紫外可见吸收光谱法 ppt

合集下载

第二章 紫外吸收光谱(共85张PPT)

第二章 紫外吸收光谱(共85张PPT)

max (己烷) =114+5M+nnR环内-10R环外 当苯环上有助色团时,向长波方向移至200 ~ 220nm。
-卤代酮的构象: -卤代环已酮有以下两个构象(A) (竖键)和(B)。 RCOOH及RCOOR的n → *比RCHO 的 小,即紫移*称为 *跃迁 ,实现 *跃迁需要吸收很多能量,约为185 千卡/克分子。
v=频率 用 周/秒(Cps)或赫兹(Hz) E=能量 单位为尔格,电子伏特eV或卡/摩尔
二、紫外光谱的特征
符合朗伯-比尔定律(Lambert-Beer’s Law),这是 吸收光谱的基本定律,用数学公式表示为:
A= ㏒(I0/I)=abc
式中:A:吸光度 I0:入射光强度 I:透射光强度 a:吸光系数 b:吸收池厚度(cm) c:被测物质浓度g/L I0/I:透射比,用T表示
CH3 CH3
N max =227nm( 900)
CH3
CH3Cl CH3OH
max =173nm( 200) max =183nm
3. *跃迁
电子由轨道跃迁到*轨道称→*跃迁,所吸收的能量比n → *小,峰位约在200nm附近,这种跃迁是强吸收, >104
例:CH2 CH2 max =162nm
近紫外区(200~400nm):在此波长范围内,玻璃有吸收,一般用石 英比色器,因此称近紫外区为石英紫外区,近紫外区最为有用,通常
所谓的紫外光谱就是指近紫外区的光谱。
2. 紫外光谱 以波长10~400nm的电磁波照射物质分子,即以紫外光照
射物质分子,由分子的电子能级跃迁而产生的光谱叫紫外光 谱。紫外光谱是电子光谱的一部分,可见光谱也是电子光谱 ,电子光谱是由电子跃迁而产生的吸收光谱的总称。

高分子材料研究方法--紫外可见吸收光谱 ppt课件

高分子材料研究方法--紫外可见吸收光谱  ppt课件

ppt课件
16
常用的是π→π*跃迁和n→π*,这两种跃迁都 需要分子中有不饱和基团提供π轨道。
n→π*跃迁与π→π*跃迁的比较如下:
π→π*
n→π*
吸收峰波长 与组成双键的
有关
原子种类基本无关
吸收强度 强吸收 104~105 弱吸收 <102
极性溶剂 向长波方向移动 向短波方向移动
ppt课件
O:
例:H C
H ppt课件
10
分子轨道有σ、σ*、π、 π*、n 能量高低σ<π<n<π*<σ*
σ* π*
n → σ* π→π* n→π*跃迁
n
π

σ→σ*

σ
ppt课件
11
主要有四种跃迁类型 跃迁所需能量为:
σ→σ* n→σ* π→π* n→π*
分子中电子的能级和跃迁
2
ppt课件
不同波长的光
ppt课件
L 4
A
图3-1 紫外可见吸收光谱示意图
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
ppt课件
min

5
A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min

2. 对于同一待测溶液,浓度愈大,吸光度也愈大;
3. 对于同一物质,不论浓度大小如何,最大吸收峰所对应 的波长(最大吸收波长 λmax) 不变。并且曲线的形状也 完全相同。
CH3Br λmax=204nm
ppt课件
14
(3)π→π*跃迁
π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁 所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁 差不多。200nm左右

