△CDN中,∵ ,设CN=4k,DN=3k,
A.21.7米B.22.4米C.27.4米D.28.8米
9.已知 为矩形 的对角线,则图中 与 一定不相等的是()
A. B. C. D.
10.若关于x的一元二次方程 有两个实数根,则k的取值范围是()
A. B. C. D.
11.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )
A. B. C. D.
9.D
解析:D
【解析】
【分析】
【详解】
解:A选项中,根据对顶角相等,得 与 一定相等;
B、C项中无法确定 与 是否相等;
D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1.
故选:D
10.D
解析:D
【解析】
【分析】
运用根的判别式和一元二次方程的定义,组成不等式组即可解答
【详解】

中考数学真题知识分类练习试卷:实数(含答案)

中考数学真题知识分类练习试卷:实数(含答案)

实数一、单选题1.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC 的周长是、、A. 12B. 10C. 8D. 6【来源】江苏省宿迁市中考数学试卷【答案】B2.与最接近的整数是()A. 5B. 6C. 7D. 8【来源】山东省淄博市中考数学试题【答案】B【解析】分析:由题意可知36与37最接近,即与最接近,从而得出答案.详解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.点睛:此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.3.给出四个实数、2、0、-1,其中负数是(、A. B. 2 C. 0 D. -1【来源】浙江省温州市中考数学试卷【答案】D【解析】分析: 根据负数的定义,负数小于0 即可得出答案.详解: 根据题意:负数是-1,故答案为:D.点睛: 此题主要考查了实数,正确把握负数的定义是解题关键.4.实数在数轴上对应的点的位置如图所示,这四个数中最大的是(、A. B. C. D.【来源】四川省成都市中考数学试题【答案】D【解析】分析:根据实数的大小比较解答即可.详解:由数轴可得:a<b<c<d,故选D.点睛:此题考查实数大小比较,关键是根据实数的大小比较解答.5.估计的值在(、A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【来源】天津市中考数学试题【答案】D6.的算术平方根为(、A. B. C. D.【来源】贵州省安顺市中考数学试题【答案】B【解析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.学科&网7.的值等于(、A. B. C. D.【来源】江苏省南京市中考数学试卷【答案】A8.下列无理数中,与最接近的是(、A. B. C. D.【来源】江苏省南京市中考数学试卷【答案】C【解析】分析:根据无理数的定义进行估算解答即可.详解:4=,与最接近的数为,故选:C.点睛:本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.9.已知: 表示不超过的最大整数,例: 、令关于的函数(是正整数)、例:=1,则下列结论错误..的是(、A. B.C. D. 或1【来源】湖南省娄底市中考数学试题【答案】C10.估计的值应在、 、A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【来源】【全国省级联考】重庆市中考数学试卷(A卷)【答案】B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】=,=,而,4<<5,所以2<<3,所以估计的值应在2和3之间,故选B.,点睛,本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.11.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张【来源】浙江省绍兴市中考数学试卷解析【答案】D二、填空题12.化简(-1)0+()-2-+=________________________.【来源】湖北省黄冈市中考数学试题【答案】-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.详解:原式=1+4-3-3=-1.故答案为:-1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.13.已知一个正数的平方根是和,则这个数是__________、【来源】四川省凉山州中考数学试题【答案】【解析】分析:由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.详解:根据题意可知:3x-2+5x+6=0,解得x=-,所以3x-2=-,5x+6=,∴(±)2=故答案为:.点睛:本题主要考查了平方根的逆运算,平时注意训练逆向思维.14.用教材中的计算器进行计算,开机后依次按下、 把显示结果输人下侧的程序中,则输出的结果是____________、【来源】山东省潍坊市中考数学试题【答案】34+9,15.对于两个非零实数x、y,定义一种新的运算:x*y=+.若1*、、1、=2,则(﹣2、*2的值是_____、【来源】浙江省金华市中考数学试题【答案】,1【解析】分析:根据新定义的运算法则即可求出答案.详解:∵1*(-1)=2,∴,即a-b=2∴原式==−(a-b)=-1故答案为:-1点睛:本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.16.观察下列各式:、、、……请利用你所发现的规律,计算+++…+,其结果为_______、【来源】山东省滨州市中考数学试题【答案】17.