电动汽车再生制动系统介绍ppt课件

合集下载

电动汽车制动能量回收系统课件

电动汽车制动能量回收系统课件
发展趋势
随着电池技术和电机控制技术的不断进步,制动能量回收系统的效率和性能将得到进一步提升。未来,制动能量 回收系统将与自动驾驶技术相结合,实现更加智能化的能量管理。同时,随着充电设施的日益完善和电池成本的 降低,制动能量回收系统将在更多类型的电动汽车上得到应用。
02
制动能量回收技术详解
再生制动技术
充电设施建设: 随着我国电动汽车数量的不断增加,充电设施的建设也得到了快速发 展,为制动能量回收系统的应用提供了有力保障。
国内外应用现状
• 技术研发: 我国在电动汽车及制动能量回收技术方面进行 了大量研发工作,取得了一系列重要成果。
国内外应用现状
01
国外应用现状
02
03
04
先进技术: 国外在电动汽车及 制动能量回收技术方面起步较 早,拥有较为先进的技术水平
优势
制动能量回收系统不仅可以提高电动汽车的能效和续航里程,还可以延长电池寿命,提高车辆的安全 性和稳定性。此外,制动能量回收系统的使用还可以减少对传统能源的依赖,降低能源成本。
系统的历史与发展趋势
历史
制动能量回收系统的概念最早可以追溯到20世纪90年代,但直到近年来随着电动汽车技术的快速发展,该技术才 得到广泛应用。
案例分析:系统性能评估与改进
系产工艺,降低制动能量回 收系统的成本,使其更具有市场竞争力。
技术创新: 针对现有技术的不足,研发更高效、稳定的 制动能量回收技术。
兼容性改进: 提高制动能量回收系统与其他电动汽车系 统的兼容性,方便用户使用和维护。
05
未来展望与挑战
技术发展趋势
高效能量回收技术
随着材料科学和电力电子技术的 进步,制动能量回收系统的效率 将得到进一步提升,回收的能量 将更多用于延长电动汽车的续航

电动汽车再生制动系统介绍ppt课件

电动汽车再生制动系统介绍ppt课件

2020/5/11
.
14
一汽奔腾B50电动试验车结构:
2020/5/11
.
15
四、制动意图识别
制动意图识别主要是能够正确的识别电动汽车 中驾驶员的制动意图,是驾驶意图的一部分, 是驾驶员对车辆进行减速操作的一种意图。便 于可以准确的控制电机制动和液压制动进入和 退出的时间,从而一方面有利于提高汽车制动 能量回收率,另一方面也可以提高汽车制动的 安全性。识别出的不同制动意图要求的不同的 制动性能,不同的制动性能则要求合理的对前 后轴制动力进行分配,作为制动力分配的依据。 在制动强度较大时保证车辆的制动安全性,在 制动强度较小时保证较高的制动能量回收率。
2020/5/11
.
25
2020/5/11
.
26
2、驱动与制动协调控制策略:
2020/5/11
.
27
3、再生制动与ABS协调控制策略:
2020/5/11
.
28
4、多能源系统模糊分配策略:
2020/5/11
.
29
4、多能源系统模糊分配策略:
2020/5/11
.
30
六、制动能量回收评价指标
制动能量回馈率:制动能量回馈过程中电
4、本田汽车公司紧随其后,于 1999 年开发了混合动力 汽车 Insight,提出了采用双制动力分配系数控制再生制 动系统,试验结果表明,该车实现了高效的制动能量回收。 5、美国福特汽车公司也推出了混合动力汽车 Escape,该 车型采用了线控再生制动系统,线控系统取代了传统的机 械液压制动系统,把驾驶员的制动踏板信号操作转变为电 信号,通过驱动电机实现所需的操作,实验证明该车制动 能量回收率及制动时方向稳定性均有较大的提高。 6、国内的再生制动技术起步比较晚。国内研究机构和高 校都对再生制动系统进行了相关的研究,并取得了一定的 进展,但尚未达到十分成熟的阶段。但是近些年新出的电 动汽车大部分都采用了再生制动能量回收系统。

