八年级数学下册正比例函数(基础)知识点归纳及典型例题解析

合集下载

_+19.2.1 正比例函数+第1课时+++++课件++2023—2024学年人教版数学八年级下册

_+19.2.1 正比例函数+第1课时+++++课件++2023—2024学年人教版数学八年级下册
A.0
B.1
C.0或2
D.2
11
【技法点拨】
正比例函数解析式的结构特点
正比例函数的解析式是常数与自变量的积,其中:
(1)系数不为0.
(2)自变量的指数为1.
易错提醒:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数
的要求.
素养·思维赋能
火眼金睛(寻找错误并订正)
若y=(m+1)x|m+2|-2n+8是正比例函数,求m+n的值.

1

-2 .
2.已知y与x成正比例,当x=3时,y=6,则当x=- 时,y=__

( B )
8
【技法点拨】
确定正比例函数解析式或正比例关系的步骤
1.分析题中的常量与变量;
2.根据具体情境,找出各个量之间的关系,并写出解析式,注明自变量的取值范围;
3.辨别函数解析式是否是常数与自变量的积的形式.
特别提醒:确定两个量是否是正比例关系,根据关联的两个量比值一定时成正比
时,得到利息y元.问利息y(元)与本金x(元)之间的关系;
④设一长方体盒子高为10 cm,底面是正方形,求这个长方体的体积y(cm3)与底面边长
x(cm)之间的关系.
5
7
【举一反三】
1.(2023·重庆渝中区质检)下列函数中,是正比例函数的是

A.y=


B.y=


C.y= +3


2
D.y=2x +
19.2 一次函数
19.2.1
正比例函数
第1课时
基础·主干落实
Hale Waihona Puke 思辨:两个变量的比值为不等于0的定值的函数是否是正比例函数?

19.2.1 正比例函数-2020-2021学年八年级数学下册(人教版)(解析版)

19.2.1 正比例函数-2020-2021学年八年级数学下册(人教版)(解析版)