计算:__________、【来源】甘肃省武威市(凉州区)中考数学试题【答案】018.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数)、已知、、则___________.【来源】湖南省娄底市中考数学试题【答案】403519.计算:______________、【来源】【全国省级联考】重庆市中考数学试卷(A卷)【答案】3三、解答题20.计算:(﹣2、2+0、【来源】江苏省连云港市中考数学试题【答案】,1【解析】分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.详解:原式=4+1-6=-1.点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.21.计算:【来源】江苏省宿迁市中考数学试卷【答案】522.计算:【答案】0【解析】分析:先分别计算0次幂、负整数指数幂和立方根,然后再进行加减运算即可.详解:原式=1-2+2=023.、1)计算:、、2)化简:(m+2)2 +4(2-m)【答案】,1,5-,,2,m2+1224.计算.【答案】13.25.计算:.【答案】326.计算:.【答案】27.计算:+、、、0、4sin45°+|、2|、【答案】328.计算:.【答案】4.29.、1)计算:sin30°+、、、0、2﹣1+|、4|、、2)化简:(1、、÷、【答案】(1)5;(2)x+1.30.对于任意实数、,定义关于“”的一种运算如下:.例如.、1)求的值;、2)若,且,求的值.【答案】,1,,,2,.31.计算: .【答案】1032.(1)计算:.(2)解方程:.【答案】(1)2;(2),.33.计算、【答案】734.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.、1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;、2、 如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D、m、=.求满足D、m)是完全平方数的所有m.【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.35.计算:|、2|、+23、、1、π、0、【答案】6。

2019年中考数学试题含答案

2019年中考数学试题含答案

2019年中考数学试题含答案一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130° 2.下列四个实数中,比1-小的数是( )A .2-B .0C .1D .23.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( ) A .27B .9C .﹣7D .﹣164.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .155.定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .256.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7×10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形 C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形8.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC 5BC =2,则sin ∠ACD 的值为( )A .5 B .25C .5 D .239.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 10.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)11.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .11 12.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .5二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.15.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.16.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.18.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.22.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:2 1.414≈,3 1.732≈)23.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.计算:(1)2(m﹣1)2﹣(2m+1)(m﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.A解析:A 【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A.5.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.6.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 解:0.0007=7×10﹣4 故选C . 【点睛】本题考查科学计数法,难度不大.7.D解析:D【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可. 【详解】对角线互相垂直且平分的四边形是菱形,故A 是假命题; 对角线互相垂直平分且相等的四边形是正方形,故B 是假命题; 对角线相等且平分的四边形是矩形,故C 是假命题; 对角线互相平分的四边形是平行四边形,故D 是真命题. 故选D . 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.9.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键10.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

