立体几何复习-空间角的求法
立体几何复习专题(空间角)(学生卷)
专题一:空间角一、基础梳理1.两条异面直线所成的角(1)异面直线所成的角的范围:(0,]2π。
(2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。
两条异面直线,a b 垂直,记作a b ⊥。
(3)求异面直线所成的角的方法:(1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。
平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。
2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。
一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0︒角。
直线和平面所成角范围:[0,2π]。
(2)最小角定理:斜线和平面所成角是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。
(3)公式:已知平面α的斜线a 与α内一直线b 相交成θ且a 上的射影c 与b 相交成ϕ2角,。
内的射影所成角,是这条斜线和这个平面内的任一条直线所成角中最小的角。
3.二面角(1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。
若棱为l ,两个面分别为,αβ的二面角记为l αβ--。
(2)二面角的平面角: 过二面角的棱上的一点O 分别在两个半平面内...... 作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角。
说明:①二面角的平面角范围是[]0,π,因此二面角有锐二面角、直二面角与钝二面角之分。
②二面角的平面角为直角时,则称为直二面角, 组成直二面角的两个平面互相垂直。
(3)二面角的求法:(一)直接法:作二面角的平面角的作法:①定义法;②棱的垂面法;③三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法) (二)间接法:面积射影定理的方法。
专题45 立体几何中的向量方法(二)—求空间角和距离-2020年领军高考数学一轮复习(文理通用)
专题45立体几何中的向量方法(二)——求空间角和距离 最新考纲1.能用向量方法解决直线与直线、直线与平面、平面与平面所成角的计算问题.2.了解向量方法在研究立体几何问题中的应用.基础知识融会贯通1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【知识拓展】利用空间向量求距离(供选用) (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.重点难点突破【题型一】求异面直线所成的角【典型例题】如图,直棱柱(侧棱垂直于底面的棱柱) ABC ﹣A 1B 1C 1,在底面ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别为A 1B 1,A 1A 的中点. (1)求的值;(2)求证:BN ⊥平面C 1MN .【再练一题】如图,BC =2,原点O 是BC 的中点,点A 的坐标为(,,0),点D 在平面yOx 上,且∠BDC =90°,∠DCB =30°. (1)求向量的坐标.(2)求与的夹角的余弦值.思维升华用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【题型二】求直线与平面所成的角【典型例题】如图所示,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,BC=BA AD=m,VA⊥平面ABCD.(1)求证:CD⊥平面VAC;(2)若VA m,求CV与平面VAD所成角的大小.【再练一题】如图,四棱锥P﹣ABCD中,底面为直角梯形,AB∥CD,∠BAD=90°,AB=2CD=4,P A⊥CD,在锐角△P AD 中,E是边PD上一点,且AD=PD=3ED.(1)求证:PB∥平面ACE;(2)当P A的长为何值时,AC与平面PCD所成的角为30°?思维升华利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.【题型三】求二面角【典型例题】四棱锥P﹣ABCD中,平面PCD⊥平面ABCD,四边形ABCD为矩形,AB=4,AD=3,∠P AB=90°.(1)求证:PD⊥平面ABCD;(2)若直线BD与平面P AB所成角的正弦值为,求二面角C﹣P A﹣D的余弦值.【再练一题】如图在直角△ABC中,B为直角,AB=2BC,E,F分别为AB,AC的中点,将△AEF沿EF折起,使点A 到达点D的位置,连接BD,CD,M为CD的中点.(Ⅰ)证明:MF⊥面BCD;(Ⅱ)若DE⊥BE,求二面角E﹣MF﹣C的余弦值.思维升华利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【题型四】求空间距离【典型例题】四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PB=PD.(1)求证:PD⊥AB;(2)若AB=6,PC=8,E是BD的中点,求点E到平面PCD的距离.【再练一题】如图,P A⊥平面ABCD,四边形ABCD是正方形,P A=AD=2,M、N分别是A B.PC的中点.(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离.思维升华求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.基础知识训练1.【天津市部分区2019届高三联考一模】在如图所示的几何体中,四边形ABCD 是正方形,四边形ADPQ 是梯形,PD ∥QA ,2PDA π∠=,平面ADPQ ⊥平面ABCD ,且22AD PD QA ===.(Ⅰ)求证:QB ∥平面PDC ; (Ⅱ)求二面角C PB Q −−的大小;(Ⅲ)已知点H 在棱PD 上,且异面直线AH 与PB ,求线段DH 的长. 2.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)】已知正方形的边长为4,,E F 分别为,AD BC 的中点,以EF 为棱将正方形ABCD 折成如图所示的60的二面角,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF ,由,,A D E 三点所确定平面的交点为O ,试确定点O 的位置,并证明直线//OD 平面EMC ;(2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60;若存在,求此时二面角M EC F −−的余弦值,若不存在,说明理由.3.【陕西省汉中市2019届高三全真模拟考试】如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ;(2)若二面角D AP C −−的余弦值为3,求PF 的长度. 4.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】如图,三棱柱111ABC A B C −中,平面11ACC A ⊥平面ABC ,12AA AC CB ==,90ACB ∠=︒.(1)求证:平面11AB C ⊥平面11A B C ;(2)若1A A 与平面ABC 所成的线面角为60︒,求二面角11C AB C −−的余弦值.5.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试】如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,ABD ∆是边长为1的等边三角形,M 为线段BD 中点,3BC =.(1)求证:AF BD ⊥;(2)求直线MF 与平面CDE 所成角的正弦值;(3)线段BD 上是否存在点N ,使得直线//CE 平面AFN ?若存在,求BNBD的值;若不存在,请说明理由.6.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校级联合考试】如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(1)求证:平面BDG ⊥平面ADG ; (2)求直线GB 与平面AEFG 所成角的正弦值.7.【西藏拉萨市2019届高三第三次模拟考试】如图,等边三角形PAC 所在平面与梯形ABCD 所在平面互相垂直,且有AD BC ∥,2AB AD DC ===,4BC =.(1)证明:平面PAB ⊥平面PAC ; (2)求二面角B PC D −−的余弦值.8.【内蒙古呼伦贝尔市2019届高三模拟统一考试(一)】如图,在直三棱柱111ABC A B C −中,D 、E 、F 、G 分别是BC 、11B C 、1AA 、1CC 中点.且AB AC ==,14BC AA ==.(1)求证:BC ⊥平面ADE ; (2)求二面角1G EF B −−的余弦值.9.【广东省肇庆市2019届高中毕业班第三次统一检测】如图,在三棱柱111ABC A B C −中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A −−的余弦值.10.【广东省潮州市2019届高三第二次模拟考试】如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,EF 平面ABCD .(1)求证:平面ACF ⊥平面BDF ;(2)若60CBA ∠=︒,求二面角A BC F −−的大小.11.【山东省栖霞市2019届高三高考模拟卷】如图,在三棱锥V ABC −中,,90,2VC AB ABC AB BC ︒<∠===,侧面ACV ⊥底面ABC ,45ACV ︒∠=,D 为线段AB 上一点,且满足AD CV =.(1)若E 为AC 的中点,求证:BE CV ⊥; (2)当DV 最小时,求二面角A BC V −−的余弦值.12.【河南省百校联盟2019届高三考前仿真试卷】如图,在几何体1111ACD A B C D −中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.13.【江西省上饶市横峰中学2019届高三考前模拟考试】如图,在三棱锥P ABC −中,20{28x x −>−≥,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D −−的平面角的余弦值。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
空间立体几何专题复习《空间角的计算》
空间立体几何专题复习《空间角的计算》
学习目的:能求异面直线所成的角、直线与平面所成的角及简单的二面角的平面角大小.
一.基础知识梳理
1.写出异面直线所成的角的定义及其范围
2.写出直线与平面所成的角的定义及其范围
3.写出二面角及其平面角的定义及其范围
4.上述三种角的求法分别是怎样的?
二.经典题型
1.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为.
2.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于
3.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于.
4.如图,VA=VB=AC=AC=2,AB=2,BC=3,求二面角V-AB-C大小.
5.已知二面角α-l-β的大小为60°,m,n为异面直线,且m⊥α,n⊥β,则m,n所成的角为.
6.已知四面体ABCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.。
立体几何中的向量方法求空间角
PQห้องสมุดไป่ตู้ 为二面角 l 的平面角 .
Q
O
n
n
n
2、利用定义,在两个半平面内找垂直棱的向量
小结论:射影面积 cos
S射 S
m
n
求二面角
5 .在长方体中, A B 2 , AA
1
2 , AD 1,
P 是棱 AB 的中点 . (1)AB
1
平面 A1 PD 1, A 1 - D 1 P - B 1的平面角正切值。
四棱锥 P ABCD 中,
AB AC , PA 平面 ABCD ,且 PA AB , E 是 PD 的中点 . 求平面 EAC 与平面 ABCD 所成的角 .
2b
2
2a b
2
4 a 2b
线面角
定义法:找直线在平面内的射影(先找线面垂直) 也可利用等体积法求点到面的距离处理 向量法:求平面的法向量和直线的方向向量 l l n a
a,n
a
a,n
a,n
2
2
α
α
a,n
n
a n sin cos a , n a n
D
.