紫外-可见吸收光谱-ppt

紫外-可见吸收光谱-ppt
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯 溶剂 正庚烷 正庚烷 乙醇 水 正己烷 乙醇 异辛酯 乙醚
二氧杂环己烷
/nm 177 178 204 214 186 339,665 280 300,665 270
max
13000 10000 41 60 1000 150000 22 100 12
(2)空间阻碍使共轭体系破坏,max蓝移, max减小。
表 表4.5 2-4 - 及 ’ - 位有取代基的二苯乙烯化合物的紫外光谱 R H H CH 3 CH 3 C2H5 R’ H CH 3 CH 3 C2H5 C2H5 max 294 272 243.5 240 237.5
max
9
2.2 紫外-可见光谱的产生
通常由最高占有分子轨道中的一个电子在吸收适当波长的 辐射能量后,跃迁到最低未占有分子轨道,产生紫外-可见吸 收光谱。
在电子跃迁过程中吸收光的频率(υ )取决于分子的能级差:
式中:h——普朗克常数,6.626×10-34J· s; c—— 光速,2.9979×10nm· s-1;
2.n→σ *跃迁
实现这类跃迁所需要的能量较高,其吸收光谱在远紫外区和近紫外区, 杂原子如氧、氮、硫及卤素等均含有不成键n电子。含杂原子的化合物可以 产 生 n→σ * 跃 迁 。 如 甲 醇 ( 汽 态 )λ max=183nm , ε =150 ; 三 甲 胺 ( 汽 态)λ max=227nm,ε =900;碘甲烷(己烷中) λ max=258nm,ε =380。
8
(三)吸收池 用于盛放分析试样,一般有石英和玻璃材料两 种。石英池适用于可见光区及紫外光区,玻璃吸收池只能用于 可见光区。为减少光的损失,吸收池的光学面必须完全垂直于 光束方向。 (四)检测器 检测信号、测量单色光透过溶液后光强度变化。 常用的检测器有光电池、光电管和光电倍增管等。硒光电 池对光的敏感范围为300~800nm,能产生可直接推动检流计的 光电流,但由于容易出现疲劳效应而只能用于低档的分光光度 计中;光电管在紫外-可见分光光度计上应用较为广泛;光电倍 增管是检测微弱光最常用的光电元件,它的 灵敏度比一般的光电管要高200倍,对光谱的精细结构有较好的 分辨能力。 (五)信号指示系统 放大信号并以适当方式指示或记录下来。 常用的信号指示装置有直读检流计、电位调节指零装置以 及数字显示或自动记录装置等。

现代仪器分析-紫外可见近红外吸收光谱ppt课件

现代仪器分析-紫外可见近红外吸收光谱ppt课件
I0= Ia+ It+ Ir 由于反射光强度很弱,其影响很小,上式可简化为:
I0= Ia+ It
吸光度: 为透光度倒数的对数,用A表示, 即 A=lg1/T=lgI0/It
透光度:透光度为透过光的强度It与入射光强度I0之比,用T表示: 即 T= It/I0
-6-
2.2 光吸收定律
朗伯-比耳定律
朗伯——比尔定律:A=kcl
- 13 -
4. 紫外-可见吸收光谱的产生
E = Ee +Ev + Er hv = ΔE = E2 - E1 = ΔEe + ΔEv + ΔEr
n E h
l
c
n
hc E
- 14 -
分子、原子或离子具有不连续的量子化能级---微观 仅当光子能量与被照物质基态和激发态能量之差相等
时才能发生吸收
H
H
CC
H
H
[C=C是发色基团]
助色基团取代,p p*跃迁(K带)将发生红移
取代基 -SR 红移距离 45(nm)
-NR2 40(nm)
-OR 30(nm)
-Cl 5(nm)
CH3 5(nm)
- 26 -
2. 立体结构和互变结构的影响
顺反异构:
H
H
反式:λmax=295.5 nm; εmax=29000
- 29 -
3.2 对精细结构的影响
极性溶剂使精细结构消失
- 30 -
溶剂本身有紫外吸收,选用溶剂时须注意其最低波长极限:
- 31 -
3.3 溶剂选择的原则 比较未知物与已知物的吸收光谱时,必须采用相同的溶 剂; 应竟可能地使用非极性溶剂,以便获得物质吸收光谱的 特征精细结构; 所选溶剂在需要测定的波长范围内无吸收或吸收很小。

第五章 紫外-可见吸收光谱法(共73张PPT)

第五章  紫外-可见吸收光谱法(共73张PPT)
甲醇 n→σ*跃迁: λmax 183nm

π→π*跃迁:
所需能量较小,λ一般>200nm,εmax > 104。
不饱和基团(乙烯基、乙炔基)
不饱和烃、共轭烯烃和芳香烃类可发生此类跃迁。
乙烯 π→π*跃迁: λmax 165nm
丁二烯 π→π*跃迁: λmax 217nm

n→π*跃迁:
所需能量最小, λ >200nm,
这些能量是量子化的,只有光辐射的能量恰好等于两能级之间的
能量差时,才能被吸收。

分子内部三种能级跃迁所需 能量大小的顺序为:
ΔE电> ΔE振> ΔE转

分子的电子跃迁所吸收的能量比后二者大的多
1. ΔE电 约为1~20eV,所吸收的电磁辐射波长约为1240~
62nm,主要在紫外和可见光区。
2. ΔE振约为~1eV,相应的分子吸收光谱为红外光谱。
光的强度I0与透射光的强度I之比的对数值。
A=lg I0/ I
T与A的关系:A=-lgT
三、朗伯-比尔定律