2019年江苏省南京市中考数学试卷附解析

2019年江苏省南京市中考数学试卷附解析

2019年江苏省南京市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是()A.23B.32C.34D.432.若把 Rt△ABC 的各边都扩大 3倍,则各边扩大后的cosB 与扩大前的cosB 的值之间的关系是()A.扩大3倍B.缩小3倍C.相等D.不能确定3.下列问题中两个变量之间的函数关系是反比例函数的是()A.小红 1 min 制作2朵花,x(min)可以制作 y 朵花B.体积为10 cm3的长方体,高为 h(㎝)时,底面积为 S(cm2)C.用一根长为 50 cm 的铁丝弯成一个矩形,一边长为 x(㎝)时,面积为y(㎝2)D.小李接到一次检修管道的任务,已知管道长100 m,设每天能完成 l0rn,x 天后剩下的未检修的管道长为 y(m)4.如图,若将正方形分成k个全等的长方形,其中上下各横排两个,中间竖排若干个,则k 的值为()A.6 B.8 C.10 D.125.如图,在等腰梯形ABCD中,AD∥BC,∠C=60°,则∠1=()A.30°B.45°C.60°D.80°6.在□ABCD中,AC=10,BD=6,则边长AB,AD的可能取值为()A.AB=4,AD=9 B.AB=4,AD=7 C.AB=9,AD=2 D.AB=6,AD=27.点P在第二象限,若该点到2,到有y轴的距离为1,则点P的坐标是()A.(-1B.(,1)C,-l)D.(1)8.下列各个物体的运动,属于旋转的是()A.电梯从一楼升到了八楼B.电风扇叶片的转动C.火车在笔直的铁路上行驶D.一块石子扔进河里,水波在不断扩大9.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡10.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③11.桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜.哪方赢的机会大?( )A .红方B .蓝方C .一样D .不知道二、填空题12.已知⊙O 1和⊙O 2的半径分别是2和4,01O 2=6,则⊙O 1与⊙O 2的位置关系是 . 13.从1 00张分别写上1~1 00的数字卡片中,随意抽取一张是7的倍数的概率为 .14.在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE=6,sinA=35,则菱形ABCD 的周长是_____.15.在Rt △ABC 中,∠C=90°,AB=5,AC=4,则sinA 的值为________.16.抛物线22y x =−向下平移 3 个单位,得到的抛物线是 ,对称轴是 .17.在空格内填入适当的结论,使每小题成为一个真命题:(1)如果∠1和∠2是对顶角,那么 ;(2)如果22a b =,那么 .(3)如图,直线AB ,CD 被直线EF 所截,如果∠l=∠2,那么 .18.计算123−的结果是 .19.实数a 、b 在数轴上的位置如图所示,选择适当的不等号填空:(1)a b ;(2)||a ||b ;(3)b a − 0;(4)()a b −+ 0.20.请在下面这一组图形符号中找出它们所蕴含的规律,后在横线上的空白处填上恰当的图形.21.某市房产开发公司向中国建设银行贷年利率分别为 6% 和 8% 的甲、乙两种款共 500万元,一年后利息共 34 万元. 求两种贷款的数额各是多少?设甲、乙两种贷款分别为x万元,y 万元,根据题意可得方程组:.解答题22.写出一个解为负整数的一元一次方程 .三、解答题23.已知等腰三角形的底角为50°26′,底边长28. 4㎝,求这个等腰三角形的腰长和三角形的面积(结果保留 3 个有效数字).24.已知三角形的面积一定,且当底边的长a=12 cm时,底边上的高h=5㎝.(1)试说明a是h 的反比例函数,并求出这个反比例函数的关系式;(2)当a=6cm 时,求高h的值.25.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证AE=BF;(2)若BC=2cm,求正方形DEFG的边长.26.已知关于x的一元二次方程x2-m x-2=0.……①(1) 若x=-1是方程①的一个根,求m的值和方程①的另一根;(2) 对于任意实数m,判断方程①的根的情况,并说明理由.27.如图,在△ABC中,AB=AC,点P是边BC的中点,PD⊥AB,PE⊥AC,垂足分别为点D、E,说明PD=PE.28.已知:如图,AB=AD,AC=AE,∠BAD=∠CAE,则BC=DE,请说明理由.29.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.30.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为.(2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.B4.B5.C6.B7.A8.B9.C10.C11.B二、填空题12.外切13. 507 14. 