C B A
结果
22 11
二面角
定义法:在棱上一点分别在两个半平面内作垂直于棱的垂线, 转化为异面直线所成角或其补角. 三垂线法:利用三垂线定理和逆定理确定平面角
P
PO ,作 OQ 垂直交线,连结 PQ ,
向量法: 1、求两个半平面的法向量,则二面角的平面角为两法向量 夹角或其补角 补角 本角 m m m 补角
如何求解立体几何形的平面角和空间角
如何求解立体几何形的平面角和空间角在立体几何的学习中,求解平面角和空间角是十分重要的一部分。
平面角是指在平面上的角,而空间角则是在三维空间中的角。
它们的求解方法有一些区别,下面将详细介绍如何求解这两种角。
一、求解平面角平面角是指在平面上的两条射线之间的夹角。
常见的平面角有直角、锐角和钝角。
1. 直角的求解直角是指夹角为90°的角。
求解直角的方法很简单,只需使用直角尺或直角工具即可。
2. 锐角和钝角的求解锐角是夹角小于90°的角,而钝角则是夹角大于90°的角。
求解锐角和钝角的方法一般有以下几种:(1)使用量角器量角器是一种测量角度的工具,通过将量角器的一边对齐于一条射线上,然后读取量角器上的刻度,即可知道夹角的大小。
(2)使用三角函数三角函数是角的函数,其中最常用的是正弦函数、余弦函数和正切函数。
通过查表或使用计算器,可根据已知角度的三角函数值来求解夹角的大小。
二、求解空间角空间角是指在三维空间中的两条直线或两条直线与平面之间的夹角。
常见的空间角有直线角和向量角。
1. 直线角的求解直线角是指两条直线之间的夹角。
求解直线角的方法一般有以下几种:(1)使用三角函数与求解平面角类似,可以使用三角函数来求解直线角。
通过已知直线的方向向量,可以计算出它们之间的夹角。
(2)使用向量运算向量运算是求解直线角的常用方法之一。
通过计算两条直线的方向向量的点积或叉积,可以求得它们之间的夹角。
2. 向量角的求解向量角是指两个非零向量之间的夹角。
求解向量角的方法一般有以下几种:(1)使用向量的点积和模长通过求解两个向量的点积和它们的模长,可以利用三角函数来求解向量角的大小。
(2)使用向量的夹角公式向量的夹角公式是求解向量角的一种常用方法。
根据向量的定义和性质,可以得到夹角的公式,并通过计算得出夹角的大小。
总结起来,求解立体几何形的平面角和空间角需要运用几何知识、三角函数以及向量运算等方法。
通过合理选用这些方法,我们可以准确计算出所需的角度值,从而更好地理解和解决立体几何问题。
空间角的求法
学立体几何是中学数学的主要内容之一,而空间角的求解则是立体几何中对空间思维和运算能力要求较高的内容,也是每年高考的必考内容.立体几何中的空间角主要包括异面直线所成的角、直线与平面所成的角、二面角三大类.本文就这三类空间角的具体求法进行简单分析,供同学们复习时参考.一、异面直线所成的角的求法1.平移法例1如图1所示,ABC—A1B1C1是直三棱柱,∠BCA=π2,点D1,F1分别是A1B1和A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是(A)30"10(B)12(C)30"15(D)15"10解析:构建平行线将异面直线所成的角转化成平面角.∵D1,F1分别是A1B1和A1C1的中点,∴D1F1∥B1C1,D1F1=12B1C1.取BC的中点M,连接BD1,MF1.∵D1F1平行且等于12B1C1,BM平行且等于12B1C1,∴BM平行且等于D1F1,∴BMF1D1是平行四边形,MF1∥BD1.连接MA,显然∠MF1A是异面直线BD1和AF1所成的角.设BC=CA=CC1=1,则AM2=1+14=54,MF12=BD12=1+2%2&’2=32,AF12=1+14=54,∴cos∠MF1A=江山中学王陆军空间角的法求图1A1F1C1D1B1BAMC54+32-542×32!×54!=30!10.∴答案选A.2.补形法例2同例1.解析:如图2所示,将三棱柱ABC—A1B1C1补成四棱柱ABEC—A1B1E1C1.取B1E1的中点M,连接BM,D1M,D1B,显然MB∥AF1,∴∠MBD1是异面直线BD1和AF1所成的角.解△MBD1即可解决本题.3.向量法例3同例1.解析:同例1,以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,如图3所示.则点A(1,0,0),B(0,1,0),D112,12,%&1,F112,0,%&1,∴BD1=12,-12,%&1,AF1=-12,0,%&1,∴cos〈BD1,AF1〉=-14+0+15!2×6!2=30!10.4.三垂线定理法例4正三棱锥V—ABC中,D,E,F分别是VC,VA,AC的中点,P为VB上的一点,如图4所示,则直线DE与PF所成角的大小是(A)π6(B)π3(C)π2(D)π解析:当用平移法和补形法求解异面直线所成的角有困难时,可以考虑用三垂线定理法.如果一条异面直线在另一条异面直线所在平面的射影与该异面直线垂直,则问题就可迎刃而解.对于正三棱锥V—ABC,显然PF在底面的射影总在BF上,由于BF⊥AC,因此PF⊥AC.又∵DE∥AC,∴PF⊥DE.故答案选C.图2图4A1EMAF1D1E1BB1ACC1EBFDVPC学图3AF1C1B1D1A1CzxyB!’&#&"&&&!&#*()"二、直线与平面所成的角的求法1.定义法例5在正三棱柱ABC—A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AC1所成的角为α,则α等于(A)π3(B)π4(C)arcsin10!4(D)arcsin6!4解析:如图5所示,分别取AC,A1C1的中点N,M,连接MN,BN.在MN上取一点E,使NE=1.∵ABC—A1B1C1为正三棱柱,∴BN⊥平面AC1.连接AE,ED.∵ED∥BN,∴ED⊥平面AC1,∴EA为AD在平面AC1上的射影,∴∠DAE为DA与平面AC1所成的角,即为α.在Rt△ADE中,sinα=6!4,∴α=arcsin6!4,∴答案选D.2.特殊公式法例6正三棱锥P—ABC的棱长都相等,M是AB中点,如图6所示.则PA与CM所成的角是(A)arccos3!6(B)arccos3!4(C)arccos3!3(D)30°解析:设正三棱锥的棱长为a,过点A作AD∥CM,∴PA与CM所成的角即为PA与AD所成的角∠DAP,且有∠DAM=90°.再取BC中点E,连接AE,PE.显然∠PAE是AP与底面ABC所成的角.在△PAE中,cos∠PAE=AP2+AE2-PE22AP·AE=3!3,∠DAE=∠DAC+∠CAE=30°+30°=60°.由cos∠DAP=cos∠PAE·cos∠DAE,得cos∠DAP=3!3×cos60°=3!3×12=3!6,故∠DAP=arccos3!6.答案选A.3.向量法例7如图7所示,在棱长为1的图5图6AMDC1A1B1BMACDPEBCNE&#""!!$!!!!&#$(’"学#%’正方体ABCD—A1B1C1D1中,P是侧棱上的一点,CP=m.(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为32!;(2)在线段A1C1上是否存在一定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并加以证明.解析:(1)以D为原点,建立如图8所示的空间直角坐标系,连接D1P,D1A,AP,AC,DB.则点A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),B1(1,1,1),D1(0,0,1).∴BD=(-1,-1,0),BB1=(0,0,1),AP=(-1,1,m),AC=(-1,1,0).又∵AC·BD=0,AC·BB1=0,∴AC为平面BDD1B1的一个法向量.再设AP与平面BDD1B1所成的角为θ,则sinθ=cosπ2-"θ由题意得22!·2+m2!=tanθ1+(tanθ)2!=32!1+(32!)2!,解得m=13.∴当m=13时,直线AP与平面BDD1B1所成的角的正切值为32!.(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,则Q(x,1-x,1),D1Q=(x,1-x,0).依题意,若对任意的m要使D1Q在平面APD1上的射影垂直于AP,则由三垂线定理可知其等价于D1Q⊥AP,∴AP·D1Q=0,∴-x+(1-x)=0,∴x=12,即存在定点Q,且当其为A1C1的中点时,满足题设要求.三、二面角的求法1.定义法例8如图9所示,正三棱柱ABC—A1B1C1的底面边长为3,侧棱AA1=33!2,D是CB延长线上的一点,且BD=BC,求二面角B1-AD-BA1BCPAC1D1B1DyA1BCDAC1D1B1学图7z图8!!"#$!#!$!"!!!"#%!#!$!"!$,*ZP的大小.解析:在棱AD上任取一点E,使得DE=1.作EF⊥AD,EH⊥AD,分别交DB1,DB于点F,H,则∠FEH为二面角B1-AD-B的平面角,连接FH.由题设条件可知∠ADB=30°,∠DAC=90°,∴EH=3#3.∵DB1=AB1=AB2+BB12#=37#2,AD=33#,∴EF=DE·tan∠ADB1=23#3,DH=EH2+ED2#=23#3,DF=DE2+EF2#=21#3,cos∠BDB1=BDB1D=27#7.∴HF=DH2+DF2-2DH·DF·cos∠BDB1#=1,cos∠HEF=EF2+EH2-HF22EF·EH=12.故二面角B1-AD-B的大小为60°.2.三垂线法例9三棱锥P—ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,如图10所示.(1)求证AB⊥BC;(2)如果AB=BC=23#,求侧面PBC与侧面PAC所成二面角的大小.解析:(1)取AC的中点D,连接PD,BD.∵PA=PC,∴PD⊥AC.又已知平面PAC⊥平面ABC,∴PD⊥平面ABC,D为垂足.∵PA=PB=PC,∴DA=DB=DC,故可得AC为△ABC外接圆的直径,∴AB⊥BC.(2)∵AB=BC=23#,D为AC中点,∴BD⊥AC.又∵平面PAC⊥平面ABC,∴BD⊥平面PAC,D为垂足.作BE⊥PC于E,连接DE.