19.2.1正比例函数一、单选题1.下列函数中,哪个是正比例函数 ( )A .5x y =-B .1y x =C .3y x =-D .22y x =【答案】A【解析】根据正比例函数的定义判断即可.解:正比例函数的解析式是()0y kx k =≠,只有5x y =-符合正比例函数的解析式的特征. B. 1y x=为反比例函数,不符合题意; C. 3y x =-为一次函数,不符合题意;D. 22y x =为二次函数,不符合题意.故选:A【点睛】本题考查了正比例函数的定义,熟知正比例函数的定义和形式是解题关键.2.下列问题中的y 与x 成正比例关系的是( )A .圆的半径为x ,面积为yB .某地手机通话套餐的月租为10元,通话收费标准为0.1元/分钟,若某月通话的时间为x 分钟,通话的费用为y 元C .把10本书全部随意放入两个抽屉内,第一个抽屉放入x 本,第二个抽屉放入y 本D .长方形的一边长为4,另一边长为x ,面积为y【答案】D【解析】【解析】(1)根据圆的周长公式,正比例函数的定义,可得答案;(2)根据月租+通话收费=某月通话的费用,正比例函数的定义,可得答案;(3)根据两个抽屉书的数量和=10,正比例函数的定义,可得答案;(4)根据长方形面积公式,正比例函数的定义,可得答案.解:A 项,y 与x 之间的关系式为,不是正比例关系;B 项,y 与x 之间的关系式为,不是正比例关系; C 项,y 与x 之间的关系式为,不是正比例关系; D 项,y 与x 之间的关系式为,成正比例关系. 故选:D .【点睛】本题考查了正比例函数,理解题意是解题关键,注意y =kx (k 是常数,且k ≠0)是正比例函数.3.若函数y=(2m+6)x 2+(1﹣m )x 是正比例函数,则m 的值是( )A .m=﹣3B .m=1C .m=3D .m >﹣3 【答案】A 由题意可知:260m +=∴m=-3故选:A4.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ).A .函数值随自变量x 的增大而增大B .函数值随自变量x 的增大而减小C .函数图象关于原点对称D .函数图象过二、四象限【答案】A 解:设正比例函数解析式(0)y kx k =≠,∴正比例函数过(2,3)-,∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∴302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称,∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的.故选A .5.若正比例函数y =(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m <12D .m >12【答案】D【解析】根据正比例函数的大小变化规律判断k 的符号.解:根据题意,知:y 随x 的增大而减小,则k <0,即1-2m <0,m >12. 故选:D .【点睛】本题考查正比例函数的性质.根据正比例函数的大小变化规律判断k 的符号:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.6.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x 册,需付款y (元)与x (册)的函数关系式为( )A .205%y x x =+B .20.5y x =C .20(15%)y x =+D .19.95y x =【答案】C【解析】根据题意可得购买一册书需要花费(20+20×5%)元,根据此关系式可得出购书x 册与需付款y (元)与x 的函数解析式.解:由题意得购买一册书需要花费(20+205%)⨯元,∴购买x 册书需花费(20205%)x +⨯元,即(20205%)20(15%)y x x =+⨯=+.故选C.【点睛】本题考查根据题意列方程的知识,要先表示出买一册书的花费,这样问题就迎刃而解了.7.如图,在同一直角坐标系中,正比例函数1y k x =,2y k x =,3y k x =,4y k x =的图象分别为1l ,2l ,3l ,4l ,则下列关系中正确的是( )A .1234k k k k <<<B .2143k k k k <<<C .1243k k k k <<<D .2134k k k k <<<【答案】B【解析】首先根据直线经过的象限判断k 的符号,再进一步根据直线的陡峭趋势(直线越陡k 越大)判断k 的绝对值的大小,最后判断四个数的大小.解:根据直线经过的象限,知20k <,10k <,40k >,30k >,根据直线越陡k 越大,知21k k >,43k k <,所以2143k k k k <<<.故选B .【点睛】 此题主要考查了正比例函数图象的性质,直线越陡k 越大,熟练掌握正比例函数的性质是解题关键.8.