电缆故障测距方法

合集下载

电力电缆故障点的距离测量(低压脉冲、脉冲电流、多次脉冲)

电力电缆故障点的距离测量(低压脉冲、脉冲电流、多次脉冲)

GD-4133 多次脉冲电缆故障测试仪一、概述GD-4133电力电缆多次脉冲故障测距仪,用于电力电缆故障点的距离测量,具有波形易于识别、分辨率高、界面友好、同时支持触摸按键和机械按键、易于操作等特点。

GD-4133在低压脉冲方式下可以独立使用;在脉冲电流方式下需要和GD-2131L装置配合使用;在多次脉冲方式下还须和GD-4133S电缆测试多次脉冲耦合装置配合;在测距完成后须使用GD-4132数字式多功能电缆故障定点仪进行精确定点。

他们共同组成一套高性能的,能提供多种创新特性的电缆故障查找系统。

二、功能特点1.多种测距方法:a. 低压脉冲法:适用于低阻、短路、断线故障的精确测距,还可用于电缆全长及中间接头、T型接头、终端头的测量,以及波速度的校正。

b. 脉冲电流法:适用于高阻、闪络型故障的测距,使用电流耦合器从测试地线上采集信号,与高压部分完全隔离,安全可靠。

c. 多次脉冲法:世界上最先进的测距方法,是二次脉冲法的改进。

波形明确易于识别,测距精度高。

2.200MHz实时采样:a. 国内同类仪器最高采样频率,与国际最高水平接轨。

b. 提供最高0.4m的测距分辨率,测量盲区小,对近端故障和短电缆特别有效。

3.触摸操作和机械按键两种操作方式a. 触摸按键,操作更加灵活,具有手势操作功能。

b. 可以对光标进行拖拽,双击操作,定位更加简单、方便。

c. 兼容机械按键操作,五向按键,操作更加人性化。

4.LED大屏幕彩色液晶显示,界面友好:a. 波形清晰,尤其在多次脉冲测试中,多个波形以不同颜色同时显示,更易于识别。

b. 7寸大屏幕液晶,160°可视角度,显示内容丰富、直观。

c. 功能菜单简单实用,功能强大。

5.画中画暂存显示功能a. 界面显示采用画中画方式,由一个主窗口和三个暂存窗口组成,可同时查看三个暂存波形,使波形比较功能更加简单、直观、方便。

6.嵌入式操作系统a. 设计采用嵌入式操作系统Microsoft Windows CE 6.0+ARM9的结构设计,稳定的软件设计,更高的处理速度。

利用故障特征频带和TT变换的电缆单端行波测距

利用故障特征频带和TT变换的电缆单端行波测距

利用故障特征频带和TT变换的电缆单端行波测距一、电缆单端行波测距原理电缆单端行波测距技术是一种利用电缆内部的行波信号来实现电缆故障位置测距的技术。

在电缆内部传输的行波信号会在故障点发生部分反射,根据这些反射信号可以确定故障点的位置。

而利用故障特征频带和TT变换的电缆单端行波测距是对电缆行波信号进行特征分析的一种技术方法。

故障特征频带是指在电缆故障发生后,行波信号在频域上出现的特征频带,这些特征频带与电缆长度和故障位置有一定的关系。

通过对这些特征频带的分析,可以实现对电缆故障位置的测距。

而TT变换是一种将时域信号转换为频域信号的变换方法,通过对行波信号进行TT变换可以得到信号的频谱分布情况,进而实现对特征频带的提取和分析。

二、电缆单端行波测距方法利用故障特征频带和TT变换的电缆单端行波测距主要包括以下几个步骤:1. 采集电缆行波信号数据首先需要在电缆的一端安装传感器,并利用该传感器采集电缆内部的行波信号数据。

通常可以使用高频探头或传感器进行信号的采集,采集的数据包括了传播时域信息。

2. 进行TT变换将采集到的电缆行波信号数据进行TT变换,得到信号的频谱分布情况。

通过对频域信号的分析,可以提取出故障特征频带。

3. 特征频带分析对所提取出的故障特征频带进行分析,包括频带的数量、位置、幅值等特征。

通过特征频带的分析可以确定故障的位置和性质。

4. 故障距离测算根据故障特征频带的分析结果,结合信号传播速度等参数,可以计算出故障距离,从而实现对电缆故障位置的测距。

5. 故障定位根据故障距离的测算结果,可以确定故障位置,并进行定位标记。

1. 高精度:通过对故障特征频带的精确分析,可以实现对电缆故障位置的高精度测定。

2. 高效率:测距过程简洁明了,不需要复杂的设备和大量的测量数据,可以快速、准确地完成电缆故障的定位。

3. 低成本:相比传统的电缆故障检测方法,利用故障特征频带和TT变换的电缆单端行波测距可以降低成本,提高效益。

一种简易的电缆故障测距方法

一种简易的电缆故障测距方法
表一 绝 缘 电 阻测 定 的导 通 试 验 结 果
绝 缘 电 m 测 定 位 ( 0) M 芯 线 川
U V ∞


S —e R 一
当电缆全长 及跨接 线采 用 同一种 导体材 料和 同
截 面 时 ,则 =,S = 2 1 ¥ ,得
R3

2 —l l

R4
导通 试验 ( n) 将未端 u 、v、w 路 . f不 接 地 , 始端 洲 精 H
UV 【 】
×2 l
R3+尺
(-) 41
备 棚 与 地 问
UN 0
VW W 1 2
一 ( 】
VN W N
∞ ( )
VW W U
( J 0
式 ( — )即为计算故 障点位置的公式。 41 图1 所示 的x 接故障相 , 2 1 x 接良好相 的接线 ,
7 兰 B -G
。l x
4故 障点 位 置 的判 断
电缆 故 障 的性 质 确定 后 , 据不 同的故 障 ,加 根 以判 断故 障点 的具 体位 置 , 常见 的测 距方 法有 电桥 法 、脉 冲法 、闪络法 等 ,受 中小 型 电站 及变 电站 设 备 、技术 的限制 , 文 将着 重介 绍并 分 析基 于单 臂 本 ( 惠斯 通 )电桥 法 的故 障测 距 。


