连续型随机变量及其概率密度函数.
概率论-2-3连续型随机变量及其概率密度
x)
1 100
e
x
100
,
x0
0,
其它
(1)求元件寿命至少为200小时的概率;
(2)将3只这种元件连接成为一个系统. 设系统 工作的方式是至少2只元件失效时系统失效,又设3 只元件工作相互独立. 求系统的寿命至少为200小时 的概率.
解(1)元件寿命至少为200小时的概率为PX 200 f Nhomakorabea(x)dx
Y ~ B(3,1 e2)
2只及2只以上元件的寿命小于200小时的概率为
PY 2 3(1 e2)2(e2) (1 e2)3
2
PY 2 3(1 e2)2(e2) (1 e2)3
2 (1 e2)2(2e2 1) 0.950. 故系统的寿命至少为200小时的概率为
p 1 PY 2 1 0.950 0.050
1 ba
ab
即是说 X落在区间(a,b)内任意等长小区间 上的概率相等,在(a,b)内两个等长小区间上, f(x)之下的小长方形的面积相等,就是称为均匀分 布的原因.
均匀分布常见于下列情形
如在数值计算中,由于四舍五 入,小数点后某 一位小数引入的误差.
公交线路上两辆公共汽车前后通过某汽车停车 站的时间,即乘客的候车时间等.
本节练习
习题二:8,9,10
§2.3 连续型随机变量及其概率密度
连续型随机变量及其概率密度的定义 概率密度的性质 三种重要的连续型随机变量 小结
连续型随机变量X所有可能取值充满一个区间,
对这种类型的随机变量,不能象离散型随机变量那 样, 以指定它取每个值概率的方式, 去给出其概率 分布,而是通过给出所谓“概率密度函数”的方式.
f
(
x)
《概率论》第2章§4连续型随机变量及其密度函数
密度函数是描述连续型随机变量取值 规律的工具,通常用大写字母f(x)表示 ,f(x)在x处的函数值表示随机变量在x 点附近取值的“概率密度”。
性质与定理
非负性
密度函数f(x)在整个实数范围 内都是非负的,即f(x)≥0。
正态分布
又称高斯分布,是一种连续概率分布。正态分布 是自然界中最常见的分布之一,许多自然现象和 社会现象都服从或近似服从正态分布。其密度函 数呈钟形曲线,关于均值对称。
指数分布
常用于描述某些随机事件发生之间的时间间隔, 如无线电通信中的信号到达间隔等,其密度函数 呈指数形式衰减。
其他分布
除了上述三种分布外,还有许多其他类型的连续 型随机变量分布,如t分布、F分布、贝塔分布等 。这些分布在实际问题中也有广泛的应用。
03 概率计算与应用
概率计算公式及方法
概率密度函数
常用的概率分布
对于连续型随机变量,其概率通过概率 密度函数进行描述,该函数表示随机变 量在某个取值点附近的概率分布情况。
ቤተ መጻሕፍቲ ባይዱ
如正态分布、均匀分布、指数分布等,这些 分布具有特定的概率密度函数和累积分布函 数形式,可用于描述不同类型的随机现象。
累积分布函数
性质
多维随机变量具有一维随机变量的一些基本性质,如分布函数性质、独立性等。此外, 多维随机变量还具有一些特殊的性质,如多维随机变量的每一个分量都是一维随机变量。
联合密度函数概念及性质
要点一
概念
对于多维连续型随机变量(X1, X2, ..., Xn),如果存在非负可积 函数f(x1, x2, ..., xn),使得对Rn中的任意区域D,有P{(X1, X2, ..., Xn) ∈ D} = ∫∫...∫f(x1, x2, ..., xn)dx1dx2...dxn,则 称f(x1, x2, ..., xn)为(X1, X2, ..., Xn)的联合密度函数。
连续型随机变量的分布与例题讲解
(3) f(x) = F ¢ x) = (
1 (- ? p (1 + x 2 )
x< +
ì
- 3x
)
, x > 0, x £ 0,
例2
ï ke 设随机变量 X 的概率密度为 f (x) = ï í ï 0, ï î
试确定常数
k,并求其分布函数 F(x)和 P{X>0.1}. 解:由
+?
ò
+
f (x)dx = 1 得
X ~ W (m, , ).