再生制动

再生制动

1概念再生制动在电力机车、有轨电车、无轨电车及纯电动或混合动力汽车上常见。

电力机车、有轨电车、无轨电车通常是把产生的电能输回接触网,而汽车则可能把电能储在飞轮、电池或电容器之内。

传统的的动力制动则会把电能在电阻转成热能后逸散。

最普通的制动方法会把车的动能,以摩擦直接转化成热能。

“再生制动”和另一种原理接近,但较为简单的“动力制动”(Dynamic Braking),则是把电动机转成发电机使用,把车辆的动能转成电能。

动力制动通常只会把产生的电,经过电阻转成无用的热放走。

而再生制动则会把电力储起来或透过电网送走,再生循环使用。

使用再生制动的车辆仍然会有传统的摩擦制动,提供快速、强力的制动。

一般的再生制动只会把约30%的动能再生使用,其余的动能还是成为热。

这效率根据不同的使用环境而有所不同。

2原理将牵引电机的电动机工况转变为发电机工况,将列出动能转化为电能,电能通过转换电器和受电弓反馈给供电触网,可提供给相邻运行的列车使用的制动方式。

再生制动的三种不同的制动控制策略:具有最佳制动感觉的串联制动;具有最佳能量回收率的串联制动;以及并联制动。

在前轮上的再生制动比后轮上的再生制动将更为有效,同时大部分制动能量消耗在10~50km/h的车速范围内。

3分类1897年由 Frenchman M.A.Darracq在其小轿车上实现。

这是对电动汽车和混合动力电动汽车应用技术最有价值的贡献之一:变频器再生制动。

能量消耗型这种方法是在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制一个功率管的通断。

在直流母线电压上升至700V左右时,功率管导通,将再生能量通入电阻,以热能的形式消耗掉,从而防止直流电压的上升。

由于再生能量没能得到利用,因此属于能量消耗型。

同为能量消耗型,它与直流制动的不同点是将能量消耗于电机之外的制动电阻上,电机不会过热,因而可以较频繁的工作。

并联直流母线吸收型适用于多电机传动系统(如牵伸机),在这个系统中,每台电机均需一台变频器,多台变频器共用一个网侧变流器,所有的逆变部并接在一条共用直流母线上。

电动汽车再生制动系统基本原理分析

电动汽车再生制动系统基本原理分析

目录
Contents
绪论
2.4 再生制动原理
RBS基本理论
动力系统参数 匹配
RBS控制策略 设计
RBS控制器与控 制程序设计
总结与展望
图2.5 一个 PWM 调制周期内电流波形
再生制动调制方式
Ud
T1 D1 T3 D3 T5 D5 Ua La A
B
Ub Lb
C
Uc Lc
Ra
ea
Rb
Байду номын сангаас
eb
Rc
ec
Ud
Rc
ec
T4 D4 T6 D6 T2 D2
2018-06-04
图2.8 全桥调制续流阶段
目录
Contents
绪论
RBS基本理论
动力系统参数 匹配
RBS控制策略 设计
RBS控制器与控 制程序设计
总结与展望
2.4 再生制动原理
再生制动控制方法
最大回馈功率控制
控制电枢电流,实 现回馈电流和功率最大 化。电机转速按照指数 规律下降,在车速较高 时,蓄电池充电电流和 电枢电流往往过大。
Pbw
s
Tfb
s
f
1 s
1
总结与展望
2018-06-04
目录
Contents
绪论
2.3 电机工作原理
逆变电路
电机
T1
D1 T3
D3 T5
D5 Ua
La
A
Ra
ea
Ud
Ub
Lb
Rb
eb
B
C
Uc
Lc
Rc
ec
T4 D4 T6 D6 T2 D2

电动汽车电机控制与驱动技术课件:电动汽车再生制动控制技术

电动汽车电机控制与驱动技术课件:电动汽车再生制动控制技术
前轴距离;b 质心距后轴距离;可以由 f 线组和 r 线组做出 I 曲线,如图 10-2 所 示。
图10-2 不同地面附着系数下的f线组和r线组
图 10-2 不同地面附着系数下的 f 线组和 r 线组
2)系统的控制策略 以保持汽车的方向稳定性和能量回收最大化为前提,开发了一种新的制动能量 回收系统,其结构,如图11-3所示。此系统采用并行系统,即不改变原有机械制 动系统制动力的条件下,由整车电动机(也作驱动电机使用)提供一定的制动扭矩 于前驱动轮上,在不影响制动过程的条件下完成制动能量回收。
根据以上分析,电机作为发电机运行时,力矩与电机转速满足如下关系
Tm
Tc n Pc 9550 n
3880 n 3880
(10-16)
式中 Tm ——电机力矩(Nm);
Tc ——常值力矩(Nm),表示额定力矩或峰值力矩; n ——电机转速(rpm);
Pc 一一与 Tc 对应的常值功率((kW),表示额定功率或峰值功率。
对于前轮驱动电动轿车,只能通过前轮电机制动回收部分整车制动能量,而后轮 始终为摩擦制动。
(1)若Tmmax>Tb,则前轮制动力矩的需求全部由电机再生制动提供,此时前轮 处于纯电机再生制动模式;
(2)若Tmmax<Tb,则前轮制动力矩的需求由电机再生制动和摩擦制动共同产生,此时前轮处于复合制 动模式。其中,摩擦制动力矩(Tmech)为前轮制动力矩和电机最大制动力矩的差值,即:Tmech = Tb一 Tmmax。此即为并行制动控制策略。
f线组:指后轮没有抱死,在各种 值路面上前轮抱死时的前、后地面制动力关 系曲线。
Fxb2 ((L h0 ) / h0 )Fxb1 Gb / h0 Fxb1 Fz1 / L(Gb Fxbh0 )