∵DE为BE在平面PAC内的射影,∴DE⊥PC,∴∠BED为所求二面角的平面角.在Rt△ABC中,AB=BC=23#,∴BD=6#.在Rt△PDC中,PC=3,DC=6#,PD=3#,∴DE=PD·DCPC=3#×6#3=2#.∴在Rt△BDE9A1BCFAC1B1HEPABCDE学图10图)!"&($!("&"%#D)!&("#中,tan∠BED=6"2"=3",∴∠BED=60°,即侧面PBC与侧面PAC所成的二面角为60°.3.垂面法在已知的二面角α-l-β中,作棱l的垂面γ,设γ∩α=OA,γ∩β=OB,则∠AOB为二面角α-l-β的平面角.例10如图11所示,已知四棱锥P—ABCD的底面是正方形,PA⊥底面ABCD,AE⊥PD,EF∥CD,AM=EF.(1)证明:MF是异面直线AB与PC的公垂线;(2)若PA=3AB,求二面角E-AB-D的平面角的正弦值.解析:(1)∵PA⊥平面ABCD,∴PA⊥AB.又∵AB⊥AD,∴AB⊥平面PAD,故可得AB⊥AE.∵AM∥CD∥EF,且AM=EF,AM⊥AE,∴四边形AEFM为矩形,∴AM⊥MF.又∵AE⊥EF,AE⊥PD,∴AE⊥平面PEF.而AE∥MF,∴MF⊥平面PEF,∴MF⊥PC,∴MF是AB与PC的公垂线.(2)由(1)可知平面PAD垂直于二面角E-AB-D的棱AB,且平面ME∩平面PAD=AE,平面AC∩平面PAD=AD,则∠EAD为二面角E-AB-D的平面角.设AB=a,则AP=3a.由Rt△AED∽Rt△PAD,可得∠EAD=∠APD.∴sin∠EAD=sin∠APD=ADPD=aa2+(3a)2"=10"10.4.公式法例11如图12所示,在正方体AC1中,E是BC中点,求二面角D1-B1E-C1的大小.解析:D1在平面B1ECC1的射影为C1,则△D1B1E在平面B1BCC1上的射影为△B1EC1.若设正方体棱长为2,则可得B1E=5",D1B1=22",D1E=3,S△BCE=2,S△DBE=3,∴cosθ=S△BCES△DBE=图12学BC11PEDAFM-’图))%"$(./-’$’)-)(()$)"图13C1CBFB1AA1D1EDyxz"23,∴θ=arccos23.5.向量法例12如图13所示,在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2.E,F分别是线段AB,BC上的点,且EB=FB=1.求二面角C-DE-C1的正切值.解析:以A为原点,AB,AD和AA1分别为x轴,y轴和z轴的正方向建立空间直角坐标系,则有点D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).于是可得DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2).若设向量n=(x,y,z)与平面C1DE垂直,则可得:n⊥n⊥$%3x-3y=0x+3y+2z=$0%x=y=-12z.∴n=-z2,-z2,&’z=z2(-1,-1,2),其中z>0.若取n0=(-1,-1,2),则n0是与平面C1DE垂直的向量.∵向量AA1与平面CDE垂直,∴n0与AA1所成的角θ就是二面角C-DE-C1.∵cosθ=n0·|n|·||=-1×0-1×0+2×21+1+4(×0+0+4(=6(3,∴tanθ=2(2,∴二面角C-DE-C1的正切值为2(2.DEEC1AA1AA1!!!"#"!$$!%!&%学’()"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!"放下松一散步一位胖太太在街上散步,有个陌生的小男孩紧紧地跟着她。
求空间角的方法-高考数学一题多解
求空间角的方法-高考数学一题多解一、攻关方略空间角的探究是立体几何的一类重要题型.空间的角包括异面直线所成的角、直线与平面所成的角、二面角,求空间角首先要把它转化为平面角(即降维策略的应用),然后用代数的方法、三角的方法求解,或者直接用向量的方法求解,异面直线所成角的范围是0,2π⎛⎤ ⎥⎝⎦,直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦,二面角的范围是[]0,π.1.异面直线所成角的求解(1)平移法.在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线;也可在两条异面直线外空间选择“特殊点”,分别作两条两异面直线的平行线(单移或双移).(2)补形法.把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,从而发现两条异面直线间的关系.(3)向量法.建立适当的空间直角坐标系,求出两异面直线所在向量的坐标,代入向量夹角公式即可求出.求异面直线AB 与CD 的夹角θ,cos AB CD AB CDθ⋅= .2.直线与平面所成角的求解(1)直接法.通过斜线上某个特殊点作出平面的重线段,连接垂足和斜足,找出线面角(斜线段和斜线段在平面上的射影所成的角),在直角三角形中求解.(2)向量法.建立适当的空间直角坐标系,求出平面的法向量的坐标和斜线段所在直线的向量坐标,代入向量夹角公式,求出法向量与斜线段所在直线的夹角θ,则直线与平面所成角为2πθ⎛⎫- ⎪⎝⎭,求直线l 与平面α所成角θ,sin PM n PM nθ⋅=⋅ (其中n 为平面α的法向量,M 为l 与α的交点,P 为l 上不同于M 的任一点).3.二面角的求解(通常通过平面角求解)(1)定义法.直接在二面角的棱上取一点(特殊点),分别在两个半平面中作棱的垂线,得出平面角,在相应的平面图形中计算.(2)三垂线法.已知二面角其中一个面内一点到另一个面的垂线,用三垂线定理或其逆定理作出平面角,在直角三角形中计算.(3)垂面法.已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线,所成的角即为平面角,二面角的平面角所在的平面与棱垂直.(4)射影法.利用面积射影公式:cos S S θ=射影截面,其中θ为平面角的大小.(5)向量法.建立适当的空间直角坐标系,求出两个平面的法向量,然后代入向量夹角公式,求出两法向量的夹角θ,则两个平面的二面角的平面角为()πθ-或θ.求二面角θ,有1212cos n n n n θ⋅= (1n ,2n 分别为两个平面的法向量)对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法.真可谓:三维化二维紧扣定义,转化与归纳配合运用,求空间角妙据迭出,施向量法更添风采.【典例】如图30-5所示,四棱锥P ABCD -中,PA ⊥底面ABCD .AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解题策略本题主要考查空间直线和平面平行关系的证明以及求直线与平面所成角的正弦值.第(1)问,可以利用线面平行的判定定理证明,也可以用纯向量法或向量坐标法证明;第(2)问,可以通过作出相应射影角求解,若结合等体积法求点A 到平面PMN 的距离也会对解题带来方便,建立空间直角坐标系,利用空间向量求解直线与平面所成角的正弦值也是好方法.应指出的是:直线l 与平面α所成角θ与直线的方向向量d 和平面的法向量n 的夹角,d n 不是一回事,两者之间关系为sin cos ,d n θ= .第(1)问策略一立体几何方法:由线线平行⇒线面平行策略二纯向量法,即证明MN 向量与平面PAB 内两个不共线向量满足共面向量定理策略三向量坐标法,即证明MN 向量与平面PAB 的法向量垂直第(2)问策略一转化为求斜线AN 与其与平面PMN 内射影所成角策略二运用等体积法求点A 到平面PMN 的距离,再求线面角策略三运用向量坐标法求向量AN 与平面PMN 的法向量所成角的余弦值,即为AN 与平面PMN 所成角的正弦值(1)证法一(立体几何常规证法:先证线线平行,再推得线面平行)由已知得223AM AD ==,取BP 的中点T ,连接AT 、TN ,如图30-6所示.由N 为PC 的中点知TN BC ∥,122TN BC ==.又AD BC ∥,故TN AM ∥,四边形AMNT 为平行四边形,于是MN AT ∥.∵AT ⊂平面PAB ,MN ⊄平面PAB ,∴MN ∥平面PAB .证法二(纯向量法)如图30-6所示,由已知得223AM AD ==,N 为PC 的中点,以向量AB 、AD 、AP 为基底,有()12MN AN AM AP AC AM =-=+- ()12AP AB BC AM =++- ()1112222AP AB AM AM AP AB =++-=+ .∴MN 、AP 、AB 共面,又MN ⊄平面PAB ,∴MN ∥平面PAB .证法三(向量坐标法)取BC 中点E ,连接AE ,易证AE BC ⊥,即AE AD ⊥,AE A 为原点建立空间直角坐标系,如图30-7所示.则()0,0,0A ,()0,0,4P,)2,0B -,()0,2,0M,,1,22N ⎫⎪⎪⎝⎭,1,22MN ⎫=-⎪⎪⎝⎭ ,()0,0,4AP =,)2,0AB =- .可取平面PAB的法向量()n = ,则0MN n ⋅= ,MN n ⊥ .∴MN ∥平面PAB .(2)解法一(立体几何方法一:转化为求射影角)如图30-8所示,取BC 中点E ,连接AE 、CM ,易证AE BC ⊥,MC AE ∥,CM BC ⊥,CM ⊥平面PAD .作AG PM ⊥,垂足为点G ,易证AG ⊥平面PMC .连接NG ,则∠ANG 为AN 与平面PMN (即平面PMC )所成的角.易求得52AN =,AG =,sin 25AG ANG AN ∠==.解法二(立体几何方法二:等积法求距离再求线面角)由已知图30-5,平面PMN 即平面PMC ,由P ANC A PMC V V --=易求得点A 到平面PMN 的距离h =设AN 与平面PMN (即平面PMC )所成的角为θ,则sin h AN θ=.正方向,建立如图30-7所示的空间直角坐标系A xyz -,由题意知()0,0,4P ,()0,2,0M,)2,0C,,1,22N ⎫⎪⎪⎝⎭.()0,2,4PM =-,2PN ⎫=-⎪⎪⎝⎭,2AN ⎫=⎪⎪⎝⎭.