Weibull 分布的分布函数为
F ( x)
x
m
(t )
m 1
( t )m
e
dt 1 e
( x )m
(x )
——位置参数
——尺度参数
m ——形状参数
Weibull 分布概括了许多典型的分布。
本次课小结:
即是说该大学的实录线约为 512 分。 (三) 对数正态分布 定义:若随机变量 X 的概率密度函数为
1 (ln x )2 2 f ( x) 2 x e 2 0
4
基
本 内
容
备 注
其中, , 0 为常数,则称 X 服从参数为 和 的对数正态分布,记作
(四)Weibull 分布 定义:若随机变量 X 的概率密度函数为
( x ) m ( x )m1 e x f ( x) x 0
m
其中, m, , 0 为常数,则称 X 服从参数为 m, , 的 Weibull 分布,记作
故知,X~N( 450 ,1002 ) 又设该大学实录线为 a,由题设知:
连续型随机变量及其概率密度函数
证明:(1). 显然, f ( x) 0 ( x )
(2).
f ( x)dx
1e x dx
2
1 0 e xdx 1 exdx
2
20
一般只需验 证f(x)性质中 的这两条即
可.
11 1 22
概率统计
例2. 某电子计算机在毁坏前运行的总时间(单位:小
f (x)
概率统计
0
x1 x2
x
性质4
若 f ( x) 在点 x 处连续,则有:F( x) f ( x)
物理 意义:
F ( x x) F ( x)
f ( x) lim
x 0
x
P( x X x x)
lim
x0
x
故 X 的密度 f (x) 在 x 这一点的值,恰好是
X落在区间 ( x, x x] 上的概率与区间长度 x
时)是一个连续型随机变量,其密度函数为:
f
(
x)
e
x 100
0
求: (1). 的值.
当x 0 当x 0
(2).这台计算机在毁坏前能运行 50 到 150 小
时的概率. (3).运行时间少于100小时的概率.
概率统计
解: (1)
1
f ( x)dx
x
e 100dx
0
x
100e 100
f
(
x)
2
1 x2 ,
1 x 1
求 : F(x)
0, 其它
x
解: F ( x) P( X x) f (t)dt
当 x 1 时, F( x) 0
当1 x 1,
F(x)
连续型随机变量及其概率密度
问:怎样求一般正态分布的概率?
对一般的正态分布 :X ~ N ( , 2)
其分布函数 F( x)
1
e d t x
(t )2 2 2
2
作变量代换s
t
F(x)
1 2
x
s2
e 2ds
x
即 X ~ N ( , 2) 则 X ~ N ( 0 ,1)
P{a
X
b}
F (b)
222 0.3830
3) 0.6826 4) 0.4981
0.02
-10
-5
a
5
b
x
例1 有一批晶体管,已知每只的使用寿命 X 为 连续型随机变量,其概率密度函数为
f
(
x)
c x2
,
0,
x 1000 其它
( c 为常数)
(1) 求常数 c
(2) 已知一只收音机上装有3只这样的晶体管,
每只晶体管能否正常工作相互独立,求在
使用的最初1500小时只有一个损坏的概率.
(3) P(X>1.76)= 1 – P(X≤1.76)= 1 – Φ(1.76)
=1 – 0.9608 =0.0392 (4) P(X< – 0.78)= Φ(- 0.78) =1-Φ(0.78)
=1 – 0.7823 =0.2177 (5) P(|X|<1.55)= 2Φ(1.55) – 1 (6) P(|X|>1.55)= 1 – P(|X|<1.55)
即: P( X a) 0, a为任一指定值
事实上 { X a} {a x X a}
x 0
0 P{ X a} P{a x X a} aax f ( x)d x
连续型随机变量的概率密度
连续型随机变量的概率密度一、概念介绍连续型随机变量是指取值范围为无限个数的随机变量,它的概率密度函数(Probability Density Function,PDF)可以用来描述该随机变量在某个取值范围内的概率分布情况。
二、概率密度函数的定义对于连续型随机变量X,其概率密度函数f(x)满足以下条件:1. f(x)≥0,即非负性;2. ∫f(x)dx=1,即归一性;3. 对于任意实数a和b(a<b),有P(a≤X≤b)=∫abf(x)dx。
三、常见的连续型分布及其概率密度函数1. 均匀分布均匀分布是指在一个区间内每一个点的概率相等的分布。
其概率密度函数为:f(x)=1/(b-a),a≤x≤b2. 正态分布正态分布是一种常见的连续型随机变量分布,也称为高斯分布。
其概率密度函数为:f(x)=1/(σ√(2π))e^(-(x-μ)^2/(2σ^2))其中,μ是均值,σ是标准差。
3. 指数分布指数分布通常用来描述事件发生的时间间隔。
其概率密度函数为:f(x)=λe^(-λx),x≥0其中,λ是事件发生率。
4. 伽马分布伽马分布是指一类连续型随机变量的分布,它经常用来描述风险事件的发生时间。
其概率密度函数为:f(x)=(1/Γ(α)β^α)x^(α-1)e^(-x/β),x≥0其中,α和β是参数,Γ(α)是伽马函数。
四、概率密度函数的性质1. 概率密度函数f(x)的图像在x轴上方;2. 在任意一个区间内,概率密度函数f(x)所表示的面积即为该区间内随机变量X取值的概率;3. 对于任意实数a和b(a<b),有P(a<X≤b)=∫abf(x)dx;4. 对于任意实数c,有P(X=c)=0。
五、连续型随机变量的期望和方差1. 期望对于连续型随机变量X,其期望E(X)定义为:E(X)=∫xf(x)dx2. 方差对于连续型随机变量X,其方差Var(X)定义为:Var(X)=E((X-E(X))^2)=∫(x-E(X))^2f(x)dx六、总结连续型随机变量的概率密度函数是描述其概率分布情况的重要工具,常见的连续型分布包括均匀分布、正态分布、指数分布和伽马分布等。
2.4连续型随机变量及其概率密度函数
-?