4015.53 16. 223y x =−−,y 轴17.(1)∠1=∠2;(2)a=b 或a+b=0;(3)AB ∥CD18.3 19.(1)>;(2)>;(3)<;(4)<20.21.5006%8%34x y x y +=⎧⎨+=⎩22. 答案不唯一,如42x +=三、解答题23.如图所示,在△ABC 中,AB=AC ,∠B=∠C=50°26′,过A 画 AD ⊥BC,14.22BC BD CD ===(cm) 在△ABD 中,∵cos BD B AB =,∴014.222.3cos cos5026BD AB B ⋅==≈'(cm)∵tan AD B BD=,∴tan 17.2AD BD B =⋅≈(cm),面积=12442AC S AD BC ∆=⋅≈(cm 2 24. (1)∵' 三角形的面积12s ah =,∴面积S 一定,∴a 是h 的反比例函数.∵ a= 12 ,h = 5 ,∴1125302S =⨯⨯=,∴所求的函数关系式为260s a h h== (2)当 a=6 时,6060106h a ===(cm). 25.解:(1)∵ 等腰Rt △ABC 中,∠=C 90°, ∴ ∠A =∠B , ∵ 四边形DEFG 是正方形,∴ DE =GF ,∠DEA =∠GFB =90°,∴ △ADE ≌△BGF ,∴AE =BF .(2)∵ ∠DEA =90°,∠A=45°,∴∠ADE=45°.∴ AE =DE .同理BF =GF . ∴ EF =31AB=BC 231⨯=2231⨯⨯=32cm , ∴ 正方形DEFG 的边长为2cm 3. 26. 解:(1) x =-1是方程①的一个根,所以1+m -2=0, 解得m =1.方程为x 2-x -2=0, 解得, x 1=-1, x 2=2.所以方程的另一根为x =2.(2) ac b 42−=m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程①有两个不相等的实数根.27.连接AP .说明AP 是角平分线,再利用角平分上的点到角两边的距离相等 28.证明△ABC ≌△ADE ,得BC=DE.29.略30.(1)16;(2)图略。

2019年江苏省南京市中考数学试卷解析版

2019年江苏省南京市中考数学试卷解析版

2019年江苏省南京市中考数学试卷解析版一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【解答】解:13000=1.3×104故选:B.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【解答】解:面积为4的正方形的边长是√4,即为4的算术平方根;故选:B.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.5.(2分)下列整数中,与10−√13最接近的是()A.4B.5C.6D.7【解答】解:∵9<13<16,∴3<√13<4,∵3.62=12.96,3.72=13.69, ∴3.6<√13<3.7, ∴﹣3.7<−√13<−3.6, ∴10﹣3.7<10−√13<10﹣3.6, ∴6.3<10−√13<6.4, ∴与10−√13最接近的是6. 故选:C .6.(2分)如图,△A 'B 'C '是由△ABC 经过平移得到的,△A 'B 'C '还可以看作是△ABC 经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④【解答】解:先将△ABC 绕着B 'B 的中点旋转180°,再将所得的三角形绕着点B '旋转180°,即可得到△A 'B 'C ';先将△ABC 沿着B 'C 的垂直平分线翻折,再将所得的三角形沿着B 'C '的垂直平分线翻折,即可得到△A 'B 'C '; 故选:D .二、填空题(本大题共10小题,每小题2分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年南京市中考数学试卷考试时间:120分钟满分:120分{题型:1-选择题}一、选择题:本大题共6小题,每小题2分,合计12分.{题目}1.(2019年江苏南京)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元,用科学记数法表示13000是( )A.0.13×105B.1.3×104C.13×103D.130×102{答案}B{}本题考查了科学记数法.13000=1.3×10000=1.3×104.因此本题选B.{分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}2.(2019年江苏南京)计算(a2b)3的结果是( )A.a2b3B.a5b3C.a6b D.a6b3{答案}D{}本题考查了幂的运算.(a2b)3=(a2)3b3=a6b3.因此本题选D.{分值}2{章节:[1-14-1]整式的乘法}{考点:幂的乘方}{考点:积的乘方}{类别:常考题}{难度:1-最简单}{题目}3.(2019年江苏南京)面积为4的正方形的边长是( )A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根{答案}B{}本题考查了算术平方根的意义.面积为4=2.因此本题选B.{分值}2{章节:[1-6-1]平方根}{考点:算术平方根的应用}{类别:易错题}{难度:2-简单}{题目}4.(2019年江苏南京)实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以{答案}A{}本题考查了实数的大小比较、不等式的性质.∵a>b,∴表示数a的点在表示数b的点的右边.∵a>b且ac<bc,∴c<0,即表示数c的点在原点的左边.因此本题选A.{分值}2{章节:[1-9-1]不等式}{考点:数轴表示数}{考点:实数的大小比较}{考点:不等式的性质}{类别:常考题}A.B.C.D.