如 表 一所示 某 电缆 故障 性质 探 测 的试 验结 果 。
/ /






\ 、
}G }


一、



根据该结果可判 断出该 电缆故障性质是 wu 两相短

电力电缆故障测距方法研究

电力电缆故障测距方法研究

3 4日圜目圆
实验研 究 ・
冲 。 冲闪法 位。 由于这类方 法简单 , 易于实现 , 多年来—直 是人们关注的 测量 法 ( 闪法 ) 直 闪法用于测量闪络击穿性故障,
热点。 随着通信 技术 的发展 , 双端故 障测距 已成为人们研 究 适 用于测试大部 分闪络故障 , 当然 , 由于直 闪法波 形相对 简
电力电缆故 障测 距按照测距方式可 以分为两类, 在线测
距和 离线测距 ,由于在 线测距存 在许 多不 确定 因素 , 目前尚
无法应 用到实际 中, 离线测距成 为了电力电缆故障测距 的主 要方法 。 中以阻抗法和 行波法为主 , 其 阻抗法 中的 电桥法 又
分为直流电阻电桥法 和电容 电桥法 。ቤተ መጻሕፍቲ ባይዱ行波法分 为低压 脉冲发
故障 时线路单端或 多端 电压 、 电流值 , 列解故障测 距方程 ,
进而计算 出故障回路的阻抗 , 由于线路长 度与 阻抗 成正比,
作者简介: 王耀亚, 助理工程师, 莆田电业局, 主要从事电力 因此可 以求 出装置安装 处到故障点的距 离, 从而实现故 障定
电缆施 工与保护工作。
的重点 , 出了 多有价值 的算法 。 提 许 双端量 故障测 距利用线 单 , 容易获得较准确的结果, 应尽量使用直闪法测试 。 脉冲电
路两端的电流 、 电压信息 , 能在理论上消除故障点过渡 电阻、 压法 的优 点是: 不需将故障 点烧 穿, 直接利 用故障击穿产 生 系统阻抗和故障类型对测距精度 的影响 , 具有精确测距 的能 的瞬 时脉冲信号, 测试速度快, 测量过程也简单, 电缆故障 是 力。 值得 注意 的是, 但 迄今所提 出的双端 量测距算法 还不能 测试 技术 的重大进 步。 是这种方 法也有 自身 的缺 点: 但 很容 完全消除下列因素对测距 精度 的影响 : 路模 型、 路参数 易发生高压信号串入, 线 线 造成仪器损坏; 高压电容对脉冲信号呈 不平衡、 线路参数不准确、 负荷电流 、 同步测量精度和基波分 短路状态 , 需要 串一个电阻或电感 以产生电压信号, 增加了接 量 的提取 精度。 2 2 电桥法 . 确, 但需要 完好 芯线做 回路, 电源 电压不能加得太高 。 此方 法 线 的复杂 性 , 且降低了电容放 电时加在故障 电缆 上的电压 , 使 故障点不容易击穿; 在故 障放 电时, 特别是进 行冲 闪法测 ②脉冲 电流法。 该方 法使用线性电流耦合 器平行地放置 在低 压测地线旁 , 与高压 回路无 直接 的电器连接 , 记录仪 对

电缆故障检测方法

电缆故障检测方法

电缆故障检测方法在机电设备安装工程的施工及维护过程中,将会面对各种原因造成的电缆故障。

所以必须具有适用的理论及方法来解决各类故障,本文就传统的检测方法进行了阐述,对于电缆的故障点检测一般都要经过故障类型的诊断、故障点测距、精确定点三个主要步骤。

故障类型诊断主要是确定电缆故障点的故障相别,属于高阻接地或者低阻接地,以便于测试人员选择适当的检测方法。

故障点测距也叫预定位,故障电缆芯线上施加测试信号或者在线测量、分析故障信息,初步确定故障的距离,尽量缩小故障范围,以方便精确定点的进行。

预定位方法一般可归纳为两大类,即经典法,如电桥法等;现代法,如低压脉冲法、高压闪络法等。

精确定点是预定位距离的基础上,精确地确定故障点所在实际位置。

精确定点方法主要有声测定点法、感应定点法、时差定点法以及同步定点法等。

电缆故障的传统检测方法电缆敷设为机电安装施工中经济价值最大的分项施工,同时也是保证设备正常运行重要设施,在实际施工及维护运行过程中,往往因敷设方式设计不合理、施工人员操作不当、虫鼠等小动物的破坏等各种因数的影响,造成电缆的损坏而引起故障。

在大量的工程实践中我们发现电缆故障为高阻电流泄露故障(电阻值大于等于1),其原因往往为因绝缘层破坏而造成的。

低电阻故障一般为相间或对地短路经常出现在电缆分歧头位置,是由于施工时绝缘手段未充分引起的,但出现的几率很小,主要是预防为主,在施工阶段就严把质量关减少事故的出现。

电缆故障可能出现在配电线路施工、调试、维护等任何阶段,施工、除了少量的电缆故障出现在施工、调试阶段外,更多的电缆故障出现在维护运行期间,这类故障一般随着整个配线系统的老化而逐渐显现,造成设备频频跳闸给用户带来困扰。