第8章 新能源汽车制动能量回收系统

第8章  新能源汽车制动能量回收系统

• 按FTP75市区循环运行的车辆的车速及其加/减速度。
• 这一实例的参数为L=2.7m,La =0.4L,Lb=0.6L和hg=0.55m。从图 中可以看出:
• 1)前轮消耗约65%的总制动功率和能量,因此,若仅在一个轴 上实施再生制动,则在前轮上的再生制动比后轮上的再生制动将更 为有效。
• 2)在车速小于50km/h的范围内,制动力几乎为一恒值,且当车速 大于40km/h时,其值减小。
• 图所示为利用液压储能原理设计的一种制动能量再生回收系统。系 统由发动机、液压泵、液压储能器、联动变速箱、驱动桥、液控离 合器和液压控制系统组成。
• 3.电化学储能
• 其工作原理是:首先将车辆在制动或减速过程中的动能,通过 发电机转化为电能并以化学能的形式存储在储能器中;当车辆需要 起动或加速时,再将存储器中的化学能通过电动机转化为车辆行驶 的动能。
• dηp = 0
dim
• 得到最大回馈效率再生制动时的电动机电枢电流为
(8-7)
• im =
rm2 TL2+Ke2ΩrmTL−imTL Keim
(8-8)
• 3.恒定力矩制动方式
• 在制动力矩(电枢电流)不变的情况下,回馈到电池的电流将随 电动机反电动势的降低而减小,其初始值(也是最大值)不应超过 电池允许充电电流,否则在制动过程中能最不能得到有效的回收。
• 8.2.2 电动汽车的制动模式
• 1.急刹车 • 急刹车对应于制动减速度大于2m/s2 的过程。
• 2.中轻度刹车 • 中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程
与停止过程。 • 3.汽车下长坡时的刹车 • 汽车下长坡一般发生在盘山公路下缓坡时。在制动力要求不大时, 可完全由电刹车提供。其充电特点表现为回馈电流较小但充电时间较长。 限制因素主要为电池的电荷状态和接受能力。

电动汽车制动能量回收系统PPT课件

电动汽车制动能量回收系统PPT课件
制动能量回收方法 ➢ 根据储能机理不同,电动汽车制动能量回收的方法也
不同,主要有3种,即飞轮储能、液压储能和电化学储 能
.
5
2.1飞轮储能
➢ 飞轮储能是利用高速旋转的飞轮来储存和释放能 量,能量转换过程如图所示。当汽车制动或减速 时,先将汽车在制动或减速过程中的动能转换成 飞轮高速旋转的动能;当汽车再次启动或加速时, 高速旋转的飞轮又将存储的动能通过传动装置转 化为汽车行驶的驱动力。
车,它的制动系统包括能量回收制动和液压制动, 能量回收制动由整车ECU控制,液压制动则是由制 动控制器控制,液压制动系统如图所示。
点击添加文本
.
14
4.2 再生—液压混合制动系统 ➢ 图是某电动汽车的再生—液压混合制动系统,它只
在前轮上进行制动能量回收,前轮上的总制动力矩 大小等于电机产生的再生制动力矩与机械制动系统 产生的摩擦制动力矩的和。
点击添加文本
点击添加文本
液压储能式制动能量回收系统示意图
.
9
2.3电化学储能
➢ 电化学储能工作原理如图所示。它是先将汽车在制动 或减速过程中的动能,通过发电机转化为电能并以化 学能的形式储存在储能器中;当汽车再次启动或加速 时,再将储能器中的化学能通过电动机转化为汽车行 驶的动能。储能器可采用蓄电池或超级电容,由发电 机/电动机实现机械能和电能之间的转换。系统还包括 一个控制单元,用来控制蓄电池点或击超添加级文电本容的充放电 状态,并保证蓄电池的剩余电量在规定的范围内。
.
7
2.2液压储能
➢ 液压储能工作过程如图所示。它是先将汽车在制动或减 速过程中的动能转换成液压能,并将液压能储存在液压 蓄能器中;当汽车再次启动或加速时,储能系统又将蓄 能器中的液压能以机械能的形式反作用于汽车,以增加 汽车的驱动力