朗伯-比尔定律是分子吸收光谱法定量分析的基础。
要求:能够提供足够强的连续辐射、有良好的稳定性、较长的使用

三、紫外-可见吸收光谱法的应用
第六节 紫外-可见吸收光谱的应用
光源不同:前者为锐线光源,如空心阴极灯;
由于化合物分子结构中取代基的引入或溶剂的改变使得吸收带的
强度即摩尔吸收系数εmax增大或减小的现象,称为增色效应或减色效
应。
三、紫外-可见光谱中的常见吸收带
1、R带:(基团radical)
含杂原子的不饱和基团的
n →π*跃迁产生
C=O;C=N;—N=N—
特点:λmax 200~400nm,

紫外可见分光光度PPT(完整版)课件

紫外可见分光光度PPT(完整版)课件
因此,可能的跃迁为σ → σ*、π→ π*、n→ σ* n→ π*等。
2023/10/14
10
Wavelength
2023/10/14
11

~104 10~100 100~300
k
~200 200~800
<200 ~150(<200)
Amax(nm)
<U<M<M<xD<U<*0<1<*1<0<*0<0
(red shift 或bathochromic
shift) 指取代基或溶剂效应引起吸收带 向长波方向的移动;
蓝移 ( blue shift 或 hypsochron sh ift) 或紫移: 吸收带向短
波方向移动
2023/10/14
16
常见助色团及其助色效应(红移)λ
-F<-Cl<-Br<-OH<-OCH₃<-N NHCH₃<-N(CH₃)₂<-NHC₆H₅<
6
分子中电子能级、振动能级和转动能级示意图
2023/10/14
不是任一波长的 光都可以被某一物质 所吸收,由于不同物 质的分子其组成结构 不同,它们所具有的 特征能级也不同,故 能级差不同,而各物 质只能吸收与它们内 部能级差相当的光辐 射,所以,不同物质 对不同波长的光吸收 具有选择性。
7
物质颜色与光吸收的关系
2023/10/14
29
四、 无机化合物的吸收光谱
金属离子 金属离子
配位体
d-d配位场跃迁
配位体
配位体π- π*
金属离子
配位体
电荷转移
2023/10/14

常见有机化合物的紫外可见吸收光谱ppt课件

常见有机化合物的紫外可见吸收光谱ppt课件

火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
溶液的颜色与光吸收的关系
完全吸收
光谱示意 复合光 表观现象示意
完全透过
吸收黄色光
物质呈现颜色与吸收光波长的关系见下表。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
第一节 基本原理
一、光的基本特性 1.光的波动性 光是一种电磁波,电磁波可以用周期T(s)、
频率‫( ע‬Hz)、波长λ(nm)和波数σ(cm-1) 等参数描述。它们之间的关系为: =1/T=c/λ‫ע‬ /c‫ע‬σ=1/λ=
互作用。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
4.偏离朗伯一比尔定律的原因
定量分析时,通常液层 厚度是相同的,按照比尔 定律,浓度与吸光度之间 的关系应该是一条通过直 角坐标原点的直线。但在 实际工作中,往往会偏离 线性而发生弯曲。
透光度T (透射比)Transmittance
定义透光度:
T It I0
T 取值为0.0 ~ 1.0 全部吸收 ~~~~ 全部透射
吸光度A (Absorbance)
定义吸光度 :
A 取值为 0.0 ~∞
二者关系为:
A lg I 0 It
全部透射~~~全部吸收
A = lg(1/T) = -lgT

课件紫外可见吸收光谱(共83张PPT)

课件紫外可见吸收光谱(共83张PPT)