如图,平面直角坐标系中,点A 1的坐标为(1,2),以O 为圆心,OA 1的长为半径画弧,交直线y =12x 于点B 1;过点B 1作B 1A 2∥y 轴交直线y =2x 于点A 2,以O 为圆心,OA 2长为半径画弧,交直线y =12x 于点B 2;过点B 2作B 2A 3∥y 轴交直线y =2x 于点A 3,以点O 为圆心,OA 3长为半径画弧,交直线y =12x 于点B 3;…按如此规律进行下去,点B 2021的坐标为( )A .(22021,22021)B .(22021,22020)C .(22020,22021)D .(22022,22021)【答案】B【解析】根据题意可以求得点B 1的坐标,点A 2的坐标,点B 2的坐标,然后即可发现坐标变化的规律,从而可以求得点B 2021的坐标.解:由题意可得,点A 1的坐标为(1,2),设点B 1的坐标为(a ,12a ), 221()2a a +=2212+,解得,a =±2,∴点B 1在第一象限,∴点B 1的坐标为(2,1),同理可得,点A 2的坐标为(2,4),点B 2的坐标为(4,2),点A 3的坐标为(4,8),点B 3的坐标为(8,4),……点A n 的坐标为(2n -1,2n ),点B n 的坐标为(2n ,2n -1),∴点B 2021的坐标为(22021,22020),故选:B .【点睛】本题考查一次函数图象上点的坐标特征和求点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.二、填空题9.若直线y=kx (k≠0)经过点(-2,6),则y 随x 的增大而 ___【答案】减小【解析】将(-2,6)代入函数解析式得6=-2k ,k =-3<0,∴y 随着x 的增大而减小.故答案为减小.10.在一次函数y=(2﹣k )x+1中,y 随x 的增大而增大,则k 的取值范围为___.【答案】k <2.∴在一次函数y=(2﹣k )x+1中,y 随x 的增大而增大,∴2﹣k >0,解得k <2.故答案为:k <2.【点睛】本题考查一次函数图象与系数的关系.11.正比例函数()21y k x =+的图像经过第二、四象限,则k ______. 【答案】12k <- 【解析】根据正比例函数经过象限,得到关于k 的不等式,解不等式即可求解.解:∴正比例函数()21y k x =+的图像经过第二、四象限,∴210k +<, 解得12k <-. 故答案为:12k <-【点睛】本题考查了正比例函数的图象与性质,在正比例函数中当k>0时,图象经过第一、三象限,当k<0时,图象经过第二、四象限.12.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.【答案】2y x =-【解析】设y=kx ,6=-3k ,解得k =-2.所以y =-2x .13.已知函数(2)5y m x =+-,当m ___________时,这个函数为一次函数.【答案】2m ≠-【解析】根据一次函数的定义即可解答.解:当20m +≠,即2m ≠-时,函数(2)5y m x =+-是一次函数, 故答案为:2m ≠-.【点睛】本题主要考查了一次函数的定义,一次函数y =kx +b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1. 14.根据下表写出y 与x 之间的函数解析式:写出y 与x 之间的函数解析式是__________,由此判定y 是x 的___________函数?【答案】y=-2x 正比例函数【解析】根据函数经过原点,设函数解析式为y=kx ,将任意一组值代入求出k 即可得到解析式,由此确定函数为正比例函数.由表格知:函数经过点(0,0),∴该函数为正比例函数,设函数解析式为y=kx ,将点(1,-2)代入,得到k=-2,∴函数解析式为y=-2x ,此函数为正比例函数,故答案为:y=-2x ,正比例.【点睛】此题考查待定系数法求函数解析式,判断函数是什么函数.15.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,设直线l 和八个正方形的最上面交点为A ,则直线l 的解析式是_____________.【答案】910y x = 【解析】如图,利用正方形的性质得到(0,3)B ,由于直线l 将这八个正方形分成面积相等的两部分,则5AOB S ∆=,然后根据三角形面积公式计算出AB 的长,从而可得A 点坐标.再由待定系数法求出直线l 的解析式.解:如图,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,415AOB S ∆∴=+=,而3OB =,∴1·352AB =, 103AB ∴=, A ∴点坐标为10(3,3). 设直线l 的解析式为y kx =, ∴1033k =,解得910k =, ∴直线l 的解析式为910y x = 故答案为910y x =. 【点睛】本题考查了坐标与图形性质和待定系数法求函数解析式.由割补法得5AOB S ∆=求分割点A 的位置是解题关键. 三、解答题16.正比例函数23m y mx -=的图象经过第一、三象限,求m 的值. 【答案】2【解析】根据正比例函数的定义和图象经过象限得到关于m 的方程和m 的取值范围,即可求解.