因此使用单位必须熟练的掌握电缆检测方法。

在电缆故障检测过程中因采用高压或低压手段分为高压检测或低压检测两类,其中高压检测使用于低阻、断路、高阻等各种情况的电缆故障,低压检测方式只适用于低阻、断路情况,因此实际检测中多采用高压检测方法。

电缆故障测试方法及技巧

电缆故障测试方法及技巧

电缆故障测试方法及技巧随着城市的进展扩大,城市电网的改造,电力电缆获得了越来越广泛的应用。

但另一方面,由于电缆处在地下,消失故障很难发觉其故障点位置所在,这对电网的平平稳定运行以及供电牢靠性都带来很大的困难。

对此,我们首先分析了电力电缆故障常见原因,在此基础上,进一步总结出电力电缆常用故障检测方法。

1.电力电缆故障产生的原因(1)绝缘层老化变质:绝缘电缆长期在风吹日晒,在电的的作用下发生了老化,还要受到伴随电作用而来的化学、热和机械作用,从而使介质发生物理化学变化,使介质的绝缘性能下降。

(2)过热:电缆绝缘内部气隙游离造成局部过热,使绝缘炭化。

另外,电缆过负荷产生过热,安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆,穿于干燥管中的电缆及电缆与热力管道接近的部分等,都会因本身过热而使绝缘加速损坏。

(3)机械损伤:如挖掘等外力造成的损伤。

(4)护层的腐蚀:因受土壤内酸碱和杂散电流的影响,埋地电缆的铅或铝包将遭到腐蚀而损坏。

(5)绝缘受潮:中心接头或终端头在结构上不密封或安装质量不好而造成绝缘受潮。

(6)过电压:过电压重要指大气过电压和内过电压,很多户外终端接头的故障是由大气过电压引起的,电缆本身的缺陷也会导致在大气过电压的情形下发生故障。

(7)材料缺陷:电缆制造的问题,电缆附件制造上的缺陷和对绝缘材料的维护管理不善等都可能使电缆发生故障。

2.电力电缆故障性质类别的快速判别2.1电力电缆的故障分类电缆故障若按故障发生的直接原因可以分为两大类:一类为试验击穿故障;另一类为在运行中发生的故障。

若按故障性质来分,又可分为开路、低阻、高阻故障等。

开路故障:指电缆的甲端与乙端一相或者三相*断开。

低阻故障:若电缆相间或相对地绝缘电阻在100k以下的故障称为低阻故障。

高阻故障:若电缆相间或相对地故障电阻较大,以致不能接受电桥或低压脉冲法进行粗测的故障,通称为高阻故障。

它包括泄漏性高阻故障和闪络性高阻故障。

在试验过程中发生击穿的故障,其性质比较单纯,一般为一相接地,很少有三相同时在试验中接地或短路的情形,更不行能发生断线故障。

电力电缆故障探测测距与定点方法

电力电缆故障探测测距与定点方法

电力电缆故障探测测距与定点方法摘要:电力电缆作为整个电力系统的重要组成部分,一旦发生故障将直接影响着整个电力系统的安全运行。

因此,如何快速、准确地查找电缆故障,减少故障修复费用及停电损失,成为电力工程领域与研究界日益关注的问题。

文章分析了电力电缆故障的原因及分类,探讨了电力电缆的故障测距与定点方法。

关键词:电力电缆;故障测距;故障定点;引言随着我国经济建设的高速发展,我国的城市电网改造工作大力地开展。

由于电力电缆应用成本的下降,以及电力电缆自身所具有的供电可靠性高、不受地面、空间建筑物的影响、不受恶劣气候侵害、安全隐蔽耐用等特点,因而获得了越来越广泛的应用。

然而,与架空输电线路相比,虽然电力电缆的上述优点却为后期电缆的维护工作特别是故障测距与定位带来了较大的难度,尤其电缆长度相对较短、线路故障不可观测性等特点都决定了电缆线路要求有更精确的故障测距方法。

另一方面,电力电缆作为整个电力系统的重要组成部分,一旦发生故障将直接影响着整个电力系统的安全运行,并且如故障发现不及时,则可能导致火灾、大规模停电等较大的事故后果。