电动汽车制动能量回收系统课件

电动汽车制动能量回收系统课件
磨损。
05
电动汽车制动能量回收系统的未来发展
技术创新
01
02
03
高效能量转换技术
研发更高效的能量转换技 术,提高制动能量回收的 效率,减少能源损失。
智能控制策略
采用先进的控制算法和策 略,实现制动能量回收系 统的智能化和自适应调节 。
无线充电技术
探索无线充电技术在电动 汽车制动能量回收系统中 的应用,简化充电流程, 提高便利性。
控制器
80%
控制器功能
控制器负责接收制动踏板信号, 并根据车辆行驶状态和电池充电 状态,控制电机进行能量回收。
100%
控制算法
控制器采用先进的控制算法,如 模糊逻辑控制或PID控制,以实 现精确的制动能量回收控制。
80%
与整车其他系统的集成
控制器需与整车其他系统(如电 池管理系统、整车控制系统等) 进行集成,以确保系统的协调运 行。
制动能量回收系统的原理
当电动汽车进行制动时,车辆的动能会通过车轮和 传动系统传递到发电机/电动机。
发电机/电动机在此时转变为发电机模式,将动能转 化为电能。
电能经过控制器的调节后,被存储在动力电池中。
制动能量回收系统的分类
根据能量回收方式的不同,制动能量回收系统可以分为:液压式 、电机制动式和发电机制动式。
市场拓展
扩大应用领域
将电动汽车制动能量回收系统应用到 更广泛的领域,如公共交通、物流运 输等。
跨界合作与产业链整合
加强与相关产业的合作,整合产业链 资源,共同推动电动汽车制动能量回 收系统的发展。
拓展国际市场
推动电动汽车制动能量回收系统在全 球范围内的普及和应用,开拓国际市 场。
政策支持
制定鼓励政策

电动汽车的再生制动系统

电动汽车的再生制动系统

1.电动汽车再生制动系统的概念与工作原理
1.2 电动汽车再生制动系统的工作原理
当驾驶员踩下制动踏板或者松开电门
车轮
减速机构
电机ቤተ መጻሕፍቲ ባይዱ
电池包
再生控制系统
2.电动汽车再生制动系统的特点
传动汽车的制动是 通过摩擦将车辆的动能 转化成热能,从而达到 降低车速的目的,这样 能量就被浪费掉了。
电动汽车再生制动 系统能够提高能量利用 效率,有效降低车辆的 排放,并提高车辆的续 航里程。
3.课堂小结
1)电动汽车再生制动系统具体指的是什么? 2)请描述电动汽车再生制动系统的工作原理? 3)电动汽车再生制动系统的特点有哪些?
学习目标
1.了解电动汽车再生制动系统的概念与工作原理 2.了解电动汽车再生制动系统的特点
1.电动汽车再生制动系统的概念与工作原理
1.1 电动汽车再生制动系统的概念
电动汽车在制动过程中将 驱动电机作为发电机,依靠车 轮的反向拖动产生电能和车轮 制动力矩,从而在减缓车速的 同时将部分动能转化为电能以 备再利用,此过程即为再生制 动系统。