解:∴函数函数23m y mx -=为正比例函数,∴231m -=,∴2m =±,又∴正比例函数的图像经过第一、三象限,∴m >0,∴2m =【点睛】本题考查了正比例函数的定义和性质,注意正比例函数是一次函数,自变量次数为1,熟知正比例函数图象与性质是解题关键.17.已知正比例函数图象上一个点A 在x 轴的下侧,y 轴的右侧,距离x 轴4个单位长度,距离y 轴2个单位长度,求该正比例函数的表达式.【答案】该正比例函数的表达式为y=﹣2x .【解析】根据已知条件得到点A 的坐标为(2,﹣4),设正比例函数的表达式为y=kx (k≠0),然后将点(2,﹣4)代入y=kx 中求解即可.∴点A 在x 轴的下侧,y 轴的右侧,距离x 轴4个单位长度,距离y 轴2个单位长度, ∴点A 的坐标为(2,﹣4).设正比例函数的表达式为y=kx (k≠0),将点(2,﹣4)代入y=kx 中,﹣4=2k ,解得:k=﹣2,∴该正比例函数的表达式为y=﹣2x .【点睛】本题主要考查了待定系数法求正比例函数解析式,根据已知条件得到点A 的坐标是解题关键.18.若y+1与2x 成正比例,且当3x =-时,y=1.求y 与x 的函数解析式. 【答案】213y x =-- 【解析】先根据y+1与2x 成正比例,假设函数解析式,再根据已知的一对对应值,求得系数k 即可.设12(0)y kx k +=≠,把3x =-,y=1代入解析式,得112(-3)k +=⨯, 解得13k =-, 故y 与x 的函数解析式是213y x =--. 【点睛】本题考查了待定系数法求一次函数解析式,注意利用正比例函数的定义设出函数关系式.19.已知正比例函数()y k 2x =-.(1)若y 的值随着x 值的增大而减小,则k 的范围是什么?(2)点()23-,在它的图象上,求这个函数的表达式. (3)在()2的结论下,若x 的取值范围是2x 4-≤≤,求y 的取值范围.【答案】(1)k<2;(2)3y x 2=-;(3)-6≤y≤3 【解析】(1)根据题意可得k -2<0,故可求解;(2)利用待定系数法即可求解;(3)分别求出x=-2,x=4的函数值,即可写出y 的取值.解:()1y 的值随着x 的值增大而减小,∴ k 20-<,解得2k <.()2将点()23-,代入函数解析式可得()32k 2-=-, 解得12k =, ∴这个函数的表达式为3y x 2=-.()3当x 2=-时,()3y 232=-⨯-=, 当x 4=时,3y 462=-⨯=-, 302-<, ∴ y 随x 的增大而减小,∴ 当2x 4-≤≤时,6y 3-≤≤.【点睛】此题主要考查待定系数法求一次函数解析式,正比例函数的性质,解题的关键是熟知一次函数的图象与性质. 20.已知y 2-与x 3+成正比例函数关系,且x 2=-时,y 6=.(1)写出y 与x 之间的函数关系式;(2)求当x 3=-时,y 的值;(3)当2y 6-<≤ 时,求x 的取值范围.【答案】(1)y 4x 14=+;(2)y 2=;(3)4x 2-<≤-【解析】(1)根据y 2-与x 1+成正比例关系设出函数的解析式,再把当x 2=-时,y 6=代入函数解析式即可求出k 的值,进而求出y 与x 之间的函数解析式.(2)根据(1)中所求函数解析式,将x 3=-代入其中,求得y 值;(3)利用(1)中所求函数解析式,根据2y 6-<≤,求得x 的取值范围.解:(1)依题意得:设()y 2k x 3-=+. 将x 2=-,y 6=代入:得k 4=所以,()y 24x 3-=+,即y 4x 14=+.(2)由(1)知,y 4x 14=+,∴ 当x 3=-时,()y 43142=⨯-+=,即y 2=; (3)由(1)知,y 4x 14=+,∴ 当2y 6-<≤ 时,24x 146-<+≤,解得,4x 2-<≤-.【点睛】此题考查的是求一次函数解析式,正比例的定义,函数值,函数自变量的取值范围,掌握利用待定系数法求一次函数解析式是解决此题的关键.21.如图,已知正比例函数y=kx 的图象经过点A ,点A 在第四象限,过A 作AH∴x 轴,垂足为H ,点A 的横坐标为4,且∴AOH 的面积为6.(1)求正比例函数的解析式.(2)在x 轴上是否存在一点P ,使∴AOP 的面积为9?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)y=﹣34x ;(2)存在,P 点坐标为(6,0)或(﹣6,0). 【解析】(1)先利用三角形面积公式求出AH 得到A 点坐标,然后利用待定系数法求正比例函数解析式;(2)设P (t ,0),利用三角形面积公式得到1||392t ⋅⋅=,然后解关于t 的绝对值方程即可.(1)∴点A 的横坐标为4,且∴AOH的面积为6,∴12•4•AH=6,解得AH=3,∴A(4,﹣3),把A(4,﹣3)代入y=kx得4k=﹣3,解得k=﹣34,∴正比例函数解析式为y=﹣34 x;(2)存在.设P(t,0),∴∴AOP的面积为9,∴12•|t|•3=9,∴t=6或t=﹣6,∴P点坐标为(6,0)或(﹣6,0).【点睛】本题考查了待定系数法求正比例函数的解析式.设正比例函数解析式为y=kx,然后把函数图象上一个已知点的坐标代入求出k即可得到正比例函数解析式.也考查了三角形面积公式.。