因此,如何快速、准确地查找电缆故障,减少故障修复费用及停电损失,成为电力工程领域与研究界日益关注的问题。

1电力电缆故障原因及类型1.1电力电缆故障原因随着电缆数量的增多及运行时间的延长,由于电缆绝缘老化特性等因素,故障发生概率大大增加。

电缆故障点的查找与测量是通讯和电力供应畅通的有力保障,但是因为电缆线路的隐蔽性、个别运行单位的运行资料不完善以及测试设备的局限性,使电缆故障的查找非常困难。

尤其是在狂风、暴雨等恶劣天气中,给故障的查找、维修带来了很大不便。

了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

电缆发生故障的原因是多方面的,常见的几种主要原因包括:1.1.1机械损伤。

主要由于电缆安装敷设时不小心造成的机械损伤或安装后靠近电缆路径作业造成的机械损伤而直接引起的。

高压电缆故障测距及定位方法分析

高压电缆故障测距及定位方法分析
(2)低压脉冲法。当电缆出现故障后,注入1个低压脉 冲,此行波信号如果遇到故障点和终端头,会产生反射。对收 到的反射脉冲和发射脉冲时间差充分利用,能够将故障点的距 离计算出来。这种方法设计的仪器叫作时域反射仪。通过低压 脉冲方法,给接线带来一定的方便,而且对段不用进行短接, 对断线、短路等故障能够准确测出。因为对于两个故障点来 说,其行波反射系数小,很难识别反射脉冲。
4 结束语 总而言之,在城市范围的不断扩大下,工业生产变得复杂
化,城市电力需求也越来越高,而在每个城市中,高压输电成 为最基础建设。这对于电力的设备来说,其质量较高、维护及 时、更好地解决突发问题。基于此,本文深入分析故障测距和 定位方法,为我国电力维护建立了系统工作方式,并对处理方 式不断优化,促使我国电力供应系统的保障能力获得提高,推 动我国经济水平不断发展。
(3)冲击闪络法。通过冲击闪络法,将高阻和闪络性故 障更好地测试出来。在高压脉冲电容器储能设备下,冲击放电 给电缆,电缆故障点在击穿后,可维持短暂时间。在击穿初 期,对于故障点来说,会产生1个行波信号,而且能回多次折反 射,沿着电缆线路在端点。充分利用分压器,在示波器上能将 行波信号在测量端和故障点间往返时间观察到,将故障点的距 离计算出来。但是对于脉冲电压法来说,其波形于脉冲电流法 是不同的。脉冲电压法将电压行波信号检测出来,更好地理解 波形是其优点;而脉冲电流法将电流行波的变化量信号检测出 来,操作起来安全、接线简单而方便是其优点。除此之外,从 闪络性故障的角度上来看,可在电缆上,直接施加直流高压, 这种情况,故障电阻高,当试验电压的值升到一定程度后,故 障点产生闪络击穿。这种检测的方法我们叫作直流闪络法。
(4)二次脉冲法。二点,在故障点起弧后熄弧的前 期,通过测试仪器注入一低压脉冲给电缆耦合。这时的情况与 低压故障有着相似之处,在故障点中,耦合进的脉冲信号发生 反射,对反射的波形进行记录。在电弧熄灭过程中,测试仪器 在注入一低压脉冲给电缆,这时对于故障点中的脉冲来说,不 能够发生折射的现象,再对此时的波形记录。当两次得到波形 叠加之后,在进行相应的比较,其波形将分叉地方明显体现出 来,这就是故障点。以上过程通过设计仪器,可自动完成,其 结果在液晶屏幕上就能显示出。

电缆故障定位仪操作方法

电缆故障定位仪操作方法

电缆故障定位仪操作方法一、准备工作1.确定故障段:根据故障报修单、初步现场勘测及故障形态判断,确定故障段的大致位置。

二、器材准备1.电缆故障定位仪:检查仪器是否正常运行,仪器的电量是否充足。

2.测试电缆:检查测试电缆是否损坏,有无短路、断路等故障。

三、现场操作1.连接测试电缆:将测试电缆的各个接线头与故障定位仪的相应接口连接,并确保连接牢固。

2.配置参数:根据故障段的特点和实际情况,在仪器上合理配置参数,包括电压、测试距离、标定点等信息。

3.寻找地线:使用故障定位仪自带的寻地功能,找出测点的地线位置,并连接好地线。

4.设定测试距离:根据实际情况设定测试距离,同时要确保测试距离不要过远,以免影响测试结果的准确性。

5.开始测试:启动故障定位仪,开始测试。

通过监测仪器显示的波形数据,判断电缆的故障类型,并确定故障位置。

6.分析数据:根据波形数据的变化情况,结合故障段的实际情况,进行数据分析,确定故障位置和故障类型。

7.定位故障:找到波形数据异常的点位,即为故障点位。

根据实际情况,使用故障定位仪提供的测距功能,对故障点位进行定位。

8.故障处理:根据定位的具体位置,采取相应的故障处理措施。

如果是线缆破损等故障,可以采用修复或更换线缆的方式解决。

四、注意事项1.操作人员必须具备一定的电力知识和操作经验。

2.在使用故障定位仪之前,必须确保仪器和测试设备处于良好的状态,避免因为仪器故障导致测试结果不准确。

3.在操作过程中,要仔细观察仪器的显示和波形变化,及时调整参数,以获得准确的测试结果。

4.在进行地线连接时,务必确保连接牢固可靠,以避免误操作或意外事故发生。

5.在测试过程中,要注意安全,避免电击等危险。

在需要进行高压测试时,必须采取必要的防护措施。

以上是电缆故障定位仪的操作方法,通过合理的使用和准确的操作,可以快速、准确地定位电力电缆故障,提高故障排除效率,保障电力系统的正常运行。

基于小波变换和行波法的电缆故障测距方法研究

基于小波变换和行波法的电缆故障测距方法研究

故 障点 产生 的行 波 在 测 量 端 和 故 障点 之 间 往 返 一
次的时间和行波波速确定 故障点 的距离 。该方法
原理 简单 , 用 装 置 较 少 , 不 受 过 渡 电 阻 及 对 端 所 且 负荷 阻抗 的影 响 , 达 到较 高 的测 距 精 度 _ 。本 文 可 1 J 将基 于 A型 行 波 测距 法 引 入 小 波 变 换 的 方 法 对 电 缆故 障测 距进 行研 究 。
堑一 : 旦

线 路模 型参 数 由电缆手册 查询 可得 :
( )系统 电源设 为 l0k 1 1 V。

£: ■ 一 :— —
() , 3
( )变压 器参 数 : 2 电压 等 级 :1/0k 电抗 : 10 1 V,
障的不同发生位置。如果保持两段的长度不变 , 通
图 2 电缆 故 障点 的坡 动 模 型
过设置 故 障模 块 F, 可仿 真不 同 的故 障 类 型 。此 就 次仿 真的采样 频 率选取 为 800H 。 0 z
() 2
由 以上 理论 可建立 方程 :
£ 一 f : :
z 一
出并推 导一种不包 含波速 的测距公 式, 得在计算故障距离从理论上摆脱 了波速对测距结果的影响。 使
关键词 故障测距 中图法分类号
小波分析
MA L B TA
单端量法
T 5; M7 5
文献标志码