{类别:思想方法}{难度:2-简单}{题目}5.(2019年江苏南京)下列整数中,与10( )A .4B .5C .6D .7{答案}C{}本题考查了实数的估算.∵9<13<16,∴3<4,-4<-3,10-4<10<10-3,即6<107.这说明10在6与7之间.∵3.52<13,∴3.5106.5.这说明106.∴与10最接近的整数是6.因此本题选C .{分值}2{章节:[1-6-3]实数}{考点:无理数的估值}{考点:有理数部分与无理数部分}{类别:常考题}{难度:3-中等难度}{题目}6.(2019年江苏南京)如图,△A ′B ′C ′是由△ABC 经过平移得到的,△A ′B ′C ′还可以看作是△ABC 经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④{答案}D{}本题考查了图形变换及相互间的关系.连接AA ′,在AA ′上任取一点A 1.(1)如图1(1),分别取AA 1和A 1A ′的中点O 1,O 2,将△ABC 绕点O 1旋转180°得△A 1B 1C 1,将△A 1B 1C 1绕点O 2旋转180°得△A ′B ′C ′;(2)如图1(2),分别作AA 1和A 1A ′的垂直平分线l 1,l 2,△ABC 关于l 1对称的三角形是△A 2B 2C 2,△A 2B 2C 2关于l 2对称的三角形是△A ′B ′C ′.结论①②不正确.故选D .因此本题选D .{分值}2AB ′C ′A ′第6题图图1(1)CA B B ′ C ′ A ′ 图1(2) l 1 l 2 C 2 B 2 A 2{章节:[1-23-2-1]中心对称}{考点:平移的性质}{考点:轴对称的性质}{考点:旋转的性质}{考点:几何选择压轴}{类别:发现探究}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共10小题,每小题2分,合计20分.{题目}7.(2019年江苏南京)-2的相反数是______;12的倒数是______.{答案}2,2{}本题考查了相反数、倒数的概念.a的相反数是-a,nm的倒数是mn.因此本题答案是2,2.{分值}2{章节:[1-1-2-3]相反数}{章节:[1-1-4-2]有理数的除法}{考点:相反数的定义}{考点:倒数}{类别:常考题}{难度:1-最简单}{题目}8.(2019年江苏南京)______.{答案}0{}本题考查了二次根式的计算.原式=-=0.因此本题答案是0.{分值}2{章节:[1-16-3]二次根式的加减}{考点:二次根式的加减法}{类别:常考题}{难度:2-简单}{题目}9.(2019年江苏南京)分解因式(a-b)2+4ab的结果是______.{答案}(a+b)2{}本题考查了乘法公式和因式分解.原式=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.因此本题答案是(a+b)2.{分值}2{章节:[1-14-3]因式分解}{考点:完全平方公式}{考点:因式分解-完全平方式}{类别:常考题}{难度:2-简单}{题目}10.(2019年江苏南京)已知2x的方程x2-4x+m=0的一个根,则m=______.{答案}1{}本题考查了一元二次方程根与系数的关系或者根的定义.设原方程的另一根为x1,则由根与系数的关系得(2+x1=4,(2x1=m.解得x1=2,m=1.因此本题答案是1.{分值}2{章节:[1-21-1]一元二次方程}{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:一元二次方程的定义}{考点:根与系数关系}{类别:常考题}{难度:3-中等难度}{题目}11.(2019年江苏南京)结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______,∴a ∥b .{答案}∠1+∠3=180°{}本题考查了平行线的判定.图中∠2、∠3、∠4分别是∠1的同位角、同旁内角和内错角.因此同旁内角互补应表示为∠1+∠3=180°.因此本题答案是∠1+∠3=180°.{分值}2{章节:[1-5-2-2] 平行线的判定}{考点:同旁内角互补两直线平行}{考点:几何说理}{类别:常考题}{难度:1-最简单}{题目}12.(2019年江苏南京)无盖圆柱杯子的展开图如图所示,将一根长为20cm 的细木筷斜放在该______cm .{答案}5{}本题考查了勾股定理的应用.当筷子倾斜放置时,∵以9和12=15,20-15=5,∴木筷露在杯子外面的部分至少有5cm .因此本题答案是5.{分值}2{章节:[1-17-1]勾股定理}{考点:几何体的展开图}{考点:勾股定理的应用}{类别:常考题}{难度:3-中等难度}{题目}13.(2019年江苏南京)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查,整理样本数据,得到下表:ab c1 2 34 第11题图 第12题图{答案}7200{}本题考查了利用样本估计总体的思想.视力不低于4.8的人数=80+93+127=300.由样本估计总体的思想,可知求所结果=300500×12000=7200(人). 因此本题答案是7200.{分值}2{章节:[1-10-1]统计调查}{考点:抽样调查}{考点:用样本估计总体}{类别:常考题}{难度:1-最简单}{题目}14.(2019年江苏南京)如图,P A ,PB 是⊙O 的切线,A ,B 为切点,点C ,D 在⊙O 上,若∠P =102°,则∠A +∠C =______°.{答案}219{}本题考查了圆周角定理的推论、切线长定理.连接AB ,则∠DAB +∠C =180°.由切线长定理可知P A =PB ,∴∠P AB =12×(180°-∠P )=39°. ∴∠P AD +∠C =∠P AB +∠DAB +∠C =180°+39°=219°.因此本题答案是219.