a b- a
连续型随机变量及概率密度函数
注
蝌 P{c < X ? c l} = c+l f ( x)dx = c+l 1 dx = l
c
c b- a b- a
随机变量 X 落在任一长度为 l 的子区间(c,c + l],(a ? c c + l ? b)
内的可能性是相同的.
均匀分布的分布函数为
2
解 (2)X的分布函数为
ì
0,
ï
ï
ò ï
x x dx = x2 ,
F
(
x
)
=
ï í
ï
蝌 ï
ï
3 x dx + 06
06
x 3
骣 琪 琪 桫2
-
x 2
12 x2
dx = - 3 + 2x - , 4
ï î
1,
x <0 0? x 3 3? x 4
x³ 4
连续型随机变量及概率密度函数
例 1 设随机变量 X 具有概率密度
f
(x)
=
ì ï í
1 5
,0
<
x
<
5,
ï î
0,
其他
ì 0,
ï
蝌 F ( x) =
x
ï f ( x)dx = í
x dt = x ,
-?
ï 05 5
ï î
1,
x£ 0 0< x <5
x³ 5
(2)随机变量 X 的取值不小于 2,即
蝌 ò P{ X ? 2} = +? f ( x)dx = 5 1 dx + ? 0dx 3
连续型随机变量与概率密度函数
连续型随机变量与概率密度函数随机变量是概率论中的重要概念之一,它描述了在一次试验中可能发生的不确定事件的数值结果。
随机变量分为离散型和连续型两种。
在本文中,我们将重点介绍连续型随机变量以及与之相关的概率密度函数。
连续型随机变量是指在一定区间内可能取任意实数值的随机变量,其结果可以是无限多的。
与离散型随机变量相比,连续型随机变量通常与测量、计量有关,例如时间、长度、重量等。
为了描述这种连续型随机变量的概率分布,我们引入了概率密度函数的概念。
概率密度函数是用来描述连续型随机变量的概率分布的函数。
它在某个取值点上的值并不代表概率,而是表示这个点附近的概率密度。
具体来说,对于概率密度函数f(x)而言,它满足以下两个条件:1. f(x) ≥ 0,即概率密度函数的取值非负;2. 在概率密度函数的取值范围内,其面积等于1,即∫f(x)dx = 1。
概率密度函数与概率的关系可以通过累积分布函数来进行描述。
累积分布函数F(x)定义为概率密度函数f(x)在某一取值点x及其左侧区间上的积分,即:F(x) = ∫[a,x]f(t)dt其中a表示概率密度函数f(x)的定义域起点。
连续型随机变量的期望值和方差也可以通过概率密度函数来计算。
对于一个随机变量X,其期望值E(X)定义为:E(X) = ∫xf(x)dx方差Var(X)定义为:Var(X) = ∫(x - E(X))^2f(x)dx通过概率密度函数的求积分运算,我们可以计算出连续型随机变量的期望值和方差,从而更好地理解和描述随机变量的特征。
在实际应用中,连续型随机变量与概率密度函数经常用于模型建立、数据分析和统计推断等领域。
例如,在物理学中,速度、温度、能量等变量通常是连续型随机变量,通过概率密度函数的分析,可以研究其分布规律以及相应的统计特性。
在金融学中,股票价格的变化、利率的波动等也可以视为连续型随机变量,利用概率密度函数可以预测未来风险并制定相应的投资策略。
总结起来,连续型随机变量与概率密度函数的概念和应用在概率论和统计学中至关重要。
连续随机变量及其概率密度函数
连续随机变量及其概率密度函数在概率论与数理统计中,随机变量是指在一个概率空间中取值的变量。
其中,连续随机变量是指在一定区间内可以取到无穷多个不同值的随机变量。
连续随机变量的概率密度函数(Probability Density Function,简称PDF)是描述连续随机变量概率分布的函数。
1. 连续随机变量的定义连续随机变量通常用大写字母表示,如X。
与离散随机变量不同的是,连续随机变量的取值范围通常是无穷多个实数值。