目前 电缆 故 障 测 距 方 法 可 分 为 阻 抗 法 和 行 波
是首先 把信 号 用 一 平 滑 函数 0 t于 不 同的 尺度 上 () 平滑处 理 。然后 分析信 号 - t的一 阶导 数或二 阶导 厂 ) ( 数 以检测 出其信 号 的 突变 位 置 . 于小 波 分 析 的 基 电缆故 障测 距 的算 法 流程 图如 图 1所示 。

电缆故障的检测方法

电缆故障的检测方法

电缆故障的探测方法本文综述了电缆故障的探测方法与仪器。

首先列举了电缆故障探测的传统方法并分析了传统方法的不足,然后介绍了电缆故障探测的新方法及其特点。

随着电缆用量在整个电力传输线路和因特网中所占的比例日益提高,电缆故障出现的几率越来越大。

电缆故障对生产造成的危害较大,轻者会造成单台电气设备不能运行,重者会导致整个变电所停电,所以电缆故障点的快速测定和精确定位问题变得非常重要。

一、电缆故障探测的传统方法(一)电缆故障测距的传统方法电缆故障测距的传统方法主要有以下四种:电桥法:这是电力电缆的测距的经典方法。

该方法比较简单,但需要事先知道电缆线长度等数据,且只适用于低阻及短路故障。

但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般的灵敏度仪表很难探测。

脉冲回波法:针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比起上面的电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。

测试时将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。

利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。

该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。

脉冲电压法。

该方法可用于测量高阻与闪络故障。

首先将电缆故障在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点与故障点往返一次所需的时间来测距。

脉冲电压法的一个重要优点是不必将高阻与闪络性故障烧穿,直接利用故障击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。

但缺点是:①仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差;②在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿;③在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。