初中人教版数学八年级下册:19.2.1 第2课时 正比例函数的图象和性质 习题课件(含答案)

初中人教版数学八年级下册:19.2.1   第2课时 正比例函数的图象和性质  习题课件(含答案)

把 x=0 代入得 y=-x=0,所以点 B 在图象上.
把 x=3代入得 y=-x=-3,所以点 C 在图象上.
2
2
知识点二 正比例函数的性质 1) B.函数图象经过第二、四象限 C.y 随 x 的增大而增大 D.不论 x 取何值,总有 y>0
-6),B(m,-4)两点,则 m 的值为( A )
A.2
B.8
C.-2
D.-8
5.(1)画出函数 y=-x 的图象; 解:(1)图象如图所示.
(2)判断点 A(-32,32),B(0,0),C(32,-32)是否在函 数 y=-x 的图象上.
(2)把 x=-32代入得 y=-x=32,所以点 A 在图象上.
7.(易错题)(2020·南昌期中)对于正比例函数 y= -2x,当自变量 x 的值增加 1 时,函数 y 的值增加
(A) A.-2 B.2 C.-13 D.13
8.(2020·上海中考)已知正比例函数 y=kx(k 是常数, k≠0)的图象经过第二、四象限,那么 y 的值随着 x 的值增大而 减小 (填“增大”或“减小”).
14.若点 A(m,n)在直线 y=kx(k≠0)上,当-1≤m≤1 时,-1≤n≤1,则这条直线的函数解析式为 y=x
或y=-x .
15.已知正比例函数 y=(2m+4)x.求: (1)m 为何值时,函数图象经过第一、三象限; 解:(1)∵函数图象经过第一、三象限, ∴2m+4>0,解得 m>-2.
17.如图,已知正比例函数 y=kx 的图象经过点 A, 点 A 在第四象限,过 A 作 AH⊥x 轴,垂足为 H,点 A 的横坐标为 4, 且△AOH 的面积为 6. (1)求正比例函数的解析式;
(1)∵点 A 的横坐标为 4,且△AOH 的面积为 6, ∴12×4×AH=6,解得 AH=3. ∴A(4,-3). 把 A(4,-3)代入 y=kx, 得 4k=-3,解得 k=-34. ∴正比例函数的解析式为 y=-34x.