{分值}2{章节:[1-24-2-2]直线和圆的位置关系}{考点:圆内接四边形的性质}{考点:切线长定理}{类别:常考题}{难度:3-中等难度}{题目}15.(2019年江苏南京)如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长为______.{答案{}本题考查了垂直平分线的性质和相似三角形.M NDC AB 第15题图 第14题图∵DN 垂直平分BC ,∴DB =DC .∴∠B =∠DCB .∵CD 平分∠ACB ,∴∠ACD =∠DCB ,∴∠ACD =∠B .又∠A =∠A ,∴△ACD ∽△ABC . ∴AC AB =AD AC,即AC 2=AD ·AB . ∴AD =2,BD =3,∴AB =5.∴AC{分值}2{章节:[1-27-1-1]相似三角形的判定}{考点:垂直平分线的性质}{考点:相似三角形的判定(两角相等)}{类别:常考题}{难度:3-中等难度}{题目}16.(2019年江苏南京)在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是______.{答案}4<BC{}本题考查了三角函数、轨迹等知识.∠A =∠B 时,△ABC 是等边三角形,此时BC =AB =AC =4.∵∠A >∠B ,∴BC >4.如图2,作△ABC 的外接圆O ,则当BC 是直径BC ′时,BC 的值最大.此时BC ′=sin 60AB. 综上所述,BC 的长的取值范围是4<BC. 因此本题答案是4<BC. {分值}2{章节:[1-24-2-1]点和圆的位置关系}{考点:等边对等角}{考点:解直角三角形}{考点:点与圆的位置关系}{考点:几何填空压轴}{类别:发现探究}{难度:5-高难度}{题型:4-解答题}三、解答题:本大题共11小题,合计88分.{题目}17.(2019年江苏南京)计算:(x +y )(x 2-xy +y 2).{}本题考查了整式的乘法.运用多项式乘多项式的法则进行计算.{答案}解:(x +y )(x 2-xy +y 2)=x 3-x 2y +xy 2+x 2y -xy 2+y 3=x 3+y 3.′图2{分值}7{章节:[1-14-1]整式的乘法}{难度:2-简单}{类别:常考题}{考点:多项式乘以多项式}{题目}18.(2019年江苏南京)解方程:1x x --1=231x -. {}本题考查了解分式方程.(1)去分母;(2)解整式方程;(3)验根.{答案}解:方程两边乘(x -1)(x +1),得x (x +1)-(x -1)(x +1)=3.解得x =2.检验:当x =2时,(x -1)(x +1)≠0.所以,原分式方程的解为x =2.{分值}7{章节:[1-15-3]分式方程}{难度:2-简单}{类别:常考题}{考点:一元二次方程的应用—增长率问题}{考点:解含两个分式的分式方程}{考点:分式方程的检验}{题目}19.(2019年江苏南京)如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F ,求证:△ADF ≌△CEF .{}本题考查了.先证四边形DBCE 是平行四边形,再用“角边角”或“角角边”证△ADF 与△CEF 全等.{答案}证明:∵DE ∥BC ,CE ∥AB ,∴四边形DBCE 是平行四边形.∴BD =CE .∵D 是AB 的中点,∴AD =DB .∴AD =CE .∵CE ∥AB ,∴∠A =∠ECF ,∠ADF =∠E .∴△ADF ≌△CEF .{分值}7{章节:[1-18-1-2]平行四边形的判定}{难度:3-中等难度}{类别:常考题}{考点:全等三角形的判定ASA,AAS}{考点:两组对边分别平行的四边形是平行四边形}{题目}20.(2019年江苏南京)下图是某市连续5天的天气情况.F DE CAB 第19题图(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据上图提供的信息,请再写出两个不同类型的结论.{}本题考查了方差的应用、数据的分析.{答案}解:(1)这5天的日最高气温和日最低气温的平均数分别是x 高=15(23+25+23+25+24)=24,x低=15(21+22+15+15+17)=18.方差分别是2 s 高=15[(23-24)2+(25-24)2+(23-24)2+(25-24)2+(24-24)2]=0.8,2 s 低=15[(21-18)2+(22-18)2+(15-18)2+(15-18)2+(17-18)2]=8.8.由2s高<2s低可知,这5天的日最低气温的波动较大.(2)本题答案不唯一,下列解法供参考.例如,①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是2℃、3℃、8℃、10℃、7℃,可以看出雨天的日温差较小.②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了.{分值}8{章节:[1-20-2-1]方差}{难度:3-中等难度}{类别:常考题}{考点:方差的实际应用}{考点:用样本估计总体}{题目}21.(2019年江苏南京)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是______.{}本题考查了用列举法求概率.{答案}解:(1)甲同学随机选择两天,所有可能出现的结果共有6种,即(星期一,星期二)、(星期一,星期三)、(星期一,星期四)、(星期二,星期三)、(星期二,星期四)、(星期三,星期四),这些结果出现的可能性相等,所有结果中,满足有一天是星期二(记为事件A)的结果有3种,即(星期一,星期二)、(星期二,星期三)、(星期二,星期四),所以P(A)=36=12.(2)23.