电缆故障测距方法

电缆故障测距方法

电缆故障测距方法我折腾了好久电缆故障测距方法,总算找到点门道。

说实话,这事儿我一开始也是瞎摸索。

我最初就知道个大概的方向,什么电桥法啥的,但是具体怎么做那是两眼一抹黑。

我最初尝试的就是电桥法。

那感觉就像是在一个乱七八糟的线团里找线头。

我按照书上说的,连接好各种线路,把电缆当作电桥的一个桥臂。

但是这里面有个坑啊,就是连接点一定要牢固而且要干净,不能有杂质或者氧化层。

我第一次就因为连接点有点脏,结果测出来的数值那是完全不对。

当时我就特迷茫,还以为自己整个方法都用错了呢。

后来我仔细把连接点打磨干净重新做,数值就稍微靠谱点了。

还有一种方法是脉冲反射法。

这就好比是对着一个山洞大声喊,然后听回声来判断山洞到底有多深。

我用专门的仪器向电缆发送脉冲信号,然后看反射回来的信号。

不过这里面也有难点,这个反射信号有时候很容易受到其他干扰因素的影响,像周围的电磁环境啥的。

有一回我在一个比较杂乱的电磁环境附近测试,那个结果简直错得离谱。

后来我就换了个测试场地,到一个电磁干扰比较小的地方去做,就好了很多。

这几天我又试了一个行波法。

这个方法就更复杂点了。

我理解它就像是接力赛,行波在电缆里传播,遇到故障点就会发生一些特性的改变,我们就是要抓住这些改变来确定故障距离。

但是在实际操作中,要精确地捕捉到这些行波的变化可不容易,就跟在高速路上看一辆车一闪而过,你得非常准确地看到它的车牌一样难。

我是花了很多时间来调整仪器的参数,经过好多轮的测试,才慢慢掌握了一点技巧。

在实际测试的时候啊,还有个很重要的点,那就是要根据电缆的实际情况来选择合适的方法。

比如说如果是短电缆,可能电桥法就比较合适,要是长电缆的话,脉冲反射法或者行波法可能就更能发挥作用。

而且不管是哪种方法,现场环境都要尽可能的整理干净,减少那些不必要的干扰因素,这会让测试结果更准确。

不过我到现在也还有不确定的地方。

比如说在很特殊的电缆结构或者非常复杂的故障情况下,这些方法是不是都还管用,我心里就没底。

电缆故障测距仪的使用方法

电缆故障测距仪的使用方法

电缆故障测距仪的使用方法
电缆故障测距仪是一种用于检测电缆故障位置的仪器设备,它能够准确地测定电缆故障的距离,帮助人们快速定位并修复故障。

下面将介绍电缆故障测距仪的使用方法。

在使用电缆故障测距仪之前,需要确保仪器的正常工作和连接。

检查仪器的电源是否正常,仪表盘是否显示正常,各个接口是否连接牢固。

接下来,需要设置测距仪的参数。

根据实际需要,设置测距仪的测量范围、测量精度等参数,确保测距仪可以满足实际测量需求。

然后,将测距仪的探头接入待测电缆的两端。

探头的接入需要注意正确连接,确保接触良好,避免测量误差。

接下来,启动测距仪,开始测量。

在测量过程中,需要注意保持仪器的稳定,避免外界干扰对测量结果的影响。

同时,注意观察仪表盘的显示,确保测量数据的准确性。

在测量过程中,可以根据需要进行附加操作。

例如,可以通过调整测距仪的增益参数来改善信号质量,提高测量精度。

还可以通过测距仪提供的故障定位功能,确定故障发生的位置。

根据测量结果确定故障位置,并采取相应的修复措施。

根据测距仪提供的测量数据,可以准确地确定故障发生的位置,从而可以有针
对性地进行修复工作,提高修复效率。

总结起来,电缆故障测距仪的使用方法包括设置参数、接入探头、启动测量、观察显示、附加操作和故障修复。

正确使用电缆故障测距仪可以帮助人们快速准确地定位电缆故障,提高维修效率。

希望以上介绍对您有所帮助。

电缆故障定位

电缆故障定位

电缆故障定位1. 引言电缆作为电力传输和通信的重要组成部分,在现代社会中扮演着不可或缺的角色。

然而,由于外界环境、设备老化等原因,电缆故障时有发生。

当电缆故障发生时,快速而准确地定位故障点对于迅速修复和恢复供电至关重要。

本文将介绍电缆故障定位的一些方法和技术。

2. 电缆故障类型电缆故障可以分为多种类型,常见的包括: - 短路故障:电缆两个或多个导体之间发生直接的短路。

- 接触不良:导体之间的接触不良,导致电阻增加。

- 局部放电:绝缘材料局部损坏,导致局部放电。

- 导体断裂:导体发生断裂,导致通电中断。

3. 电缆故障定位方法3.1 直流法直流法是一种常用的电缆故障定位方法。

其原理是通过给电缆施加直流电压,然后利用故障点周围的电场分布特征推断故障点的位置。

直流法具有定位准确、不受频率影响的优点,但对仪器要求较高。

3.2 待定电压法待定电压法是一种简便且有效的电缆故障定位方法。

其原理是通过在电缆故障点附近施加待定电压,然后测量电缆两端的电压变化,从而确定故障点位置。

待定电压法操作简单,但对测量仪器的精度要求较高。

3.3 反射法反射法利用了故障点处的反射信号和电缆长度之间的关系。

通过发送信号并观察反射信号的到达时间和强度,可以确定故障点的位置。

反射法适用于定位断路故障和导体断裂故障,但对故障点周围的环境要求较高。

3.4 精确测距法精确测距法是一种利用频域反射(FDR)原理来定位电缆故障的方法。

该方法采用频域反射仪测量信号的波长和带宽,通过计算信号的传播速度和传输时间得到故障点的位置信息。

精确测距法定位精度高,但仪器设备较昂贵。

4. 电缆故障定位仪器•直流法仪器:直流法仪器主要有潜伏故障测量仪、直流电源和测量仪表等。

•待定电压法仪器:待定电压法仪器主要有待定电压发生器、测量仪表和数据分析系统等。

•反射法仪器:反射法仪器主要有时域反射仪、频域反射仪等。

•精确测距法仪器:精确测距法仪器主要有频域反射仪、故障点定位仪等。

电力电缆故障测距方法的研究

电力电缆故障测距方法的研究

’9
! "##$ 年第 % 期
云南电力技术
第 &’ 卷 !
的依赖性少,所获得波形简单易理解。其缺点是: ! )安全性差。仪器通过一电容电阻分压器分 压测量电压脉冲信号,仪器与电压回路有电耦合, 很容易发生高压信号窜入,造成仪器损坏。 ")测试可靠性差。测距时,高压电容对脉冲信 号是短路状态,需要串一电阻或电感以产生电压信 号,增强了线路的复杂性,且降低了电容放电时加在 故障电缆上的电压,使故障点不易击穿。 # )在故障 放电时,特 别是进行 冲闪测试 时, 分压器耦合的电压波形变化不尖锐,难以分辨。 "$ !$ "% 脉冲电流法 脉冲电流法是通过一线性电流耦合器测量电缆 故障击穿外产生的电流脉冲信号的方法。它实现了 仪器与高压回路的电耦合,省去了电容与电缆之间 的串联电阻与电感,简化了接线,传感器耦合出的 脉冲电流波形较容易分辨。 "$ !$ #% 低压脉冲法 低压脉冲法是测试时向电缆注入一低压脉冲, 该脉冲沿电缆传播到阻抗不匹配点,如断路点、短 路点、中间接头等,通过故障点反射脉冲与发射脉 冲的时间差原理来测距。根据波形极性还可判断故 障性质,如短路故障的反射脉冲与发射脉冲极性相 反,断路故障反射脉冲与发射脉冲极性向同,因此 低压脉冲法适用于测试交联电缆低阻、短路、断路 故障。 "$ !$ &% 二次脉冲法 其工作原理是:因为低压脉冲准确易用,结合 高压发生器发射冲击闪络技术,在故障点起弧的瞬 间通过内部装置触发发射一低压脉冲,此脉冲在故 障点闪络处(电弧的电阻值很小) 发生短路反射, 并将波形储存记忆在仪器中,电弧熄灭后,复发一 低压测量脉冲到电缆中,此低压脉冲在电缆故障点 不能被反射,直接到达电缆末端,并在电缆末端发 生开路反射,将两次低压脉冲波形进行叠加对比, 非常容易判断故障点位置。该方法优点是: ! ) 接线简单,切换容易,安全可靠; " ) 自动化 程 度高,实现 自 动匹 配、 自动 判 断、自动计算; # ) 测量精度高,结果准确。离线测量是其一 大特点,设备投入较前几种测距方法大。 "( "! 阻抗法 因为故障距离是故障电流、电压的函 ,阻抗 法利用线路单端或双端电压、电流测量值,然后推 导出特定的故障定位 !’ 程进行定位。其具体采用的