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A.y=x﹣3. B.y=2x+3. C.y=﹣x+3. D.y=2x﹣3.【答案】C【解析】【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=−x+3,故选:C.【点睛】本题主要考查一次函数的解析式和一次函数的图象与性质,熟悉掌握是关键.2.下列式子中,表示y是x的正比例函数的是()A.y=. B.y=x+2. C.y=x2. D.y=2x.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.【详解】A、,自变量次数不为1,故本选项错误;B、. y=x+2,是和的形式,故本选项错误;C、y=x2,自变量次数不为1,故本选项错误;D、y=2x ,符合正比例函数的含义,故本选项正确;所以D选项是正确的.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数的定义条件是:k为常数且,自变量次数为1.3.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数【答案】C【解析】【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【详解】解:根据题意,特征数是(2,k-2)的一次函数表达式为:y=2x+(k-2).因为此一次函数为正比例函数,所以k-2=0,解得:k=2.故选C.【点睛】本题主要考查一次函数、正比例函数的定义,有新意,但难度不大.4.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C.D.设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选:.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.在平面直角坐标系中,记直线与两坐标围成的面积为,则最接近( )A.B.C.D.【答案】C【解析】令x=0,y=,令y=0,x=,则直线(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,),∴直线与两坐标轴所围成的图形的面积为S k=,当k为正整数时,S k=当k=1,S1=;当k=2,S2=,,=,=,=,故选C.6.已知等腰三角形周长为,则底边长关于腰长的函数图象是( )A.B.C.D.【答案】D【解析】根据题意得y+2x=20,y=-2x+20,∵y>0且2x>y,∴-2x+20>0且2x>-2x+20,∴5<x<10,∴底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),∵k=-2<0,∴y随x的增大而减小,故选D.7.如果是的正比例函数,是的一次函数,那么是的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系【答案】B【解析】由题意得:y=kx,x=k1z+b,则y=kk1z+kb,当b≠0时,y是z的一次函数,②当b=0时,y是z的正比例函数,综上所述,y是z的一次函数,故选B.A.B.C.D.【答案】A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.9.若点在函数的图象上,则下列各点在此函数图象上的是( )A.B.C.D.【答案】A【解析】∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A选项,∵当x=1时,y=2,∴此点在函数图象上,故A选项正确,B选项,∵当x=-2时,y=-4≠-1,∴此点不在函数图象上,故B选项错误,C选项,∵当x=-1时,y=-2≠2,∴此点不在函数图象上,故C选项错误,D选项,∵当x=2时,y=4≠-4,∴此点不在函数图象上,故D选项错误,故选A.10.一辆汽车以平均速度千米/时的速度在公路上行驶,则它所走的路程(千米)与所用的时间(时)的关系表达式为( )A.B.C.D.【答案】D【解析】根据路程=速度×时间得:汽车所走的路程s(千米)与所用的时间t(时)的关系表达式为:s=60t,故选D.11.正比例函数y=3x的大致图像是( )A.B.C.D.【答案】B【解析】∵3>0,∴图像经过一、三象限.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.12.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A.B.C.D.【答案】C【解析】首先由已知条件常数k1,k2异号,且k1>k2,得出k1,k2与0的关系,然后根据正比例函数及反比例函数的图象性质作答.解:因为k1,k2异号,且k1>0,k2<0,所以函数y=k1x的图象经过第一、三象限,函数的图象在第二、四象限,故选C.13.如图,在平面直角坐标系中,将△OAB沿直线y=-x平移后,点O′的纵坐标为6,则点B平移的距离为()A.4.5 B.6 C.8 D.10【答案】D【解析】根据题意得出O′点的纵坐标进而得出其横坐标,再得出O点到O′的距离,最后得出点B与其对应点B′之间的距离.解:∵点O的坐标为(0,0),△OAB沿x轴向右平移后得到△O′A′B′,点O的对应点O′在直线y=-x上,且O′点纵坐标为:6,故6=-x,解得:x=−8,即O到O′的距离为10,则点B与其对应点B′之间的距离为10.故选:D点睛:本题考查了函数图象上的点及平移的性质.根据函数解析式求出点的坐标是解题的关键.14.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)【答案】B【解析】分别把各点坐标代入函数y=2x进行检验即可.解答:A. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;B. ∵当x=1时,y=2;当x=0时,y=0,∴两组数据均符合,故本选项正确;C. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D. ∵当x=−1时,y=−2≠2;∴点(-1,2)不符合,故本选项错误.故选B.15.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x【答案】A【解析】【分析】本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选:A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.16.已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1 B.a>1 C.a≥1 D.a≤1【答案】A【解析】∵y随x的增大而减小,∴a-1<0,∴a<1.故选A.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.17.正比例函数y=x的大致图像是()A.A B.B C.C D.D【答案】C【解析】∵1>0,∴正比例函数y=x的大致图像经过一、三象限.故选C.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.18.已知函数y=(k-1)为正比例函数,则()A.k≠±1 B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1.故选C.19.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,15400【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=9时,W 最小 =10000元.故选C.点睛:选择方案问题的方法(1)从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.(2)在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.20.若m<-1,有下列函数:①(x>0);②y=-mx+1;③y=mx;④y=(m+1)x.其中y随x的增大而增大的是( )A.①②B.②③C.①③D.③④【答案】A【解析】对于反比例函数,当k<0,在每个象限内,y随x的增大而增大,故①正确;根据一次函数的性质,y随x的增大而增大,得出k>0,故④正确.故选A.21.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是()A.A B.B C.C D.D【答案】D【解析】y=kx-k=k(x-1),恒过(1,0);根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则k<0,易得D.故选D.22.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位【解析】根据“上加下减常数项”,=+.看做由直线向上平移个单位得到.故选C.23.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.7【答案】C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.24.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数【答案】A【解析】设原来溶液中有糖ag,水bg,则=,即y=x,为正比例函数.故选A.点睛:本题关键根据甜度不变列比例式求解.25.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【答案】D【解析】y=-x的图像平分第二、四象限.故选D.点睛:y=x的图像平分第一、三象限.26.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y= kx(k≠0)中得,k=2>0,∴函数图像经过原点,且经过第一、三象限.故选C.27.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1【答案】A【解析】∵y随着x的增大而减小,∴m+1<0,即m<-1.故选A.28.已知正比例函数y=kx(k≠0),点(2,–3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【答案】B【解析】将(2,-3)代入函数解析式得:2k=-3,解得k=-<0,∴y随着x的增大而减小.故选B.29.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随着x的增大而增大,∴-3m>0,解得m<0.∴P(m,5)在第二象限.故选B.点睛:正比例函数y=kx(k≠0),若y随着x的增大而增大,那么k>0;若y随着x的增大而减小,那么k<0.30.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1C.±1 D.–1【答案】A【解析】∵函数图像经过一、三象限,∴k>0.故选A.31.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图像不经过(2,1),故错误;B:k=2>0,∴函数图像经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误.故选C.点睛:掌握正比例函数图像的性质.32.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()A.(-3,2)B.(,-1)C.(,-1)D.(-,1)【答案】C【解析】∵正比例函数y=kx经过点(2,−3),∴−3=2k,解得k=−;∴正比例函数的解析式是y=−x;A. ∵当x=−3时,y≠2,∴点(−3,2)不在该函数图象上;故本选项错误;B. ∵当x=时,y≠−1,∴点(,−1)不在该函数图象上;故本选项错误;C. ∵当x=时,y=−1,∴点(,−1)在该函数图象上;故本选项正确;D. ∵当x=时,y≠1,∴点(1,−2)不在该函数图象上;故本选项错误。