T I I0
I 为透射光的强度
I0 为入射光的强度
A lgI0
lgT
I
1760年朗伯(Lambert)阐明了光的吸收程度和吸收层厚度的 关系,即 A∝b
1852年比耳(Beer)又提出了光的吸收程度和吸收物浓度之间 也具有类似的关系,即 A∝ c
二者的结合称为朗伯-比尔定律,其数学表达式为:
AlgTkbc
Abc
摩尔吸光系数ε的讨论:
(1)吸收物质在一定波长和溶剂条件下的特征常数; (2)不随浓度c和光程长度b的改变而改变。在温度和波长等条件一定时 ,ε仅与吸收物质本身的性质有关,与待测物浓度无关;
(3)同一吸收物质在不同波长下的ε值是不同的。在最大吸收波长λmax 处的摩尔吸光系数,常以εmax表示。εmax表明了该吸收物质最大限度的
➢ 含有杂原子的不饱和化合物可以发生n→p*跃迁, 如含有羰基、硝基、亚硝基等
➢ n→p*跃迁所产生的吸收带称为R带
常用概念
➢ 发色团(或生色团):具有π电子的不饱和基团,即 可在紫外-可见光区产生吸收的官能团。如C=C、 C≡C、 C=O、-NO2等
➢ 助色团:有一些含有n电子的基团(如-OH、-NH2、OR、-SH、-Cl、-Br、-I等),它们本身没有生色功能
第二节
紫外-可见分光 光度计
UV-Vis spectrometer
一、基本组成
二、分光光度计的 类型
一、基本组成
1. 光源
➢ 要求:提供能量,激发被测物质分子使之产生价电子的跃迁, 从而产生电子光谱;在整个紫外光区或可见光谱区可以发射连续光 谱;具有足够的辐射强度、较好的稳定性、较长的使用寿命。
2. 有机化合物的紫外可见吸收光谱

紫外吸收光谱分析UVPPT课件

紫外吸收光谱分析UVPPT课件
21
当取代基上具有的非键电子的基团与苯环的π电子体系共轭相 连时,无论取代基具有吸电子作用还是供电子作用,都将在不同 程度上引起苯的E2带和B带的红移。
当引入的基团为助色基团时,取代基对吸收带的影响大小与 取代基的推电子能力有关。推电子能力越强,影响越大。顺序为 -O->-NH2>-OCH3>-OH>-Br>-Cl>CH3
2.3.1 概述
紫外-可见吸收光谱(Ultraviolet and Visible Spectroscopy, UV-VIS)统称为电 子光谱。
紫外-可见吸收光谱法是利用某些物质的分子吸 收200~800nm光谱区的辐射来进行分析测定的 方法。这种分子吸收光谱产生于价电子和分子轨道 上的电子在电子能级间的跃迁,广泛用于有机和无 机物质的定性和定量测定。
图2.23 紫外—可见吸收曲线
3
2.3.2 紫外吸收光谱的基本原理
1 电子跃迁类型
(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收
光子后被激发跃迁到σ*反键轨道
(2)n→σ* 跃迁 指分子中处于非键轨道上的n电
子吸收能量后向σ*反键轨道的跃迁
(3)π→π* 跃迁 指不饱和键中的π电子吸收光波
能量后跃迁到π*反键轨道。
9
iii B—带 B带(取自德文:benzenoid band, 苯型谱带)。它
是芳香族化合物的特征吸收带。是苯环振动及π→π*
重叠引起的。在230~270nm之间出现精细结构吸收, 又称苯的多重吸收,如图2.20。 iv E-带 E带(取自德文:ethylenic band,乙烯型谱带)。 它也是芳香族化合物的特征吸收之一(图2.25)。E带 可分为E1及E2两个吸收带,二者可以分别看成是苯环
对位—OCH3取代 +25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构分析
-
10
HEBEI NORMAL UNIVESITY, College of Chemistry & Material Science
无色溶液对光有无吸收?
醋酸水溶液:吸收一定波长的紫外光,
分光光度法测定。
1 .2
A b s o rb a n c e
1 .0
0 .8
0 .6
0 .4
0 .2
0 .0
二、波长范围
远紫外光(10~200nm):可被大气中的水气
、氮、氧和二氧化碳等所吸收,只能在真 空中研究,称为真空紫外光。 近紫外:200-400nm
-
2
可见光:
人眼能感觉到的波长400-780nm的光。
白光:由红 、橙、黄、绿、青、蓝、紫 光按一定比例混合而成的复合光。
-
3
三、物质的颜色与光的关系
通常,分子是处在基态振动能级上。
当用紫外、可见光照射分子时,电子可以从 基态激发到激发态的任一振动(或不同的转 动)能级上。
因此,电子能级跃迁产生的吸收光谱,包括 了大量谱线,并由于这些谱线的重叠而成为 连续的吸收带,这就是为什么分子的紫外、 可见光谱不是线光谱,而是带状光谱的原因。
-
16
光选择吸收的性质:反映了分子内部结构 的差异,各物质分子能级千差万别,内部 各能级间的间隔也不相同。
第三章 紫外-可见吸收光谱法
第一节 概 述 一、定义:根据溶液中物质分子或离子对紫外 和可见光的吸收来研究物质的组成和结构的方 法。包括比色分析法和紫外-可见分光光度法。
光谱名称 远紫外光 近紫外光 可见光
波长范围 10~200nm 200~400nm 400~780nm
-
1
HEBEI NORMAL UNIVERSITY, College of Chemistry & Material Science
基于物质对光的选择性吸收 看到的是固体物质反射或溶液透射的光。 物质(溶液) 吸收的光是反射或透射光 的互补光。 溶液颜色的深浅,取决于溶液中吸光 物质浓度的高低。
-
4
物质对光的选择性吸收 颜色与光的关系: 白光全吸收
白光全透过 吸收黄光
-
5
HEBEI NORMAL UNIVERSITY, College of Chemistry & Material Science
物质颜色与吸收光颜色关系
/nm 400-450 450-480 480-490 490-500 500-560 560-580 580-610 610-650 650-780
吸收光颜色 物质颜色