电缆断点测量距离的方法-概述说明以及解释

电缆断点测量距离的方法-概述说明以及解释

电缆断点测量距离的方法-概述说明以及解释1.引言1.1 概述电缆断点测量是一项重要的任务,在电气工程领域中起着至关重要的作用。

随着电缆使用寿命的不断延长以及电缆布线规模的扩大,准确、高效地确定电缆断点位置成为了一项必要的技术。

本文旨在介绍电缆断点测量的两种常用方法,分别是方法A和方法B,并对两种方法的优缺点进行总结。

在进行电缆断点测量之前,首先需要了解电缆断点是指电缆导体被中断或损坏的位置。

电缆断点可能由于多种原因导致,如电缆老化、外界环境影响或者人为破坏等。

准确地确定电缆断点位置有助于快速维修或更换损坏的电缆,提高电力系统的可靠性和可用性。

方法A是一种基于电缆故障发现的测量方法。

通过使用特定的仪器和技术,可以检测到电缆断点附近的故障信号,并根据信号变化的幅度和方向来确定断点位置。

这种方法具有定位准确、操作简便的优点,能够快速定位电缆断点位置,但对于复杂故障情况的处理可能有一定的局限性。

方法B是一种基于电缆光纤测距原理的测量方法。

通过在电缆中引入光纤传感器,并利用光纤传感器对光信号的传输和检测来确定光纤路径中的断点位置。

这种方法具有高精度、可远程监测的特点,能够实现对电缆全程的精确测量,适用于较长距离的测量需求,但需要专业的设备和技术支持。

综上所述,方法A和方法B都可以用于电缆断点测量,各自具有一定的优势和适用场景。

选择合适的方法需要根据具体的测量需求和实际情况进行综合考虑。

本文将详细介绍方法A和方法B的原理和测量步骤,并对两种方法的优缺点进行评估和总结,以期为电缆断点测量提供有益的参考。

1.2文章结构文章结构部分的内容可以包括以下内容:文章结构部分可以介绍整篇文章的组织结构和各个章节的主要内容。

通常包括以下几个方面:1. 介绍文章的总体结构:首先可以简单介绍文章的总体结构,即文章由引言、正文和结论三个主要部分组成。

2. 引言部分的主要内容:接着可以详细介绍引言部分的主要内容。

引言部分通常包括概述、文章结构和目的三个方面。

电缆故障测试仪的使用步骤

电缆故障测试仪的使用步骤

电缆故障测试仪的使⽤步骤
电缆故障测试仪的使⽤步骤
电缆故障测试仪的探测⼀般要经过诊断、测距、定点三个步骤。

1. 电缆故障性质诊断
电缆故障性质的诊断,即确定故障的类型与严重程度,以便于测试⼈员对症下药,选择适当的电缆故障测距与定点⽅法。

2. 电缆故障测距
电缆故障测距,⼜叫粗测,在电缆的⼀端使⽤仪器确定故障距离,现场上常⽤的故障测距⽅法有古典电桥法与现代⾏波法。

主要⽤到中试控股电缆故障测距仪。

3. 电缆故障定点
电缆故障定点,⼜叫精测,中试控股即按照故障测距结果,根据电缆的路径⾛向,找出故障点的⼤体⽅位来,在⼀个很⼩的范围内,使⽤⾼压信号发⽣器利⽤放电声测法或其它⽅法确定故障点的准确位置。

主要⽤到数字式电⼒电缆故障定点仪⼀般来说,成功的电缆故障探测都要经过以上三个步骤,否则欲速则不达。

例如不进⾏故障测距⽽利⽤放电声测法直接定点,沿着很长的电缆路径(可能有数公⾥长),探测故障点放电声是相当困难的。

如果已知电缆故障距离,确定出⼀个⼤体⽅位来,在很⼩的⼀个范围内(10⽶左右)来回移动定点仪器探测电缆故障点放电声,就容易多了。

电缆故障检测基本技术

电缆故障检测基本技术

一、电缆故障测试步骤:第一步:电缆故障性质的确定测试故障之前要确定:故障电阻是低阻还是高阻;是闪络性还是泄漏型型故障;是开放性的还是封闭型的;是接地、短路、断线还是它们的混合;是单相、两相还是三相故障。

判断故障性质最好用万用表确定高阻还是低阻故障。

以确定测试方法。

第二步:粗测利用低压脉冲法先测定被测电缆的全长和短路、断路故障的距离。

对于高阻故障,可用高压智能电桥,高压闪络法(电流取样法、电压取样法、二次脉冲法)测出故障点距测试端的距离。

之所以称为粗测,是因为无论何种方法测出的数值仅表示被测电缆(故障)的地下长度,由于地下的预留长度不能精确估计,此长度不能代表地面的距离。

只能算是故障点的大致范围。

第三步:测寻电缆的埋设路径,便于在电缆的正上方进行精确定位。

第四步:精确定点对电缆施加冲击高压(或脉动高压),利用故障点的放电声波,在粗测故障距离范围内,用声测法(声磁同步法)或跨步电压法进行精确故障点定位。

二、电缆故障测试方法1.低压脉冲测试法此法可直观地判断电缆故障点是开路还是短路性质的故障,并且能直接读出故障点距测试端的距离来。

低压脉冲法最典型的测试波形如图一所示。

根据行波理论的电波反射原理,发射脉冲在电缆中的传播过程中,如果遇到阻抗不匹配点(阻抗为零的短路点或阻抗为无穷大的断路点以及中间接头处),均会有能量的反射,形成反射脉冲。

断路和断路点反射能量最强,因此反射波的幅度就最大。

接头处反射能量较弱,回波就小得多。

短路故障回波的极性与发射脉冲的极性相反(反相),短路故障回波的极性与发射脉冲的极性相同(同相)。

中间接头处的等效阻抗一般大于电缆的特性阻抗,回波极性也与发射脉冲同相,只是幅度相对要小得多,加上在传播过程中电缆的衰减,所以不一定每个中间接头的的回波都看得见,1Km以上的中间接头回波就可能看不清楚甚至看不见。