设(),,n x y z = 为平面PMN 的法向量,则00n PM n PN ⎧⋅=⎪⎨⋅=⎪⎩,即240,20.y z x y z -=⎧+-=可取()0,2,1n = .于是cos 25n AN n AN n AN⋅⋅== .则直线AN 与平面PMN所成角的正弦值为25.【点评】第一种方法中使用纯几何方法,适合于没有学习空间向量之前的方法,有利用培养学生的集合论证和空间想象能力,第二种方法使用空间向量方法,两小题前后连贯,利用计算论证和求解,定为最优解法;方法三在几何法的基础上综合使用体积方法,计算较为简洁.【针对训练】1.在三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为______.2.如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD.(1)证明:PA BD ⊥;(2)若PD AD =,求二面角A PB C --的余弦值.3.如图所示,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE EC ⊥,2AB BE EC ===,G ,F 分别是线段BE ,DC 的中点.(1)求证://GF 平面ADE ;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值.4.如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,且2PA AB ==,3AD =,E 是棱BC 上的动点,F 是线段PE 的中点.(1)求证:PB ⊥平面ADF ;(2)若直线DE 与平面ADF 所成的角为30°,求EC 的长.(2020·北京卷)5.如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1//BC 平面1AD E ;(2)求直线1AA 与平面1AD E 所成角的正弦值.(2022·浙江)6.如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =.(1)证明:EF DB ⊥;(2)求DF 与面DBC 所成角的正弦值.7.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,PO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.8.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.9.如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.10.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案:1.6【分析】解法一:先证明四边形11BB C C 为矩形,再由中位线定理得到异面直线1AB 与1BC 所成角等于EF 与BF 所成的角,由此利用余弦定理即可求得所求余弦值;解法二与解法三:利用补形法得到异面直线1AB 与1BC 所成角,再分别求得所需要的边,结合余弦定理即可求得所求余弦值;解法四:建立空间直角坐标系,求出各点坐标,从而利用向量夹角的坐标表示求得所求;解法五:由向量线性运算的几何意义得到1111BC BA AA AC =++ ,1111AB AAA B =+ ,从而利用数量积运算求得1BC ,1AB = ,111BC AB ⋅= ,由此可求得所求.【详解】解法一:(直接平移法)如图所示,作1A O ⊥底面ABC ,由1160BAA CAA ∠=∠=︒可知,AO 为∠BAC 的角平分线,且AO BC ⊥,BC ⊥面1AA O ,1BC AA ⊥,于是1BC BB ⊥,四边形11BB C C 为矩形,取AC 的中点E ,连接1B C 交1BC 于点F ,则F 为1B C 的中点,1111,22EF AB EF AB =//,所以异面直线1AB 与1BC 所成角等于EF 与BF 所成的角,即∠BFE 或其补角,设三棱柱的棱长为2,由题意即可得BE =112EF AB ==112BF BC ==于是222cos26BF EF BE BFE BF EF +-∠==⋅,故异面直线1AB 与1BC 解法二:(补形法一)在三棱柱111ABC A B C -的上底面补一个大小相同的三棱柱111222A B C A B C -,如图所示,连接12B C 、2AC 且2AC 交11A C 于D ,则12AB C ∠或其补角为异面直线1AB 与1BC 所成角,设1AB =,易得1AB ==121B C BC ==,22AC AD ===所以在12AB C △中,有22212cosAB C +-∠==.故异面直线1AB 与1BC 解法三:(补形法二)将三棱柱补为平行六面体,再放同样的一个平行六面体,如图所示,1C BE ∠就是异面直线1AB 与1BC 所成的角,设棱长为1,在1A AB △中,易求得1AB =,即BE ,在11A C E △中,易求1C E =1BC AA ⊥,则1BC CC ⊥,从而在1BCC中,求得1BC =在1BC E △中,由余弦定理得1cos 6C BE ∠=.解法四:(向量坐标法)如图所示,以A 为原点,过1A 作1A M ⊥平面ABC 于M ,则M 必在x轴上,且1cos A AM ∠=1sin A AM ∠=设棱长为1,则1A ⎛,1,02B ⎫⎪⎪⎝⎭,1,02C ⎫-⎪⎪⎝⎭,所以1112AB AA AB =+=,1112AC AA AC =+=- ,故11BC AC AB =-=-⎝ ,设异面直线1AB 与1BC 所成角为θ,则1111cos 6BC AB BC AB θ⋅== .解法五:(纯向量法)不妨设AB 长为1,因为1111BC BA AA AC =++ ,1111AB AA A B =+ ,所以()2211112BC BA AA AC =++= ,()2211113AB AA A B =+= ,则1BC =1AB = ,又因为()()111111111BC AB BA AA A C AA A B ⋅=++⋅+= ,设异面直线1AB 与1BC 所成角为θ,则1111cos 6BC AB BC AB θ⋅=故答案为:6.2.(1)证明见解析(2)7-【分析】(1)利用题设条件可证BD AD ⊥、BD PD ⊥,从而可得BD ⊥平面PAD ,故可证PA BD ⊥,我们也可以利用利用空间向量及其坐标运算来证明PA BD ⊥.(2)利用向量或建立空间直角坐标系可求二面角的余弦值,也可以利用定义构建二面角的平面角来求其余弦值,也可以利用补体将二面角转化为二面角Q PB A --的大小来进行计算.【详解】(1)证法一:∵60DAB ∠=︒,2AB AD =,由余弦定理得22222cos 603BD AD AB AD AB AD =+-⨯︒=,故BD =,从而222BD AD AB +=,故BD AD ⊥.又PD ⊥底面ABCD ,而BD ⊂底面ABCD ,可得BD PD ⊥,而,,AD PD D AD PD =⊂ 平面PAD ,∴BD ⊥平面PAD ,而PA ⊂平面PAD ,故PA BD ⊥.证法二:∵PD ⊥平面ABCD ,BD ⊂底面ABCD ,∴PD BD ⊥,0PD BD ⋅= .∴()()PA BD PD DA BD DA BD DA BA AD ⋅=+⋅=⋅=⋅+ 2222cos 0DA BA AD AD AB DAB AD AD AD =⋅-=⋅∠-=-= ,∴PA BD ⊥ ,即PA BD ⊥.证法三:作DE AB ⊥,垂足为E ,分别以DE 、DC 、DP 为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.令AD a =,则1,,022A a a ⎛⎫- ⎪ ⎪⎝⎭,3,,022B a ⎛⎫ ⎪ ⎪⎝⎭,()0,2,0C a .设()0,0,P z,由于1,,22PA a a z ⎛⎫=-- ⎪ ⎪⎝⎭,3,,02DB a ⎫=⎪⎪⎝⎭ ,则221333,,,,002244PA DB a z a a a ⎫⎫⋅=--⋅=-=⎪⎪⎪⎪⎝⎭⎝⎭,于是PA DB ⊥ ,即PA BD ⊥.(2)解法一:因为PD ⊥底面ABCD ,而BC ⊂底面ABCD ,故PD BC ⊥,由(1)中证明可得BD AD ⊥,而//BC AD ,故//BD BC ,因为,,BD PD D BD PD ⋂=⊂平面PDB ,故BC ⊥平面PDB ,而PB ⊂平面PDB ,故BC PB ⊥,而AM PB ⊥,平面APB ⋂平面PBC PB =,故二面角A PB C --的大小等于MA 与BC 所成角的大小,设为θ.设1PD AD ==,则2AB =,BD =∴2PB =,PA =.在PAB中,cos 4APB ∠==,而APB ∠为三角形内角,故sin 4APB ∠=,故42AM ==,142PM ==,故32BM =,在ADC △中,2222cos120527AC AD DC AD DC =+-⨯︒=+=,故AC =又()22AC AM MB BC =++ 222222AM MB BC AM MB AM BC MB BC=+++⋅+⋅+⋅2222cos AM MB BC AM BC θ=++- .∴797144θ=++,解得cos θ=∴二面角A PB C --的余弦值为解法二:以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D xyz -,则()1,0,0A,()B,()C -,()0,0,1P.()AB =-,()1PB =- ,()1,0,0BC =- .设平面PAB 的一个法向量为(),,n x y z = ,则00n AB n PB ⎧⋅=⎪⎨⋅=⎪⎩,即0,0.x z ⎧-+=⎪⎨-=⎪⎩,取1y =,则x z =,故n = .设平面PBC 的一个法向量为m,同理可求(0,1,m =-.cos ,m n == ,而二面角A PB C --的平面角为钝角,故二面角A PB C --的余弦值为7-.解法三:由解法一的计算可得BC ⊥平面PDB ,而BC ⊂平面PBC ,故平面PBC ⊥平面PDB ,即二面角D PB C --的大小为90︒.