例如,一个连续随机变量可以表示一个人的身高,其取值可以是任意的实数。
2. 连续随机变量的概率密度函数对于连续随机变量X,其概率密度函数f(x)定义了在X取值等于x时的概率密度,即X落在x附近的概率。
概率密度函数需要满足以下两个条件:- f(x) ≥ 0,对于任意的x∈R;- ∫f(x)dx = 1,即概率密度函数的积分等于1。
3. 连续随机变量的性质连续随机变量的概率可以通过求取积分来计算。
具体而言,如果要求X在区间[a, b]的概率,即P(a ≤ X ≤ b),可以使用概率密度函数进行计算:- P(a ≤ X ≤ b) = ∫[a, b]f(x)dx。
4. 连续随机变量的期望和方差连续随机变量的期望和方差的计算方式与离散随机变量有所不同。
- 连续随机变量X的期望值E(X)可以通过积分的方式计算:E(X)= ∫xf(x)dx。
- 连续随机变量X的方差Var(X)可以通过以下公式计算:Var(X)= E((X-E(X))^2) = ∫(x-E(X))^2f(x)dx。
5. 常见的连续分布函数在概率论与数理统计中,有许多常见的连续分布函数可用来描述实际问题中的连续随机变量。
以下是一些常见的连续分布函数: - 正态分布(Normal Distribution)- 均匀分布(Uniform Distribution)- 指数分布(Exponential Distribution)- 伽马分布(Gamma Distribution)- β分布(Beta Distribution)- 正太分布(Chi-Square Distribution)总结起来,连续随机变量是指在一定区间内可以取到无穷多个不同值的随机变量。
连续型随机变量及其概率密度函数
一、连续型随机变量的概念 定义2.8 设随机变量 的分布函数为 F (x ) ,若存在非负可 设随机变量X的分布函数为 定义 积函数 f (x ),使得对于任意实数 x ,都有 x (2—15) ) F ( x ) = ∫ f ( x )dx
∞
则称X为连续型随机变量, 则称 为连续型随机变量, 称 f (x )为X的概率密度函数 的 (Probability Density Function),简称概率密度或密度 ),简称概率密度或密度. ),简称概率密度或密度 由定义可知,连续型随机变量X的分布函数 由定义可知,连续型随机变量 的分布函数 F (x)在x点的函 点的函 上的积分. 数值等于其概率密度函数 f (x )在区间( ∞, x] 上的积分. 类似于离散型随机变量, 类似于离散型随机变量,连续型随机变量 f (x )的概率密度 函数具有如下基本性质: 函数具有如下基本性质:
P { x1 < X ≤ x 2 } = Φ ( x2
σ
) Φ(
x1
σ
)
关于标准正态分布,一个重要的公式是: 关于标准正态分布,一个重要的公式是:对于任意实数 x . Φ ( x) + Φ ( x) = 1 (2-31) 的定义证明或由下图说明.这里就不做证明了. 这可用 Φ(x ) 的定义证明或由下图说明.这里就不做证明了
∞
σ x+
1 2π σ
( x )2
2σ
2
e
∫
x ∞
1 2π
e
t2 2
dt
(令 σ = t ) 令
x
所以 X * ~ N (0, 1).
这样我们便有如下定理: 这样我们便有如下定理: 2 定理2.2 若 X ~ N ( , σ ),其分布函数为F ( x ) ,则对任意 定理 实数 ,有 x (2—29) ) F (x) = Φ ( )
2-4_连续型随机变量及其概率密度
1
连续型随机变量及其概率密度
1.定义 定义
设 X 为随机变量 , F ( x )为 X 的分布函数, 若存在 非负函数f ( x ), 使对于任意实数 x 有 F ( x) = ∫
x −∞
f (t ) d t ,
则称 X 为连续型随机变量, 其中 f ( x ) 称为 X 的概 率密度函数, 简称概率密度.