定位双游标必须卡在发射脉冲的前沿拐点和回波脉冲的前沿拐点上测试出的距离才是准确的。

对于较远距离的故障回波(包括电缆终端反射回波),由于回波前沿比较圆滑,前沿起始拐点不一定非常清晰,可能会带来一定测试误差。

电缆故障测距方法

电缆故障测距方法
消 费 电子
电子科 技
C o n s u me r E l e c t r o n i c s Ma g a z i n e 2 0 1 3 年 7月下
电缆故障测距方法
李明 ,宋斌 ( 1 .北京京侨通信 工程设计 院有 限公 司石 家庄 分公 司 ,石家庄 0 5 0 0 1 1 ;2 . 中国白城 兵器试验 中心 ,吉林白城 摘 1 3 7 0 0 1 )
重要 的现 实意义 。 ‘ 二 、国内外测距方法的研究和发展 由于电缆对 系统安全经济运行的影响非常重大 , 从 电缆开 始应用 , 无论在 国内还 是在 国外人们 就已投入了大量的工作来 研究 电缆故障定位方法 , 随着 电缆应用领域的扩展 ,电缆故障 的性质 的变化 , 电缆 故障定位方法也不断地发展 , 可 以说这是 门经典 而又 全新的技术 。 从 定位技 术看 : 可 以把 电缆 故障定位 方法 的发展分为三个 阶段 :( 1 )直接测试 阶段,在 六十 年代 及以前,工程技术人员 普遍采用 电桥法直接测量故障点到测试点的距离 。 ( 2 ) 模拟存 储技术测试 阶段,在七十年代 ,高压模拟 存储 示波 器技术的成 熟带动 了电缆故障定位技术的发展 ,行波理论运用在测试 中, 高 阻故 障的测 试更加快速 , 使得 电缆 故障检测 手段 大大 地向前 迈进 了一步。( 3 )数字技术测试阶段,八十年代 后期 ,在 B i o
要 :电力电缆在 运行 中易受到 多种 因素的影响而发生故 障,威胁 系统 的安 全可靠性 ,因此迅速 、准确 地探
测 出电缆故障及其发生的位置,对提高供电可靠性、减少故障修复费用及停电损失具有重要理论意义和实用价值。
关键 词 :电缆故 障检测 ;测距 ;小波分析
中图分类号:T M7 1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电缆故障测距方法
在线测距方法
故障定位技术的发展主要经历了三个阶段:模拟式定位技术、单端数字式定位技术、双端定位技术。

早期的故障定位装置是机电式或静态电子仪器构成的模拟式装置。

后期的故障录波器是以光电转化为原理、以胶片为记录载体、根据故障录波仪记录的电信号来粗略估计故障点位置。

测试技术的出现以及计算机技术和通信技术都加速了故障定位技术的发展。

这个阶段出现了许多利用计算机进行故障定位的方法,其特点是采用单端信息,应用计算机的超强运算能力对各自算法进行修正,求得故障距离。

有些算法已应用到实际故障定位装置中,不足之处是无法克服故障电阻对故障定位精度的影响。

其中,单端阻抗法只用到线路一侧的电压、电流测量值,由于其理论上无法克服过渡电阻的影响,需要在测距算法中做一定的假设,所以其测量精度在很多情况下难以保证,但是有着造价低,不受通信因数的限制的优点,在实际应用中有着一定的应用需求。

单纯依靠单端信息不能有效地消除因素包括:负荷电流;系统运行阻抗;故障点过渡电阻,这自然影响到测距的精度。

单端行波法
是基于单端信息量的一种测距方法,其中单端行波测距的关键是准确求出行波第一次到达监测端与其从故障点反射回到监测端的时间差,并包括故障行波分量的提取。

常用的行波单端故障定位算法有求导数法、相关法、匹配滤波器法和主频率法。

由于行波在特征阻抗变化处的折反射情况比较复杂(如行波到达故障点后会发生反射也会通过故障点折射到对侧母线上去),非故障线路不是“无限长”,由测量点折射过去的行波分量经一定时间后,又会从测量点折射回故障线路等,使行波分析和利用单端行波精确故障定位有较大困难。

双端行波测距
是通过计算故障行波到达线路两端的时间差来计算故障位置,其测距精度基本不受线路的故障位置、故障类型、线路长度、接地电阻等因素的影响。

双端行波法的关键是准确记录下电流或电压行波到达线路两端的时间,误差应在几微秒以内,以保证故障定位误差在几百米内,行波在线路上的传播速度近似为300m/μs,1μs 时间误差对应约150m 的测距误差。

双端信号要求严格的同步,随着GPS对民用开放,使得双端故障定位法迅速发展。

这种定位方法的定位精度高,已成为近几年来故障定位方法研究的热点。

电缆故障定位技术经过国内外专家学者几十年的共同努力,已取得了很多有价值的成果。

但由于实际情况的复杂性,影响定位精度的因素很多。

故障定位领域还有很多问题尚未完全解决。

因此,还急需研究新的方法,提高故障定位的精度,解决实际问题。

在故障定位理论研究方面,各国学者提出了各种不同的新方法。

文中提到将专家系统应用到故障定位中,即用计算机来模拟专家思维,构建知识库,知识库可以从以往的故障事件中提取,并可以在实际应用中进行修改。

专家系统根据故障定位的三个主要内容把任务分成三个阶段:故障诊断、故障预定位(故障粗测)、故障精确定点。

相关文档
最新文档