过A 作AM PB ⊥,垂足为M ,连接DM ,如图所示.由(1)中证明可得AD BD ⊥,而PD ⊥平面ABCD ,AD ⊂平面ABCD ,故PD AD ⊥,PD BD D ⋂=,,PD BD ⊂平面PBD ,故AD ⊥平面PBD ,PB ⊂平面PBD ,故AD PB ⊥,而,,,AM PB AD AM A AD AM ^=Ì平面ADM ,故PB ⊥平面ADM ,但DM ⊂平面ADM ,故DM PB ^.∴AMD ∠是二面角A PB D --的平面角.设1PD AD ==,则2AB =,BD =2PB =.在Rt PBD △中,2PD DB DM PB ⨯==,在Rt ADM △中,2AM =.∴sin 7AD AMD AM ∠==,∴二面角A PB C --的余弦值为cos(90)sin AMD AMD ︒+∠=-∠=-.解法四:由解法一的计算可得BC ⊥平面PBD ,而PB ⊂平面PBD ,故BC PB ⊥.如图所示,过点B 在平面PAB 内作直线BE PB ⊥,交PA 的延长线于点E ,则∠EBC 是二面角A PB C --的平面角.设1PD =,由解法一的计算可得:1AD BC ==,2AB =,BD =AC =PA =,2PB AB ==,且cos 4APB ∠=,sin 4APB ∠=故tan BE BPAPB∠=,∴BE =PE =在Rt PDC 中,由勾股定理求得PC =,在PAC △中,因为222AC PA PC =+,故PA PC ⊥.故在Rt PEC 中,有EC ==在BEC 中,由余弦定理得cos7CBE ∠==-.∴二面角A PB C --的余弦值为7-.解法五:将四棱锥补成直四棱柱,如图所示,则二面角A PB C --的大小与二面角Q PB A --的大小互补.由解法一可得BC PB ⊥,而//PQ BC ,∴PQ PB ⊥.设点Q 到平面PAB 的距离为h ,则由Q PAB B AQP V V --=得1133PAB PQA hS BD S =⋅△△.设1PD =,则PA =,BD =2PB AB ==,12APB S =△211=22PQA S AD =△,∴h =于是二面角Q PB A --的正弦值为h PQ =.∴二面角A PB C --的余弦值为7-.3.(1)证明见解析;(2)23.【分析】(1)利用线面平行的判定定理即得;(2)利用射影法,结合条件求出AEF △及BEC 的面积进而即得;利用坐标法,求出平面BEC 和平面AEF 的法向量,由向量夹角的余弦值即得;利用直接法,延长BC 、AF 交于点Q ,作BR QE ⊥,交QE 的延长线于点R ,连接AR ,可得∠ARB 是二面角A EQ B --的平面角,结合条件即得.【详解】(1)将五面体ABCDE 置于正方体AMDN BECP -之中,如图所示,显然题设的条件全部满足,取AE 的中点H ,连接HG ,FG ,∵////HG AB CD ,即//HG DF ,又1HG DF ==,∴四边形HGFD 是平行四边形,∴//GF DH ,又∵DH ⊂平面ADE ,GF ⊄平面ADE ,∴//GF 平面ADE ;(2)解法一(射影法):设平面AEF 与平面BEC 所成锐二面角的大小为θ,∵AB ⊥平面BCE ,FC ⊥平面BCE ,∴AEF △在平面BCE 上的射影为BEC ,易得AE =EF =3AF =,∴cos AEF ∠==sin AEF ∠=∴132AEF S =⨯=△,又∵12222BEC S =⨯⨯=△,∴2cos 3BEC AEF S S θ==△△.解法二(向量法):如图,分别以射线BE 、BP 、BA 为x 、y 、z轴建立空间直角坐标系,∵正方体棱长为2,则()0,0,2A ,()2,0,0E ,()2,2,1F ,显然()0,0,2BA = 是平面BECP 的法向量,设平面AEF 的法向量为()2,,n x y = ,则n AE ⊥ ,即()()2,,2,0,20n AE x y ⋅=⋅-= ,解得2y =,则n AF ⊥ ,即()()2,,2,2,10n AF x y ⋅=⋅-= ,解得=1x -,∴()2,1,2n =- ,设所求锐二面角的大小为θ,则()()2,1,20,0,22cos 323n BA n BAθ-⋅⋅===⨯ .解法三(直接法):如图,延长BC 、AF 交于点Q ,因为2BE=,BC CQ ==45EBQ ∠=︒,由余弦定理可得(222222cos 2224202EQ BE BQ BE BQ EBQ =+-⋅∠=+-⨯⨯=,即EQ =在BEQ 中,由正弦定理,得sin sin 45BQ EQ BEQ =∠︒,∴sin BEQ ∠=,显然90BEQ ∠>︒,作BR QE ⊥,交QE 的延长线于点R ,连接AR ,∴AB ⊥平面BCE ,QE ⊂平面BCE ,∴AB ⊥QE ,又BR QE ⊥,,AB BR B AB =⊂ 平面ABR ,BR ⊂平面ABR ,∴QE ⊥平面ABR ,AR ⊂平面ABR ,∴QE ⊥AR ,∴∠ARB 是二面角A EQ B --的平面角,设其大小为θ,在BER △中,2BR ==在Rt ABR 中,由勾股定理,得AR =∴2cos 3BR AR θ==.4.(1)证明见解析;(2)2.【分析】(1)方法一,取棱PB ,PC 的中点分别为M ,N ,利用线面垂直的判断定理可得AD ⊥平面PAB ,进而可得PB ⊥平面ADF ;方法二,利用坐标法,求出AD ,AF 向量和向量BP 的坐标表示,证明垂直即得;(2)方法一,作EH 垂直MN 于点H ,则30EDH ∠=︒,结合条件即得;方法二,利用坐标法,根据线面角的向量求法可得求出E 点坐标,即得.【详解】(1)方法一:分别取线段PB 、PC 的中点M 、N ,易知点M 、N 、F 共线,∵PA AB =,∴PB AM ⊥,又∵PA ⊥平面ABCD ,AD ⊂平面ABCD ,∴PA ⊥AD ,又四边形ABCD 是矩形,AD AB ⊥,∵,PA AB A PA ⋂=⊂平面PAB ,AB ⊂平面PAB ,∴AD ⊥平面PAB ,PB ⊂平面PAB ,∴PB AD ⊥,又PB AM ⊥,,AD AM A AD =⊂ 平面ADF ,AM ⊂平面ADF ,因此PB ⊥平面ADF ;方法二,以A为原点建立空间直角坐标系,设()2,,0E t 、1,,12t F ⎛⎫ ⎪⎝⎭,则()0,3,0AD = ,1,,12t AF ⎛⎫= ⎪⎝⎭ ,()2,0,2BP =- ,∴0BP AD ⋅= ,0BP AF ⋅= ,∴BP AD ⊥,BP AF ⊥,,AD AF A AD =⊂ 平面ADF ,AF ⊂平面ADF ,因此PB ⊥平面ADF ;(2)方法一:由于平面ADF 即为平面AMND ,且PB ⊥平面ADF ,PB ⊂平面PBC ,∴平面PBC ⊥平面AMND ,又平面PBC ⋂平面AMND MN =,在平面PBC 内,作EH 垂直MN 于点H ,则EH ⊥平面AMND ,∴30EDH ∠=︒,∵EH BM ==∴ED =因此2CE =,即EC 的长为2;方法二:∵()2,3,0DE t =- ,平面ADF 的法向量为()2,0,2BP =- ,∴由12BP DE BP DE ⋅= ,解得1t =,∴2CE =,即EC 的长为2.5.(1)证明见解析;(2)23.【分析】(1)方法一,根据线面平行的判定定理即得;方法二,利用坐标法,可求出向量1BC 及平面1AD E 的法向量进而即得;(2)延长1CC 到F ,使得1C F BE =,连接EF ,交11B C 于G ,作11C H DG ⊥,垂足为H ,利用线面垂直的判定定理可得1D G ⊥平面1C FH ,进而可得可知∠1C FH 为直线1AA 与平面1AD G 所成的角,结合条件即得;利用坐标法,根据线面角的向量求法即得;利用等体积法,求出点到平面的距离进而即得.【详解】(1)[方法一]:几何法如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//B C A D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD ,1BC ⊄ 平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;[方法二]:空间向量坐标法以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD = ,()0,2,1AE = ,设平面1AD E 的法向量为(),,n x y z = ,由100n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩ ,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =- .又∵向量()12,0,2BC = ,()12201220BC n ⋅=⨯+⨯+⨯-= ,又1BC ⊄ 平面1AD E ,1//BC ∴平面1AD E ;(2)[方法一]:几何法延长1CC 到F ,使得1C F BE =,连接EF ,交11B C 于G ,又∵1//C F BE ,∴四边形1BEFC 为平行四边形,∴1//BC EF ,又∵11//BC AD ,∴1//AD EF ,所以平面1AD E 即平面1AD FE ,连接1D G ,作11C H DG ⊥,垂足为H ,连接FH ,∵1FC ⊥平面1111D C B A ,1D G ⊂平面1111D C B A ,∴11FC D G ⊥,又∵111FC C H C ⋂=,1FC ⊂平面1C FH ,1C H ⊂平面1C FH ,∴直线1D G ⊥平面1C FH ,又∵直线1D G ⊂平面1D GF ,∴平面1DGF ⊥平面1C FH ,∴1C 在平面1D GF 中的射影在直线FH 上,∴直线FH 为直线1FC 在平面1D GF 中的射影,∠1C FH 为直线1FC 与平面1D GF 所成的角,根据直线1//FC 直线1AA ,可知∠1C FH 为直线1AA 与平面1AD G 所成的角,设正方体的棱长为2,则111C G C F ==,1D G =∴1C H ,∴FH =∴112sin 3C H C FH FH ∠==,即直线1AA 与平面1ADE 所成角的正弦值为23.