新能源汽车技术概论课件第8章新能源汽车制动能量回收系统ppt

新能源汽车技术概论课件第8章新能源汽车制动能量回收系统ppt

• 图所示为利用液压储能原理设计的一种制动能量再生回收系统。系 统由发动机、液压泵、液压储能器、联动变速箱、驱动桥、液控离 合器和液压控制系统组成。
• 3.电化学储能
• 其工作原理是:首先将车辆在制动或减速过程中的动能,通过 发电机转化为电能并以化学能的形式存储在储能器中;当车辆需要 起动或加速时,再将存储器中的化学能通过电动机转化为车辆行驶 的动能。
• 2.前后轴制动力比例分配时的控制策略
• 并联制动控制策略如图所示。需要的总制动力较小时,全部由再生制动力提 供;当需要的减速度增大时,电机再生制动力所占的比例逐渐减小,机械制动 力开始起作用;当总制动力大于一定值时意味着这是一个紧急制动,再生制动 力减小到零,机械制动提供所有的制动力;当所需的制动减速度在两者之间时, 再生制动与机械制动共同作用。
• 3)从汽车理论知识可知,如果前轮先于后轮抱死,虽然失去了 转向能力,但整车还是稳定的;如果后轮先于前轮抱死,将导致整 车失去控制,极易发生严重交通事故。
•8.5 电动汽车的制动系统
• 电动汽车的再生制动给制动系统的设计添加了一些复杂性,呈现 出两个基本问题:一是如何在再生制动和机械摩擦制动之间分配所 需的总制动力,以回收尽可能多的车辆的动能;二是如何在前后轮 轴上分配总制动力,以实现稳定的制动状态。
• 3)制动控制器根据电动机转速,计算电机实际能够提供的制动强度。 • 4)比较需求的电机再生制动强度上限和电机实际能够提供的制
动强度,并将结果作为电信号发送给电机控制器。
• 5)此时的电动机工作在发电机状态下,可以提供电压恒定流向 的电流,再通过逆变器限制电机产生的最高电压和对电压进行升压, 以便满足电流输出要求,充到动力蓄电池组中。
• 电动汽车三种常见再生制动控制策略进行比较结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/5/11
.
3
续航历程短是制约电动汽车普及发展的关键因素,再生制 动能量回收技术是提高电动车续航里程的有效手段。再生制动 能量回收即汽车在制动时,通过制动装置将动能化为电能储存 在动力电池、超级电容等储能设备,供驱动时使用,以达到延 长电动汽车续驶里程的目的,同时还可起到减少制动器工作强 度、延长机械制动系统寿命的作用。
因为具备上述优点,再生制动能量回收技术已成为纯电动 汽车和燃料电池汽车等新能源汽车节能减排的主要技术之一。
2020/5/11
.
4
再生制动的发展
2020/5/11
再生制动能量回收系统最开始应用在火车上,后来一 些学者将其应用在汽车上,早起主要是在传统汽车上使用, 利用液压和飞轮的储能机构,能量回收效率低。后来随着 电动汽车技术的发展,电机能源转化效率高,电池储能效 率高,再生制动系统进入了研究的快车道,并成为电动汽 车上一重要的组成部分。 1、早在20世纪70年代,美国威斯康星大学Norman H.Beachley等学者就开始了汽车再生制动系统的研究,当 时主要是对传统汽车采用飞轮和液压储能方式对制动年能 量回收。 2、1979年,丹麦P.Buchwald和G.Christensen等比较详 细的研究了再生制动能量回收理论,同时在福特汽车上研 制出了液压储能的再生制动系统。 3、日本丰田公司于 1997 年推出了具有再生制动功能的 混合动力轿车 Prius,这款轿车制动的惯性能量能够通过 再生制动系统得到回收,回收的能量约能提供汽车5%~23% 的驱动力,从而能够提高.轿车 10%左右的燃油经济性。 5
位不同时,能承担的制动强度可以更大。
3、再生制动可起辅助制动作用。特别是电动汽车恒速
下长坡时,为保持制动强度的恒定性,延长行车制动系工作
寿命,再生制动单独或与行车制动系协同对车辆进行速度控
制。
4、利用再生制动提高电动汽车主动安全性。这种功能
包括两个方面:一是电动汽车在低附着系数路面上进行再生
制动时,通过控制再生制动力来使驱动轮获得最佳滑移率,
缩短制动距离,这是一种区别于传统机械 ABS 的电磁制动
系统,它在保持滑移率最佳的同时,能回收制动能,即具有
再生 ABS 功能,二是利用再生制动产生横摆力矩来提高电
2020/5/11 动汽车的转弯操纵稳定性。.
8