黄绿


绿蓝

蓝绿

绿
红紫
黄绿




绿蓝

蓝绿
-
6-7源自四、分析方法利用比较溶液颜色深浅来测定溶液中某组 分的含量的分析方法,称作比色分析法。 比色法:目视比色; 分光光度法:利用分光光度计进行吸收光 谱分析的方法。 依据:物质对光的选择性吸收作用。
-
21
HEBEI NORMAL UNIVERSITY, College of Chemistry & Material Science
π→π*和n→π*跃迁
• π*轨道能量低,两种跃迁所产生的吸收峰波 长一般大于200nm
• π→π*跃迁:在104 左右,强吸收; • n→π*跃迁:在10-100之间,弱吸收
-
13
-
14 13
图中表示了不同能量的电子能级。在每一电子 能级上有许多间距较小的振动能级, 在每一振动能级上又有许多更小的转动能级。
△E电子:电子能级差 △ E振动:振动能级差 △ E转动:转动能级差
即有△ E电子 △ E振动 △ E转动 E分子 = E电子 + E振动 + E转动
-
15
HEBEI NORMAL UNIVERSITY, College of Chemistry & Material Science
-
12
HEBEI NORMAL UNIVERSITY, College of Chemistry & Material Science
分子吸收光谱
在分子中,除了电子相对于原子核的运 动外,还有核间相对位移引起的振动和 转动。 这三种运动能量都是量子化的,并对应 有一定能级。下图为分子的能级示意图。
-
8
五、吸收光谱曲线
将各种波长的单色光依次通过一定 浓度的溶液,并测定每一波长下溶液对光的 吸收程度(A)。
以波长(λ )为横坐标,A为纵坐标作图,
得到的曲线,称吸收光谱曲线。
最大吸收波长λmax :
光吸收程度最大处对应的波长。
-
9
分光光度法
仪器: 分光光度计 测定:吸收光谱曲线 波谱区:紫外、可见 应用:定性、定量分析、
•不同物质具有不同的分子结构,选择性吸收 不同波长的光,因而具有不同的吸收光谱 ——结构鉴定
-
17
一、有机化合物的紫外-可见吸收光谱 (一)分子中电子的跃迁类型
有机物
O n电子(n轨道) H C 电子(轨道)
H
电子(轨道) 价电子:σ电子 → 饱和的σ键
π电子 → 不饱和的π键 n 电子 → 孤对电子 分子中分子轨道有成键轨道与反键轨道: 它们的能级高低为:σ<π<n <π*<σ*
190 200 210 220 230 240 250 260 270
W a v e le n g th /n m
-
11
HEBEI NORMAL UNIVERSITY, College of Chemistry & Material Science
第二节 紫外-可见吸收光谱
• 紫外吸收光谱的产生:分子外层电子能级 跃迁的结果,电子跃迁的同时,伴随着振 动转动能级的跃迁——带状光谱。
-
18
(一)分子中电子的跃迁类型
* * n*
* 反键轨道 * 反键轨道
n非键轨道 成键轨道 成键轨道
n*
-
19
σ→σ*跃迁
• 所需能量最大;吸收远紫外光 • 吸收波长<200 nm; • 饱和烷烃的分子只有σ→σ*跃迁
甲烷λmax=125 nm 乙烷λmax=135 nm
-
20
n→σ* 跃迁
• 所需能量较大,大部分峰在真空紫外区,近紫外
区不易观察到,摩尔吸光系数较小。
• 吸收波长为150~250nm • 含有未共用电子对的饱和烃衍生物(含N、O、S
和卤素等杂原子)均呈现 n→σ* 跃迁
CH3OH、CH3NH2 n* :183nm、213nm
CH3I * 150~210 nm n* 259 nm
CH2I2 n* 292 nm CHI3 n* 349 nm
相关文档
最新文档