[方法二]:向量法由上知平面平面1AD E 的法向量()2,1,2n =- ,又∵()10,0,2AA = ,∴11142cos ,323n AA n AA n AA ⋅==-=-⨯⋅ ,∴直线1AA 与平面1AD E 所成角的正弦值为23.[方法三]:几何法+体积法如图,设11B C 的中点为F ,延长111,,A B AE D F ,易证三线交于一点P,因为111,////BB AA EF AD ,所以直线1AA 与平面1AD E 所成的角,即直线1B E 与平面PEF 所成的角,设正方体的棱长为2,在PEF !中,易得PE PF EF =,可得32PEF S = ,设当1B 到平面PEF 的距离为1B H ,由11B PEF P B EF V V --=,得113111123232B H ⨯⋅=⨯⨯⨯⨯,整理得123B H =,所以1112sin 3B H B EH B E ∠==,所以直线1AA 与平面1AD E 所成角的正弦值为23.[方法四]:纯体积法设正方体的棱长为2,点1A 到平面1AED 的距离为h ,在1AED △中,113AE AD D E ===,2221111cos 25D E AE AD AED D E AE +-∠===⋅,所以1sin AED ∠=13AED S = ,由1111E AA D A AED V V --=,得111111133AD A AED S A B S h ⋅=⋅ ,解得43h =,设直线1AA 与平面1AED 所成的角为θ,所以12sin 3h AA θ==.6.(1)证明见解析;【分析】(1)方法一,使用几何方法证明,作DH AC ⊥交AC 于H ,利用面面垂直的性质可得DH ⊥平面ABC ,然后利用线面垂直的判定定理可得EF ⊥平面BHD ,即得;方法二,利用坐标法即得;方法三,使用了两垂直角的三余弦定理得到60BCD ∠=︒,进而证明;(2)方法一使用几何做法,作HG BD ⊥于G ,由题可得HCG ∠即为所求角,结合条件即得;方法二使用空间坐标系方法,即得;方法三使用空间向量法;方法四使用三余弦定理法即得;方法五采用等体积转化法可得H 到平面DBC 的距离,进而即得.【详解】(1)[方法一]:几何证法作DH AC ⊥交AC 于H ,连接BH ,∵平面ADFC ⊥平面ABC ,而平面ADFC 平面ABC AC =,DH ⊂平面ADFC ,∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥,∵45ACB ACD ∠=∠=︒,∴2CD BC CH =⇒=,在CBH 中,22222cos 45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥.由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BH DH H = ,BH ⊂平面BHD ,DH ⊂平面BHD ,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥;[方法二]:空间向量坐标系方法作DO AC ⊥交AC 于O ,∵平面ADFC ⊥平面ABC ,而平面ADFC 平面ABC AC =,DO ⊂平面ADFC ,∴DO ⊥平面ABC ,以O 为原点,建立空间直角坐标系如图所示,设OC =1,∵45ACB ACD ∠=∠=︒,2DC BC ==∴BC ()()110,0,1,0,1,0,,,022D C B ⎛⎫ ⎪⎝⎭,∴11,,122BD ⎛⎫=-- ⎪⎝⎭ ,11,,022BC ⎛⎫=- ⎪⎝⎭,所以11·044BD BC =-= ,∴BC ⊥BD ,又∵棱台中//BC EF ,∴EF ⊥BD ;[方法三]:三余弦定理法∵平面ACFD ⊥平面ABC ,∴1cos cos cos cos 45cos 452BCD ACB ACD ∠=∠∠=︒︒=,∴60BCD ∠=︒,又∵DC =2BC ,∴90CBD ∠=︒,即CD BD ⊥,又∵//EF BC ,∴EF DB ⊥;(2)[方法一]:几何法因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角,作HG BD ⊥于G ,连接CG ,由(1)可知,BC ⊥平面BHD,因为平面BCD ⊥平面BHD ,而平面BCD 平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD ,即CH 在平面DBC 内的射影为CG ,所以HCG ∠即为所求角,在Rt HGC 中,设BC a =,则CH =,BH DH HG BD ⋅==,∴sin 3HG HCG CH ∠==,故DF 与平面DBC[方法二]:空间向量坐标系法设平面BCD 的法向量为(),,n x y z =r ,由(1)得11,,122BD ⎛⎫=-- ⎪⎝⎭ ,11,,022BC ⎛⎫=- ⎪⎝⎭,∴1102211022n BD x y z n BC x y ⎧⋅=--+=⎪⎪⎨⎪⋅=-+=⎪⎩,令1x =,则()1,1,1n = ,又()0,1,0OC =,cos ,3n OC == 由于//DF OC ,∴直线DF 与平面DBC[方法三]:空间向量法以{,,}CH CB CD为基底,不妨设22DC BC ==,则45,45,60DB CH HCB HCD DCB ==∠=∠=︒∠=︒︒(由(1)的结论可得),设平面DBC 的法向量为n xCH yCB zCD =++ ,则由00n CD n CB ⎧⋅=⎪⎨⋅=⎪⎩,得2400x y z x y z ++=⎧⎨++=⎩,取1z =,得32n CH CB CD =-++ ,设直线DF 与平面DBC 所成角为θ,则直线HC 与平面DBC 所成角也为θ,由公式得||sin ||||HC n HC n θ⋅=== [方法四]:三余弦定理法由45ACB ACD ∠=∠=︒,可知H 在平面DBC 的射影G 在DCB ∠的角平分线上,设直线DF 与平面DBC 所成角为θ,则HC 与平面DBC 所成角也为θ,由(1)的结论可得60BCD ∠=︒,由三余弦定理,得cos 45cos30cos θ=︒⋅︒,cos θ=,从而sin 3θ=.[方法五]:等体积法设H 到平面DBC 的距离为h ,设1DH =,则1,,22HC DC BC BD ====,设直线DF 与平面DBC 所成角为θ,由已知得HC 与平面DBC 所成角也为θ.由H DBC D HBC V V --=,1111601sin 451322322h ⨯︒⨯=⨯⨯⨯︒⨯,求得h所以3sin 1h HC θ===7.(1)证明见解析;.【分析】(1)方法一,利用勾股定理即及线面垂直的判定定理即得;方法二,利用坐标法即得;方法三,利用线面垂直,结合勾股定理可证出;方法四,利用空间基底法即得;(2)方法一,利用坐标法及面面角的向量求法即得;方法二,利用几何法,作出二面角,求解三角形进行求解二面角,即得;方法三,利用射影面积法求解二面角.【详解】(1)[方法一]:勾股运算法证明由题设,知DAE 为等边三角形,设1AE =,则DO =1122CO BO AE ===,所以64PO DO ==,4PC PB PA ====,又ABC 为等边三角形,则2sin 60BA OA = ,所以BA =,22234PA PB AB +==,则90APB ∠= ,所以PA PB ⊥,同理PA PC ⊥,又PC PB P = ,PC ⊂平面PBC ,PB ⊂平面PBC ,所以PA ⊥平面PBC ;[方法二]:空间直角坐标系法不妨设AB =4sin 60==︒=AB AE AD ,由圆锥性质知DO ⊥平面ABC ,所以===DO ==PO 因为O 是ABC 的外心,因此AE BC ⊥,在底面过O 作BC 的平行线与AB 的交点为W ,以O 为原点, OW 方向为x 轴正方向,OE 方向为y 轴正方向,OD 方向为z 轴正方向,建立空间直角坐标系O xyz -,则(0,2,0)A -,B ,(C ,(0,2,0)E ,P .所以(0,AP = ,(=- BP ,=- CP ,故0220⋅=-+= AP BP ,0220⋅=-+= AP CP ,所以AP BP ⊥,AP CP ⊥,又BP CP P = ,PC ⊂平面PBC ,PB ⊂平面PBC ,故AP ⊥平面PBC ;[方法三]:因为ABC 是底面圆O 的内接正三角形,且AE 为底面直径,所以AE BC ⊥,因为DO (即PO )垂直于底面,BC 在底面内,所以PO BC ⊥,又因为PO ⊂平面PAE ,AE ⊂平面PAE ,PO AE O =I ,又PO ⊂平面PAE ,AE ⊂平面PAE ,所以BC ⊥平面PAE ,又因为PA ⊂平面PAE ,所以PA BC ⊥,设AE BC F = ,则F 为BC 的中点,连结PF ,设DO a =,且PO ,则2AF a =,2PA =,12PF a =.