为离散型随机变量, 若 X 为离散型随机变量
{ X = a } 是不可能事件 ⇔ P{ X = a} = 0.
离 散 型
4
例1
设随机变量 X 具有概率密度
0 ≤ x < 3, kx, x f ( x) = 2 − , 3 ≤ x ≤ 4, 2 0, 其它. (1) 确定常数 k ; (2) 求 X 的分布函数; 7 (3) 求 P{1 < X ≤ }. 2
的正态分布或高斯分布, 记为
X ~ N ( µ , σ 2 ).
22
正态概率密度函数的几何特征
1 ( 2) 当x = µ时, p( x )取得最大值 ; 2 πσ
(1) 曲线关于 x = µ 对称;
(4) 曲线在 x = µ ± σ 处有拐点;
23
(3) 当 x → ±∞ 时, f ( x) → 0;
x 1 −θ k e , f ( x) = θ 0,
x ≥ 0, x < 0.
1 且已知 P{ X > 1} = , 试求常数 θ 2
10
例
设随机变量 X : 0, 2 F ( x) = Ax + B, 1, x ≤ 0, 0 p x ≤ 1, x > 1.
试求常数A,B以及密度函数f(x)。
连续型随机变量与概率密度函数
同样:
必然事件的概率为1,但概率为1的事件不一定是必然事件。
01
若X是连续型随机变量,
02
{ X=a }是不可能事件,则有
03
若 X 为离散型随机变量,
04
注意
05
连
06
续
07Байду номын сангаас
型
08
离
09
散
10
型
STEP4
STEP3
STEP2
由
得
解得
于是
的概率密度为
设随机变量
具有概率密度
(1)
确定常数
【练习】
解
由
得
解得
于是
的概率密度为
其它
.
设随机变量
具有概率密度
求
的分布函数
【练习】
解
设随机变量
01
具有概率密度
02
03
求
04
解
05
或
06
【练习】
07
例4 设随机变量 K 的概率密度为
于是, 所求的概率为
06
可见
04
试求方程 有实根的概率.
(1) P{ x1<X ≤x2} = P{ x1≤X ≤x2} = P{ x1<X <x2} = P{ x1≤X <x2} = F(x2) -F(x1) =
(2)
点概为零的重要启示
若 A 为不可能事件,则 P (A) = 0 ; 然而 P (A) = 0 时, A 却不尽为不可能事件 .
那么就称该随机变量 X 服从均匀分布,也称 X为均匀分布变量(简称均匀量),并记为
高等数学第三节连续型随机变量及其概率密度函数
▲ P() 0 (不可能的事件的概率为0),但概率
为零的事不一定是不可能事件.
概率统计
2. 概率密度函数的性质
性质1 f ( x) 0
性质2
f ( x)dx 1
f (x)
这两条性质是判定 一个函数 f(x) 是否 为某随机变量 X 的 概率密度函数的充 要条件.
面积为1
o
x
概率统计
性质3
F ( x0 x) F ( x0 )
x0x f (t)dt x0
当 x 0时, 两边取极限:
0
P(X
x0 )
lim
x0
x0x f (t)dt
x0
0
P( X x0 ) 0
概率统计
注 ▲ 这个结论的意义:
(1). P( X x0 ) 0 从积分的几何意义上说,当 底边缩为一点时,曲边梯形面积退化为零。
(2).由此可知连续型随机量X 在某区间上取值的 概率只与区间长度有关,而与区间是闭、开、 半开半闭无关,即有:
P( x1 X x2 ) P( x1 X x2 ) P( x1 X x2 )
P( x1 X x2 )
x2 x1
f ( x)dx
F ( x2 ) F ( x1 )
概率统计
注 P( x X x x) F( x x) F(x)
不计高阶 无穷小
x x
x f (t) dt
f ( x)x
b
(相当于积分中值定理 f ( x)dx f ( x)(b a) ) a
这表示落在区间 ( x, x x] 上的概率近似等 于 f ( x)x ,称 f ( x)x 为概率微分。
P( x1 X x2 ) F ( x2 ) F ( x1 )
连续随机变量与概率密度函数
连续随机变量与概率密度函数连续随机变量是概率论中一种重要的数学模型,它描述了在一个给定的区间内可能出现的所有数值,并且可以通过概率密度函数来描述这个变量的概率分布。
本文将介绍连续随机变量的基本概念和概率密度函数的计算方法。
一、连续随机变量的定义在概率论中,一个随机变量是指一个数值或一组数值,可能根据一定的概率规律取得不同的值。
连续随机变量是指在一个给定的区间内可能取得的数值是无限个的,而且在任何一个具体的数值上的概率都是0。