[]乙同学随机选择连续的两天,所有可能出现的结果共有3种,即(星期一,星期二)、(星期二,星期三)、(星期三,星期四),这些结果出现的可能性相等,所有结果中,满足有一天是星期二(记为事件B )的结果有2种,即(星期一,星期二)、(星期二,星期三),所以P (B )=23. {分值}8{章节:[1-25-2]用列举法求概率}{难度:3-中等难度}{类别:常考题}{考点:一元二次方程的应用—增长率问题}{考点:两步事件不放回}{题目}22.(2019年江苏南京)如图,⊙O 的弦AB ,CD 的延长线相交于点P ,且AB =CD ,求证:P A =PC .{}本题考查了“三组量”之间的关系或垂径定理等知识.{答案}证法1:如图3(1),连接AC .∵AB =CD ,∴AB =CD .∴AB +BD =CD +BD ,即AD =CB .∴∠C =∠A .∴P A =PC .证法2:如图3(2),过点O 分别作OM ⊥AB ,ON ⊥CD ,垂足分别为M ,N .连接OA ,OC ,OP . ∵OM ⊥AB ,ON ⊥CD ,∴AM =12AB ,CN =12=CD . ∵AB =CD ,∴AM =CN .在Rt △OAM 和Rt △OCN 中,∠OMA =ONC =90°,根据勾股定理,得OMON又OA =OC ,AM =CN ,∴OM =ON .又OP =OP ,∴Rt △OPM ≌Rt △OPN .∴PM =PN .∴PM +AM =PN +CN ,即P A =PC .{分值}7{章节:[1-24-1-2]垂直于弦的直径}{章节:[1-24-1-3]弧、弦、圆心角}{难度:3-中等难度}{类别:常考题}{考点:全等三角形的判定HL}图3(2)图3(1) 第22题图{考点:垂径定理}{考点:圆心角、弧、弦的关系}{题目}23.(2019年江苏南京)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x -3.(1)当k =-2时,若y 1>y 2,求x 的取值范围.(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.{}本题考查了一次函数与不等式的关系、数形结合思想等.{答案}解:(1)当k =-2时,y 1=-2x +2.根据题意,得-2x +2>x -3.解得x <53. (2)-4≤k ≤1且k ≠0.[]如图4,直线y 2=x -3上横坐标是1的点D 的纵坐标是-2.①当直线y 1=kx +2经过点D (1,-2)时,k =-4.此时符合题意;②当直线y 1=kx +2与直线y 2=x -3平行时,k =1.此时符合题意;③当直线y 1=kx +2与直线y 2=x -3的交点P 在射线DC 上时,符合题意,此时k 的取值范围是-4<k <1且k ≠0.综上所述,k 的取值范围是-4≤k ≤1且k ≠0.{分值}8{章节:[1-19-3]一次函数与方程、不等式}{难度:4-较高难度}{类别:思想方法}{类别:易错题}{考点:一次函数的图象}{考点:一次函数的性质}{考点:两直线相交或平行问题}{考点:一次函数与一元一次不等式}{题目}24.(2019年江苏南京)如图,山顶有一塔AB ,塔高33m .计划在塔的正下方沿直线CD 开通穿山隧道EF .从与E 点相距80m 的C 处测得A ,B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.){}本题考查了三角函数的实际应用.{答案}解:如图5,延长AB 交CD 于点H ,则AH ⊥CD .在Rt △ACH 中,∠ACH =27°,∵tan27°=AH CH ,第24题图图4∴AH =CH ·tan27°.在Rt △BCH 中,∠BCH =22°,∵tan22°=BH CH, ∴BH =CH ·tan22°.∵AB =AH -BH ,∴CH ·tan27°-CH ·tan22°=33.解得CH ≈300.∴AH =CH ·tan27°≈153.在Rt △ADH 中,∠D =45°,∵tan45°=AH HD, ∴HD =AH =153.∴EF =CD -CE -FD =CH +HD -CE -FD=300+150-80-50=323.答:隧道EF 的长度约为323m .{分值}12{章节:[1-28-2-2]非特殊角}{难度:3-中等难度}{类别:常考题}{考点:解直角三角形的应用-仰角}{题目}25.(2019年江苏南京)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充后的矩形广场长与宽的比为3∶2.扩充区域的扩建费用每平方米30元,扩建后和扩充区域都铺设地砖.铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应{}本题考查了一元二次方程的应用.{答案}解:设扩充后广场的长为3x m ,则宽为2x m .根据题意,得3x ·2x ·100+30(3x ·2x -50×40)=642000.解得x 1=30,x 2=-30(不合题意,舍去).所以3x =90,2x =60.答:扩充后广场的长和宽应分别为90m 和60m .{分值}8{章节:[1-21-4]实际问题与一元二次方程}{难度:3-中等难度}{类别:常考题}{考点:一元二次方程的应用—面积问题}{题目}26.(2019年江苏南京)如图①,在Rt △ABC 中,∠C =90°,AC =3,BC =4.求作菱形DEFG ,使点D 在边AC 上,点E ,F 在边AB 上,点G 在边BC 上.第25题图 图5(1)证明小明所作的四边形DEFG 是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D 的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD 的长的取值范围.{}本题考查了菱形的判定、相似三角形、分类讨论思想等.第(2)问,思考点D 在CA 边上由点C 向点D 移动时,以点D 为圆心,DG 长为半径画弧,弧与AB 边是否有交点、有几个交点;当DG 增大时,还要考虑点F 是否在AB 边上.