5、电动汽车的再生制动反应速度快,控制精度高。 制动系统反应时间对车辆动态性能的影响十分显著,通 常,行车制动系制动管路中的电磁阀会存在死区时间, 管路中传力介质的压力反应也存在明显延迟现象,故行 车制动系起作用的时间一般较长,如真空助力制动系与 气压制动系的起作用时间为 0.3~0.9s,液压制动系起 作用的时间在 0.1s 左右。由于电动汽车再生制动的 制动性质是电制动,而电机时间常数一般为 1ms,因 而有利于对制动力矩实现快速而精确的控制。
电动汽车再生制动系统介绍
报告人: 专 业:车辆工程
2020/5/11
.
Байду номын сангаас
1
目录
一、再生制动系统简介 二、再生制动的影响因素 三、制动意图识别方法 四、再生制动系统的控制策略 五、制动能量回收评价指标 六、再生制动能量回收系统研究热点
2020/5/11
.
2
一、再生制动能量回收系统简介
随着环保和能源问题日益突出,传统汽车所带来的空 气污染日益加重和石油短缺的问题,得到了人们的重视。 为解决节能和环保的问题,国家大力支持电动汽车的发展, 并被认为是传统车辆的理想替代品。电动汽车具有能量来 源可持续、零排放、低噪音等优势,同时,电动汽车通过 自身的驱动电机,可以实现再生制动能量回收。
2020/5/11
.
9
再生制动能量回收系统结构:
2020/5/11
.
10
2020/5/11
.
11
三、再生制动的影响因素
一般情况下,影响电动汽车制动能量回收效能的因素有 储能装置、制动力分配比例、驱动类型、电机性能、行驶工 况、控制策略等。 (1)储能装置。电动汽车上常用储能装置有蓄电池、燃料电 池、超级电容、飞轮电池等,其中最常用的还是蓄电池。因 此,在制动能量回收进行时要充分考虑蓄电池的状态,如果 制动过程中蓄电池 SOC 值超过上限值,表明蓄电池电量充足 不需充电,此时不宜进行制动能量回收,否则会损害蓄电池 寿命并且有可能引发安全问题。另外,为了保护蓄电池,制 动能量回收过程还要充分考虑蓄电池能承受的最大充电电流 和充电功率。 (2)制动力分配比例。由于电动汽车运行速度较高,制动时 仅仅依靠再生制动很难及时减速,这就需要机械制动提供相 应的制动力,因此制动过程中再生制动力和机械制动力的比 例就显得尤为重要,在保证制动稳定性的前提下,再生制动 力所占比例越高,越有利于制动能量回收。
2020/5/11
.
6
2020/5/11
.
7
再生制动能量回收系统优点:
1、再生制动是提高电动汽车能量利用率的重要途径之
一。尤其是在起、停频繁的城市工况下,研究表明,利用再
生制动,可使城市工况下的电动汽车续驶里程延长 14%到
40%。
2、再生制动可承担低制动强度的制动任务。通常情况
下能承担制动强度在 0.1 以下的制动任务,但当车型与档
4、本田汽车公司紧随其后,于 1999 年开发了混合动力 汽车 Insight,提出了采用双制动力分配系数控制再生制 动系统,试验结果表明,该车实现了高效的制动能量回收。 5、美国福特汽车公司也推出了混合动力汽车 Escape,该 车型采用了线控再生制动系统,线控系统取代了传统的机 械液压制动系统,把驾驶员的制动踏板信号操作转变为电 信号,通过驱动电机实现所需的操作,实验证明该车制动 能量回收率及制动时方向稳定性均有较大的提高。 6、国内的再生制动技术起步比较晚。国内研究机构和高 校都对再生制动系统进行了相关的研究,并取得了一定的 进展,但尚未达到十分成熟的阶段。但是近些年新出的电 动汽车大部分都采用了再生制动能量回收系统。
2020/5/11
.
12
(3)驱动类型。从车型角度考虑,目前对于电动汽车研究 涉及最多的是双轴电动轿车,但无论双轴电动轿车为两驱 型还是四驱型,制动过程中能够回收的能量均只是驱动轮 上的行驶动能,而从动轮上的动能只能依靠机械摩擦制动 产生热量消耗掉。因此,在保证制动安全的前提下,尽可 能多的向驱动轮分配制动力有利于提高制动能量回收效率。 (4)电机性能。作为再生制动系统的关键部件,电机的制 动能力越好,就可在分配再生制动力与机械制动力时提高 再生制动力比例,增加制动能量回收效果。此外,电机的 发电效率也对制动能量回收有很大影响,另外在低速和高 速时也不利于电机进行制动能量回收。 (5)行驶工况。行驶工况对于制动能量的回收影响最直接, 若电动汽车行驶在城市交通较拥挤道路上,需要频繁起步、 加速、减速,则制动工况较多,提高了再生制动次数,能 够增加能量回收效果;若电动汽车行驶在高速公路,很少 会出现制动减速工况,制动能量回收较少。
相关文档
最新文档