例如,人们的身高、体重、温度等都可以用连续随机变量来描述。
连续随机变量具有以下特点:1. 取值范围:连续随机变量的取值范围可以是一个区间,例如[0,1]。
2. 概率密度函数:连续随机变量的概率是通过概率密度函数来计算的,而不是通过概率质量函数来计算。
二、概率密度函数概率密度函数是用来描述连续随机变量概率分布的函数。
对于一个连续随机变量X,其概率密度函数f(x)满足以下性质:1. 非负性:对于任意的x值,f(x) ≥ 0。
2. 归一性:连续随机变量的概率密度函数在整个取值范围上的积分等于1,即∫f(x)dx = 1。
3. 概率计算:对于任意的a ≤ b,连续随机变量X落在区间[a,b]内的概率等于概率密度函数f(x)在该区间上的积分,即P(a ≤ X ≤ b) =∫[a,b]f(x)dx。
三、概率密度函数的计算在实际应用中,计算概率密度函数可以通过不同的方法进行。
以下是一些常见的计算方法:1. 基本几何形状:对于一些常见的连续随机变量,其概率密度函数可以通过基本几何形状来确定。
例如,正态分布的概率密度函数呈钟形曲线,指数分布的概率密度函数呈指数衰减曲线。
2. 根据数据拟合:对于实际观测到的数据,可以通过拟合曲线的方法来计算概率密度函数。
常用的拟合方法包括最小二乘法、最大似然估计等。
3. 其他特定方法:对于一些具有特定性质的连续随机变量,可以使用特定的方法来计算其概率密度函数。
例如,均匀分布的概率密度函数是一个常数,可以通过区间长度来确定。
概率第一章第4节连续型随机变量及其概率密度讲解
求概率为
P{10 X 15} P{25 X 30}
15 1 dx 30 1 dx 1
10 30
25 30
3
即乘客候车时间少于5分钟的概率是 1/3.
指数分布
定义 若随机变量 X 的概率密度为
例1 设随机变量 X 的分布函数为
0, x 0
F
(
x
)
x
2
,
0 x 1,
1, 1 x
求 (1) 概率 P{0.3 X 0.7};
(2) X 的密度函数.
解 由连续型随机变量分布函数的性质, 有
(1) P{0.3 X 0.7} F (0.7) F (0.3) 0.72 0.32 0.4;
P{X
st
|
X
s}
P{( X
st)(X P{X s}
s)}
P{X s P{X
t} s}
1 F(s t) 1 F(s)
e(st ) e s
e t
P{ X
t }.
若 X 表示某一元件的寿命,则 (*)式表明:已知元件
使用了s 小时,它总共能使用至少 s t 小时的条件
数,简称为概率密度或密度函数.
易见概率密度具有下列性质:
(1) f ( x) 0;
y f (x)
(2)
f ( x)dx 1.
A1
Ox
x
注:上述性质有明显的几何意义.
连续型随机变量及其概率密度
A
A,B间真实距离为,测量值为X。
X的概率密度应该是什么形态?
若随机变量X的概率密度函数为
f (x)
1
e
(
x )2 2 2
2
(其中 ,为实数,>0) 则称X服从参数为 ,2的正态分布,记为X~N(, 2)。
f(x)的图像为
正态分布密度函数f(x)的性质
(1) 单峰对称 密度曲线关于直线x=对称,即 f( +x)=f( -x),x∈(-∞,+∞)
X~N(, 2),p∈(0,1),若实
数up满足P(X〉 up)=p,
p
则称up为标准正态分布的p分 位点。
O Up
x
定义 (1)标准正态分布的与下侧概率p对应的分位数up
满足条件P(X〈 up)= p,0〈 p〈1, X~N(0,1) (2)标准正态分布的与上侧概率α对应的分位数uα
满足条件P(X〉 u α )= α,0〈 α〈1, X~N(0,1) (3)标准正态分布的与双侧概率p/2对应的分位数u p/2
解 设A—乘客候车时间超过10分钟, X—乘客于某时X分钟到达,则XU(0,60)
P(A) P(10 X 15) P(25 X 45) P(55 X 60) 5 20 5 1 60 2
2、正态分布 正态分布是实践中应用最为广泛,在理论上
研究最多的分布之一,故它在概率统计中占有特 别重要的地位。
P( X
x)
x
证明
x
FX (x) P( X x)
1
e dt
(
t) 2 2
2
概率论与统计第二章第三节连续型随机变量
x
于是当△x( > 0)充分小时, P{x<X≤x+ △x}≈f(x)△ x。这表明f(x)
本身并非概率,但它的大小却决定了X 落入区间[x ,x+△x]内的概
率的大小.即f(x) 反映了点x 附近所分布的概率的“疏密”程度 ――
连续型随机变量的一个重要特征是:连续型随机变量取任意
一个指定值的概率均为零,即P{X =x0}=0.