{答案}证明:(1)∵DG =DE ,DE =EF ,∴DG =EF .∵DG ∥EF ,∴四边形DEFG 是平行四边形.又DE =EF ,∴□DEFG 是菱形.(2)当0≤CD <3637或43<CD ≤3时,菱形的个数为0;当CD =3637或98<CD ≤43时,菱形的个数为1;当3637<CD ≤98时,菱形的个数为2. []AB5,AB 边上的高CM =AB AC BC =125. 设DG =x ,则由△CDG ∽△CAB 可知CD =35x . ①如图6(1),当DE ⊥AB 时,由相似三角形的性质,得 DG AB =CN CM ,即5x =125125x -. 解得x =6037.此时CD =3637. ②如图6(2),当DG =DE 2=DA =x 时,由△CDG ∽△CAB ,得 CD CA =DG AB ,即33x -=5x . 解得x =158.此时CD =98. ③如图6(3),当点F 与点B 重合时,DG =DE =EB =x . B C A G F D E 图6(1) M N B (F )CA GD E 图6(3) B C A (E 1) G D F 1 F 2 E 2 图6(2) CAB 图① 小明的作法 1.如图②,在边AC 上取一 点D ,过点D 作DG ∥AB 交 BC 于点G . 2.以点D 为圆心,DG 长为 半径画弧,交AB 于点E . 3.在EB 上截取EF =ED , 连接FG ,则四边形DEFG 为所求作的菱形. C A BG F D E 图② 第26题图由△ADE ∽△ACB ,得DE CB =AE AB ,即4x =55x . 解得x =209.此时CD =43. 综上所述,当0≤CD <3637或43<CD ≤3时,菱形的个数为0;当CD =3637或98<CD ≤43时,菱形的个数为1;当3637<CD ≤98时,菱形的个数为2. {分值}9{章节:[1-27-1-1]相似三角形的判定}{难度:5-高难度}{类别:思想方法}{类别:高度原创}{考点:线段尺规作图}{考点:菱形的判定}{考点:由平行判定相似}{题目}27.(2019年江苏南京)[概念认识]城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点A (x 1,y 1和B (x 2,y 2),用以下方式定义两点间的距离:d (A ,B )=|x 1-x 2|+|y 1-y 2|.[数学理解](1)①已知点A (-2,1),则d (O ,A )=______;②函数y =-2x +4(0≤x ≤2)的图象如图①所示,B 是图象上一点,d (O ,B )=3,则点B 的坐标是______.(2)函数y =4x(x ≥0)的图象如图②所示.求证:该函数的图象上不存在点C ,使d (O ,C )=3. (3)函数y =x 2-5x +7(x ≥0)的图象如图③所示,D 是图象上一点,求d (O ,D )的最小值及对应的点D 的坐标.[问题解决](4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示{}本题考查了一次函数、反比例函数、二次函数的图象和性质;一元二次方程根的判别式;转化思第27题图 图④ 第27题图 M N想;数学应用意识等.{答案}解:(1)①3;②(1,2).[]①d (O ,A )=|-2-0|+|1-0|=2+1=3;②设点B 的坐标为(t ,-2t +4)(0≤t ≤2),则|t -0|+|-2t +4-0|=3,即|t |+2|t -2|=3.∵0≤t ≤2,∴t -2<0.∴t +2(2-t )=3.解得t =1.此时-2t +4=2.∴点B 的坐标为(1,2).(2)假设函数y =4x(x >0)的图象上存在点C (x ,y ),使d (O ,C )=3. 根据题意,得|x -0|+|4x-0|=3. 因为x >0,所以4x >0,|x -0|+|4x -0|=x +4x. 所以x +4x=3. 方程两边乘x ,得x 2+4=3x .整理,得x 2-3x +4=0.因为a =1,b =-3,c =4,b 2-4ac =(-3)2-4×1×4=-7<0,所以方程x 2-3x +4=0无实数根.所以函数y =4x(x >0)的图象上不存在点C ,使d (O ,C )=3. (3)设D (x ,y ).根据题意,得d (O ,D )=|x -0|+|x 2-5x +7-0|=|x |+|x 2-5x +7|.因为x 2-5x +7=(x -52)2+34,又x ≥0, 所以d (O ,D )=x +x 2-5x +7=x 2-4x +7=(x -2)2+3.所以当x =2时,d (O ,D )有最小值3,此时点D 的坐标是(2,1).(4)如图5,以M 为原点,MN 所在直线为x 轴建立平面直角坐标系xOy .将函数y =-x 的图象沿y 轴正方向平移,直到与景观湖边界所在曲线有交点时停止.设交点为E ,过点E 作EH ⊥MN ,垂足为H .修建方案是:先沿MN 方向修建到H 处,再沿HE 方向修建到E 处.理由:设过点E 的直线l 1与x 轴相交于点F .在景观湖边界所在曲线上任取一点P ,过点P 作直线l 2∥l 1,l 2与x 轴相交于点G .因为∠EFH =45°,所以EH =FH ,d (O ,E )=OH +EH =OF .同理d (O ,P )=OG .因为OG ≥OF ,所以d (O ,P )≥d (O ,E ).因此,上述方案修建的道路最短.{分值}11{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质}{章节:[1-26-1]反比例函数的图像和性质}{难度:5-高难度}{类别:高度原创}{类别:发现探究}{类别:新定义}{考点:平面直角坐标系}{考点:根的判别式}{考点:一次函数的图象}{考点:反比例函数的图象}图7{考点:二次函数y=ax2+bx+c的性质} {考点:几何综合}。

相关文档
最新文档