因此222+=PA PF AF ,从而PA PF ⊥,又因为PF BC F = ,PF ⊂平面PBC ,BC ⊂平面PBC ,所以PA ⊥平面PBC ;[方法四]:空间基底向量法如图所示,圆锥底面圆O 半径为R ,连结DE ,AE AD DE ==,易得OD =,因为=PO ,所以=PO R ,以,,OA OB OD 为基底,OD ⊥平面ABC ,则=+=-+AP AO OP OA ,6=+=-+BP BO OP OB OD ,且212OA OB R ⋅=- ,0OA OD OB OD ⋅=⋅= ,所以66⎛⎫⎛⎫⋅=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭AP BP OA OB2106⋅--+=OA OB OA OB OD ,故0AP BP ⋅= ,所以AP BP ⊥,即AP BP ⊥,同理AP CP ⊥,又BP CP P = ,PC ⊂平面PBC ,PB ⊂平面PBC ,所以AP ⊥平面PBC ;(2)[方法一]:空间直角坐标系法过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y轴建立如图所示的空间直角坐标系,则111(,0,0),(0,0,((,,0)244444E P B C ---,1(,444PC =--,1(,)444PB =--,1(,0,)24PE =- ,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,得11111100x x ⎧--=⎪⎨-+-=⎪⎩,令1x =,得111,0z y =-=,所以1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎪⎨⋅=⎪⎩,得22222020x x ⎧--=⎪⎨--=⎪⎩,令21x =,得223z y ==,所以m = ,故cos,5||||n mm nn m⋅==⋅,设二面角B PC E--的大小为θ,由题可知二面角为锐二面角,所以cos5θ=;[方法二]:几何法设=BC AE F,易知F是BC的中点,过F作//FG AP交PE于G,取PC的中点H,连接GH,则∥HF PB,由PA⊥平面PBC,得FG⊥平面PBC,PC⊂平面PBC,∴FG⊥PC,由(1)可得,222BC PB PC=+,得PB PC⊥,所以FH PC⊥,又,FH GF F FH=⊂平面GHF,GF⊂平面GHF,∴PC⊥平面GHF,GHÌ平面GHF,∴GH PC⊥,所以GHF∠是二面角B PC E--的平面角,设圆O的半径为r,则3sin602︒==AF AB r,2AE r=,12=EF r,13EFAF=,所以14=FG PA,1122==FH PB PA,12=FGFH,在Rt GFH中,1tan2∠==FGGHFFH,cos5∠=GHF,所以二面角B PC E--的余弦值为5.[方法三]:射影面积法如图所示,在PE上取点H,使14HE PE=,设BC AE N=,连结NH,由(1)知14NE AE=,所以∥NH PA,故NH ⊥平面PBC ,所以,点H 在面PBC 上的射影为N,故由射影面积法可知二面角B PC E --的余弦值为cos PCNPCHS θS = ,在PCE中,令=PC PE 1CE =,易知= PCE S ,所以34PCH PCE S S == ,又1328PCN PBC S S == ,故38cos 5PCN PCHS θS == ,所以二面角B PC E --.8.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得BC ⊥平面1A AMN ,根据线面平行的性质定理可得11//B C EF ,然后根据面面垂直的判定定理即得;(2)利用几何法,作出线面角,结合条件即得;利用向量法,利用线面角的向量求法即得.【详解】(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴,又11//AA BB ,1//MN AA ∴,在ABC 中,M 为BC 中点,则BC AM ⊥,又 侧面11BB C C 为矩形,1BC BB ∴⊥,又1//MN BB ,∴MN BC ⊥,又MN AM M ⋂=,,MN AM ⊂平面1A AMN ,∴BC ⊥平面1A AMN ,又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC ,又 11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =,11//B C EF ∴,//EF BC ∴,又BC ⊥ 平面1A AMN ,∴EF ⊥平面1A AMN ,又EF ⊂ 平面11EB C F ,∴平面11EB C F ⊥平面1A AMN ;(2)[方法一]:几何法如图,过O 作11B C 的平行线分别交1111,A B A C 于点11,E F ,连接11,,,AE AO AF NP ,由于//AO 平面11EB C F ,11//E F 平面11EB C F ,11= AO E F O ,AO ⊂平面11AE F ,11E F ⊂平面11AE F ,所以平面11//AE F 平面11EB C F ,又因平面11 AE F 平面111=AA B B AE ,平面11EB C F ⋂平面111=AA B B EB ,所以11//EB AE ,因为111B C A N ⊥,11B C MN ⊥,1A N MN N = ,1A N ⊂平面1AA NM ,MN ⊂平面1AA NM ,所以11B C ⊥平面1AA NM ,又因1111∥E F B C ,所以11⊥E F 平面1AA NM ,所以1AE 与平面1AA NM 所成的角为1∠E AO ,令2AB =,则11=NB ,由于O 为111A B C △的中心,故112233==OE NB ,在1Rt AE O 中,122,3===AO AB OE ,由勾股定理得1=AE所以111sin 10∠==E O E AO AE ,由于11//EB AE ,直线1B E 与平面1A AMN[方法二]:几何法因为//AO 平面11EFC B ,平面11 EFC B 平面1=AMNA NP ,AO ⊂平面1AMNA ,所以//AO NP ,因为//ON AP ,所以四边形OAPN 为平行四边形,由(1)知EF ⊥平面1AMNA ,则EF 为平面1AMNA 的垂线,所以1B E 在平面1AMNA 的射影为NP ,从而1B E 与NP 所成角的正弦值即为所求,在梯形11EFC B 中,设1EF =,过E 作11EG B C ⊥,垂足为G ,则3==PN EG ,在直角三角形1B EG 中,1sin ∠B EG即直线1B E 与平面1A AMN [方法三]:向量法由(1)知,11B C ⊥平面1A AMN ,则11B C为平面1A AMN 的法向量,因为//AO 平面11EB C F ,AO ⊂平面1A AMN ,且平面1A AMN ⋂平面11EB C F PN =,所以//AO PN ,由(1)知11//,AA MN AA MN =,即四边形APNO 为平行四边形,则==AO NP AB ,因为O 为正111A B C △的中心,故13==AP ON AM ,由面面平行的性质得111111,33=∥EF B C EF B C ,所以四边形11EFC B 为等腰梯形.由P ,N 为等腰梯形两底的中点,得11PN B C ⊥,则11110,⋅==++= PN B C EB EP PN NB 111111111623+-=-B C PN B C PN B C ,设直线1B E 与平面1A AMN 所成角为θ,AB a =,则211111113sin θ⋅== a EB B C EB B C 所以直线1B E 与平面1A AMN[方法四]:基底法不妨设2===AO AB AC ,则在直角1AAO中,13AA =.以向量1,,AA AB AC为基底,从而1,2π= AA AB ,1,2π= AA AC ,,3π= AB AC ,1111123=++=+ EB EA AA A B AB AA ,BC AC AB =-,则1= EB ||2BC = ,所以112()3⎛⎫⋅=+⋅-= ⎪⎝⎭EB BC AB AA AC AB 2224333⋅-=- AB AC AB ,由(1)知BC ⊥平面1A AMN ,所以向量BC为平面1A AMN 的法向量,设直线1B E 与平面1A AMN 所成角θ,则111sin cos ,10||θ⋅===EB BC EB BC EB BC ,故直线1B E 与平面1A AMN所成角的正弦值为sin 10θ=.9.(1)证明见解析;7.【分析】(1)方法一:通过证明直线1//C E AF ,根据平面的基本事实二的推论即可证出;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出.(2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出;方法四:利用三面角的余弦公式即可求出.【详解】(1)[方法一]:利用平面基本事实的推论。
课件2:8.7 立体几何中的向量方法(二)——求空间角和距离
【规律方法】
1.平面法向量的求法
若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,
然后用待定系数法求解,一般步骤如下:
设平面的法向量为n=(x,y,z).
(1)找出(求出)平面内的两个不共线的向量a=(a1,b1,c1),b=(a2,b2,c2).
(2)根据法向量的定义建立关于x,y,z的方程组
的距离为 | BO |=| AB || cos〈AB,n〉| =
| AB n | |n|
.
3. (1)常用方法:利用向量求异面直线所成角、线面角、二面角及空间距 离的方法. (2)数学思想:转化与化归、数形结合、函数与方程.
考点1 向量法求异面直线所成的角
【典例1】(1)(2015·上饶模拟)如图所示,已知三棱
考点3 向量法计算与应用二面角的大小 知·考情
利用空间向量计算与应用二面角大小,是高考考查空间角的一个 热点考向,常与线线、线面、面面位置关系等知识综合以解答题第(2) 或(3)问的形式出现.
明·角度 命题角度1:计算二面角的大小 【典例3】(2014·山东高考)如图,在四棱柱 ABCD-A1B1C1D1中,底面ABCD是等腰梯形, ∠DAB=60°,AB=2CD=2,M是线段AB的中点. (1)求证:C1M∥平面A1ADD1. (2)若CD1垂直于平面ABCD且CD1= 3,求平面C1D1M和平面ABCD所成 的角(锐角)的余弦值.
22
所以 AD 0, 3,0 ,AE (0, 3 , 1),AC (m, 3,0). 22
设平面ADE的法向量为n1=(x1,y1,z1), 则n1 AD 0,n1 AE 0, 解得一个n1=(1,0,0). 同理设平面ACE的法向量为n2=(x2,y2,z2), 则 n2 AC 0,n2 AE 0, 解得一个 n2 ( 3,m, 3m).
2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离
形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.
,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬
[0,π] .
易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.