例7 若X ~N(0,1) ,当α = 0.10、α = 0.05、α = 0.01 时,分别确定u0,使得P{|X|>u0} = α.
解 P{|X|>u0} = P{X<-u0}+ P{X>u0} = φ(-u0)+1-P{X≤-u0} =1-φ(u0) +1- φ(u0) = 2-2 φ(u0) .
均匀分布的密度函数与分布函数的图形如图.
均匀分布是常见的连续分布之一.例如数值计算中的舍入 误差、在每隔一定时间有一辆班车到来的汽车站上乘客的候车 时间等常被假设服从均匀分布.此外,均匀分布在随机模拟中 亦有广泛应用.
例3 某市每天有两班开往某旅游景点的列车, 发车时间分
别为早上7点30分和8点.设一游客在7 点至8点间任何时刻到达
P{|X|<2}=2Φ(2) -1=2×0.9772-1 = 0.9544
P{|X|<3}=2Φ(3) -1 = 2×0.9987-1 = 0.9974
对于X ~ N (, 2 )
P{| X | 1} P{ X }
=Φ(1)-Φ(-1) = 0.6826
P{| X | 2} P{ 2 X 2 }
(2)
F(x)
x
f (t)dt
当x<0 ,
F
(
x)
x
2-3连续型随机变量及其概率密度
f
(x)
b
1
a
,
a x b,
0,
其它,
就称 X 服从[a,b] 上的均匀分布,记为 X ~ U[a,b].
【注】 X 的分布函数为
0, x a,
F ( x)
x
b
a a
,
a
x
b,
1, b x.
均匀分布与第一章中介绍的几何概型原理相通,适用于一维
的几何概型试验.此时, X 落入某区间 I 内(上)的概率为 P{X I} P{X I I [a,b]} I I [a,b]的长度 . ba
(b ) (a ) .
特别地, P{X b} (b ), P{X a} 1 ( a ) 。
其中 (a ) 和 (b ) 可查表得.
•22
例 3.5 设随机变量 X ~ N(1, 4) ,分别计算
P{X 3}, P{1 X 5} .
解 由题意知, 1, 2 .
y (x)
y
y (x) 1
1 2
O
x
O
x
•20
由于(x) 为偶函数,利用本节例 3.2 的结论,有
F(x()x)
F((x)x)
1;1;F(0()0)
1
1;;P{PX{ X
x}x}
2F(Fx)(x)1.1.
22
当 x 0 时, (x) 可以通过直接查标准正态分布表求得.
当 x 0 时, (x) 1 (x) ,再查标准正态分布表可得.
【注 7】如果 X ~ N(0,1) ,则对于任意的实数 a,b (a b) , P{a X b} (b) (a) ,
其中 (a), (b) 可查标准正态分布表计算.
•21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲 连续型随机变量及其概率密度
连续随机变量; 密度函数及其性质; 均匀、指数与正态分布
(1) 定义的引出
设离散型随机变量X在[a, b]内取n个值:
x1=a, x2, x3, x4,… , xn=b.
P
X的概率 直方图:
s3 s2
小矩形高
概率 小矩形宽度
即小矩形的面积为
离
{X a} 是不可能事件
散
P{X a} 0.
型
要点重申
⑴ 分布函数F (x) 的函数值表示随机变量 X 在右闭无穷 区间 (-∞, x ] 上的取值概率, 即
F(x) P{X x}
⑵ 只要函数 F (x) 是随机变量 X 的分布函数, 那就必有
F () 0 , F () 1 0 F(x) 1
…… f ( x)dx
P{ X } f ( x)dx 1
由此推出连续 型随机变量
的定义
一、 连续随机变量及其分布密度
定义1(P40.定义) 对于随机变量 X 的分布函数 F(x), 若存在非负
可可积积函数 f (x),使得对任意实数 x,有
f (x)dx 1
⑷ “ 连续随机变量的点概为零” , 即连续型随机变量 X 在其任一可取点处的取值概率恒等于零; 但 “离散随机变 量的点概不尽为零”, 因为后者在其任一可取之点处的取 值概率肯定不为零.
要点重申
⑸ 连续随机变量 X 在任何区间上的取值概率与区间
的开闭与否无关, 它恒等于概率密度在该区间上的积分,
2. 连续型随机变量 随机变量所取的可能值可以 连续地充满某个区间,叫做连续型随机变量.
连续型随机变量X所有可能取值充满一个区间, 对连续型随机变量,不能象离散型随机变量那样, 以指定它取每个值概率的方式, 去给出其概率分布, 而是通过给出所谓“概率密度函数”的方式来描述其 概率分布. 下面,我们将向大家介绍另一种类型的随机变量
第二章 随机变量及其分布
连续型随机变量及其分布
有关要点回顾 1.离散型随机变量 随机变量所取的可能值是有限 多个或无限可列个,叫做离散型随机变量. 离散型随机变量的分布律为
其中
1. pk 0, k 1,2,...,(非负性)
2. pk 1, (归一性) k 1
对于离散型随机变量,如果知道了它的分布列, 也就知道了该随机变量取值的概率规律. 在这个意义 上,我们说 离散型随机变量由它的分布列唯一确定.
连续型的分布函数必连续
F(x)
x
f
(t )dt
,
则称 X 为连续型随机变量,称 f (x)为 X 的概率密度函数, 简称为
概率密度或密度.
判定一个函数 f (x) 为
密度函数的基本特性: 某连续型随机变量的
(1) f (x) 0 ;
概率密度的充要条件
非负性 (2)
f
(t )dt
不过离散变量的分布函数仅是右连续的函数; 连续变量的分 布函数却是实轴上处处连续的函数 .
要点重申
⑶ 只有连续型随机变量 X 才存在概率密度 f (x), 它与 分布函数 F (x) 的相互关系是
F(x)
x
f (t)dt
,
f (x) dF (x)
dx
并且概率密度 f ( x ) 也满足所谓的归一性, 也就是
面积为1
o
x
密度函数的几何意义
密
度
函
数
曲
线
位
于
x
轴
上
方
P(a X b)= b f (t )dt a
即 y=f(x),y=a,y=b,x轴所围成的曲边梯形面积。
点概为零的重要启示
(1) P{ x1<X ≤x2} = P{ x1≤X ≤x2}
= P{ x1<X <x2} = P{ x1≤X <x2}
X取对应点的概率
s1
x1=a x2
x3
sn
…….
xn=b
X
n
P{a X b} si =折线下面积之和!
i 1
若X为连续型随机变量,由于X在[a, b]内连续
取无穷多个值,折线将变为一条光滑曲线 f ( x).
P
f (x)
而且:
b
S a f ( x)dx
f (x)
X
a
X 取值于(x , x+x]的概率=
F1(;其) 密F度(在此)区间=上1的-积0分
y 面积为1 y = f (x)
O x1 x2
x
规范由性定(3义)
概率 公式
(4)
可微性 (5)
独点
若PPP((axf(<1X(<Xx=X)x在b0))x=点2)P==x(al0ixF处m(.0Xx连P2xx<x1)1(2续-bxffF)0((,=t(tx))PdXd1)(tt则a;xXx0xF12fb((x)xt=))x)d2Ptf(lixa(fmt<()0xdXx1t)x<xf0;0b(t)x)xd1f t(f
不可能事件的概率为零,但概率为零的事件不一定是 不可能事件。
同样:
必然事件的概率为1,但概率为1的事件不一定是必然 事件。
注意
若X是连续型随机变量,
{ X=a }是不可能事件,则有 P{X a} 0.
连
续
若 P{X a} 0,
型
不能确定 {X a} 是不可能事件
若 X 为离散型随机变量,
= F(x2) -F(x1) =
x2 f ( x)dx
x1
连续型随机变量取值落在某一区间 的概率与区间的开闭无关
(2) 若 A 为不可能事件,则 P (A) = 0 ; 然而 P (A) = 0 时, A 却不尽为不可能事件 .
事件(X=c)并非不可能事件,它是会发生的,也就是 说零概率事件也是有可能发生的。如 X为被测灯泡的寿 命。若灯泡寿命都在1000小时以上,而 P (X=1000)=0, 但事件 (X = 1000) 是一定会 发生的,否则不会出现事件 (X >1000),所以
(t )dt
x)dx
b
a
f
=0
(t )d
t
,
概率
P(A)= 0 A = ; P(B)=1 B = .
几乎不可能事件
几乎必然事件
1 o f (x) 0
2 o f (x)dx 1
这两条性质是判定一个 函数 f(x)是否为某r .v X 的
概率密度的充要条件
f (x)