第2讲 立体几何中的空间角问题
(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),
高中数学中的立体几何空间角与空间距离计算方法
高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。
在立体几何中,空间角和空间距离是非常关键的概念。
本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。
一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。
空间角的大小是依据两个向量的夹角计算得来的。
2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。
设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。
接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。
二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。
2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。
设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。
三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。
比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。
在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。
在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。
立体几何中---向量法求空间角
y
uuur AP
=(0,0,1),
uuur AB
(
2,1mu,r0方), 向Cuu朝Bur面 内( ,2nru,r0方x, 0向u)u,朝urCuu面Pur (0, 1,1) ,
设平面 PAB 的法向量为 mur外 情=, 况(x属 ,,y于 二,z)“ 面,则一 角进 等mu一 于r出 法 uA” 向uPur的量 0
(I)求证:AO⊥平面BCD; (II)求异面直线AB与CD所成角的大小; (III)求点E到平面ACD的距离。
A
D O
B
E
C
解:(I)提示;数量积为零 (II)解:以O为原点,如图建立空间直角坐标系,
则B(1, 0, 0), D(1, 0, 0),
C(0,
3, 0), A(0, 0,1), E(1 ,
S
解:由(2)知平面SAB的一个法向量为nr (1,1,2),
uuur 又由OC 平面SAO知OC是平面SAO的法向量 O
uuur 且OC (0,1,0)
A
Cy
B
cos nr,OuuCur 0 1 0 6
x
6 1 6
所以二面角B-AS-O的余弦值为 6 6
(2)求EB与底面ABCD所成的角的正切值。 uuur
解:因为PD 平面ABCD,所以PD是平面ABCD的法向量。
由(1)知D(0,0,0),P(0,0,1),
z P
B(1,1,0),E(0,1 ,1) 22
E
y
uuur PD
uuur (0,0,1),EB
(1,1
,
1
)
C
B
22
x
G
cos
uuur uuur PD,EB
空间角的求法
高中数学知识专题系列空间角的求法(1)定义法:求解空间角的大小,一般都是根据有关角的定义(如异面直线所成的角、斜线和平面所成的角、二面角的平面角),把空间角转化为平面角来求解的。
例1、如图,在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于( )A 、510 B 、515 C 、54 D 、32解:(方法一)如图2,取11C D 的中点M ,连结MO O 为底面中心,∴O 为BD 中点,从而FO 为DAB ∆的中位线M D AB FO 1//21//∴,∴四边形FOM D 1为平行四边形F D MO 1//∴,故MOE ∠(或其补角)即为异面直线F D 1和OE 所成的角。
在MOE ∆中,2,51221==+==ME F D OMOE 3)2(1222=+=+=OC EC 由余弦定理得:5153522352cos 222=⋅⋅-+=⋅-+=∠OE OM ME OE OM MOE 故选B(方法二)如图3,取C D 1的中点N ,连结NF 、N D 1,易知NF //EO ,FN D 1∠∴(或其补角)即为异面直线F D 1和OE 所成的角。
在FN D 1∆中,3,221,5111=====OE NF C D N D F D ,由余弦定理得: 5153522352cos 1212211=⋅⋅-+=⋅⋅-+=∠NF FD N D NF FD FN D 故选BA 1 图1C A 1图2A 1图3A 1 D 图4高中数学知识专题系列haiPage 2 of 13(方法三) 如图4,设BC 中点为P ,PC 中点为Q ,连结P C 1、EQ 、OQ 、OP ,易知F D P C 11//F D EQ P C EQ 1121//,21//∴OEQ ∠∴(或其补角)即为异面直线F D 1和OE 所成的角。
空间角的求法
空间角的求法一、异面直线所成角的求法平移法常见三种平移方法:直接平移;中位线平移(尤其是图中出现了中点);补形平移法。
“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
(1)直接平移法4J2例1如图,PA_矩形ABCD,已知PA=AB=8,BC=10,求AD与PC所成角的正切值。
()5(2 )中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。
例2设S是正三角形ABC所在平面外的一点,SA = SB= SC,且.ASB = . BSC = . CSA =—,2M、N分别是AB和SC的中点,求异面直线SM与BN所成的角的余弦值。
()5(3 )补形平移法:在已知图形外补作一个相同的几何体,以利于找出平行线。
例3在正方体ABC^ A1B1C1D1中,E是CC1的中点,求直线AC与ED i所成角的余弦值。
、线面角的三种求法1. 直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。
例1四面体 ABCS 中,SA ,SB ,SC 两两垂直,/ SBA=45,/ SBC=60 , M 为AB 的中点,求:质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的 垂线。
)h U2. 利用公式si =:其中。
是斜线与平面所成的角, h 是垂线段的长,I 是斜线段的长,其中求l 出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂 线段的长。
例2长方体ABCD-A i B i C i D i 中AB=3 , BC=2 ,A I A= 4,求AB 与面AB i C i D 所成的角的正弦值。
立体几何复习空间角的求法
(1)证明:DE∥平面 BCF; (2)证明:CF⊥平面 ABF; (3)当 AD=23时,求三棱锥 F-DEG 的体积 V . 的大 90.0 小为
(结论)B
O
D
作(找)---证(指出)---算---结论
C
练:正方体ABCD—A1B1C1D1中,
D1
求:
A1
(1) 二面角A-BD-A1的正切值;
(2) 二面角A1-AD-B的大小.
D
解由:正连方结体A的C,性交质BD可于知O,,连BD结⊥OOAA1 ,BD⊥AAA1
作(找)---证---指出---算---结论
在三角形中计算
(一)异面直线所成的角:范围是(0,π/2]. 平移直线成相交直线: (1)利用中位线,平行四边形; (2)补形法.
作(找)---证---指出---算---结论
关键
在三角形中计算
例1.正四面体S-ABC中,如
s
果E、F分别是SC、AB的
中点,那么异面直线EF和 E
• [例1] (2013年高考新课标全国卷Ⅱ)如图
所示,直三棱柱ABC-A1B1C1中,D,E分别是 AB,BB1的中点.
(1)证明:BC1∥平面 A1CD; (2)设 AA1=AC=CB=2,AB=2 2,求三棱锥 C-A1DE 的体积.
题型二 立体几何中的折叠问题
[例 3] (2013 年高考广东卷)如图(1),在边长为 1 的等边三角形 ABC 中,D,E 分别是 AB,AC 边上的 点,AD=AE,F 是 BC 的中点,AF 与 DE 交于点 G, 将△ABF 沿 AF 折起,得到如图(2)所示的三棱锥 A- BCF,其中 BC= 2.
SA所成的角=_______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考大题冲关(四)
• [例1]B1C1中,D,E分别是 AB,BB1的中点.
(1)证明:BC1∥平面 A 1CD; (2)设 AA 1=AC=CB =2, AB =2 2, 求三棱锥 C-A 1DE 的体积.
题型二 立体几何中的折叠问题
设正方体的棱长为 1,
D1
C1
B1 D
C
O
B
作(找)---证(指出)---算---结论
2 AA1 在RtA1 AO中, AA1 1, AO , tanAOA1 2 2 AO
[典题](2013年高考天津卷)如图,三棱柱ABC- A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相 等,D,E,F分别为棱AB,BC,A1C1的中点. (1)证明:EF∥平面A1CD; (2)证明:平面A1CD⊥平面A1ABB1; (3)求直线BC与平面A1CD所成角的正弦值.
作(找)---证---指出---算---结论
关键
在三角形中计算
(三)二面角:范围是[0,π ].
①棱上一点定义法:常取等腰三角形底边(棱)中点.
②面上一点垂线法:自二面角的一个面上一点向另一 面引垂线,再由垂足向棱作垂线 ③空间一点垂面法:自空间一点作与棱垂直的平面, 截二面角得两条射线,这两条射线所成的角.
E
D
B1
C B
A
作(找)---证---指出---算---结论
关键
在三角形中计算
(二)直线与平面所成的角:范围是[0,π /2]. 确定射影的方法(找斜足和垂足):
正三棱柱ABC A1 B1C1 , 的底面边长为a , 侧棱 长为 2a , 求直线AC 1与平面AA1 B1 B所成的角.
C1
A1
关键
在三角形中计算
例1.正四面体S-ABC中,如 果E、F分别是SC、AB的 中点,那么异面直线EF和 E SA所成的角=_______.
C
G A
s
B F
空间角(线线角,线面角,二面角)
作(找)---证(指出)---算---结论 在正方体AC1中,求(1)直线A1B和B1C所成的角; (2)直线D1B和B1C所成的角 A1 D1 C1
斜面面积和射影面积的关系公式: S
▲当二面角的平面角不易作出时,可用面积法 直接求平面角的余弦值.
( S 为原斜面面积,S 为射影面积, 为斜面与射影所 成二面角的平面角)这个公式对于斜面为三角形,任意多 边形都成立.
S cos
A B α D C O
例1.如图,四面体ABCD的棱BD长为2,其余 各棱的长均是 2 , 求二面角A-BD-C的大小。 解 : 取BD的中点 O, 连结AO, BO. (作) AB AD, BC CD (证) AO BD, CO BD (指出) AOC是二面角 A BD C的平面角 . 在AOC中, OA OC 1, AC 2 A ( 算 ) 0 AOC 90 0 二面角 A BD C的大小为 90 . B (结论) D O
D C
B1
A
B
(2014 江苏无锡市模拟)如图所示,四棱锥 P-ABCD 的 底面是正方形,PD⊥底面 ABCD ,AC 与 BD 交于 O,点 E 在 PB 上,连接 OE . (1)求证:平面 AEC⊥平面 PDB ; (2)当 PD= 2AB ,且 E 为 PB 中点时, 求 AE 与平面 PDB 所成角的大小.
[ 例 3] (2013 年高考广东卷 ) 如图(1),在边长为 1 的等边三角形 ABC 中,D,E 分别是 AB ,AC 边上的 点,AD=AE ,F 是 BC 的中点,AF 与 DE 交于点 G, 将△ABF 沿 AF 折起,得到如图(2)所示的三棱锥 A - 2 BCF ,其中 BC= . 2
B1
D A B
C
空间角(线线角,线面角,二面角)
作(找)---证(指出)---算---结论 在正方体AC1中,求(1)直线A1B和B1C所成的角; (2)直线D1B和B1C所成的角 A1
E
D1
C1
B1
O
D A B
C
F
空间角(线线角,线面角,二面角)
作(找)---证(指出)---算---结论 在正方体AC1中,求(1)直线A1B和B1C所成的角; (2)直线D1B和B1C所成的角 A1 D1 C1
作(找)---证(指出)---算---结论
C
练:正方体ABCD—A1B1C1D1中, A1 求: (1) 二面角A-BD-A1的正切值; (2) 二面角A1-AD-B的大小.
解:连结AC,交BD于O,连结OA1 A 由正方体的性质可知,BD⊥OA,BD⊥AA1 OA和AA1是平面AOA1内两条相交直线 ∴BD⊥平面AOA1 ∴BD⊥OA1 ∴∠AOA1是二面角A-BD-A1的平面角.
(1)证明:DE ∥平面 BCF ; (2)证明:CF ⊥平面 ABF ; 2 (3)当 AD= 时, 求三棱锥 F -DEG 的体积 V F -DEG. 3
立体几何复习
空间角
作(找)---证---指出---算---结论
关键
在三角形 中计算
作(找)---证---指出---算---结论
关键
在三角形中计算
(一)异面直线所成的角:范围是(0,π /2]. 平移直线成相交直线:
(1)利用中位线,平行四边形;
(2)补形法.
作(找)---证---指出---算---结论