初中数学 八年级数学下册 知识点汇聚(初识)正比例函数课件 新人教版

初中数学 八年级数学下册 知识点汇聚(初识)正比例函数课件 新人教版

蜡烛变短了3.6 cm,设蜡烛点燃xmin后变短了ycm.那么y与x的
函数解析式是 .
练倍 速 课 时 学
【思考】1.蜡烛点燃1min,变短多少? 提示:3.6÷6=0.6,所以蜡烛点燃1min,变短0.6cm. 2.这支蜡烛会在几分钟后燃烧完? 提示:21÷0.6=35,即这支蜡烛会在35min后燃烧完. 3.y与x有怎样的函数解析式? 提示:y=0.6x(0≤x≤35).
练倍 速 课 时 学
【总结】
y=kx 是常数,k≠0)的函数. 1.正比例函数:形如_____(k
k 叫做比例系数. 2.比例系数:其中的__
练倍 速 课 时 学
(打“√”或“×”) (1)圆的周长与半径的解析式是l=2πr,l是r的正比例函数. ( √) (2)y=-3x2是正比例函数.( × ) (3) y 2 是正比例函数.( × ) (4)正比例函数 y x 的比例系数是 1 . ( √ )
2 2 x
练倍 速 课 时 学
知识点 1 正比例函数的定义
【例1】已知函数y=(m+2)x︱m+1︱,当m取何值时,y是x的正比例
函数?
【解题探究】
(1)函数y=(m+2)x|m+1|的比例系数需满足什么条件?
练倍 速 课 时 学
提示:∵正比例函数,
即m≠-2.
(2)正比例函数y=(m+2)x|m+1|中,自变量的指数应满足什么条件? 提示:∵正比例函数y=kx中,自变量的指数为1. ∴|m+1|=1,可得m=-2或m=0, 综上所述:当m=0时,函数y=(m+2)x|m+1|是正比例函数.
此ppt下载后可自行编辑
练倍 速 课 时 学

苏教版八年级数学下册知识点

苏教版八年级数学下册知识点

苏教版八年级数学下册知识点初二数学下册知识点归纳一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

(2)性质:当k0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b0图像经过一、二、三象限;(2)k0,b0图像经过一、三、四象限;(3)k0,b=0图像经过一、三象限;(4)k0,b0图像经过一、二、四象限;(5)k0,b0图像经过二、三、四象限;(6)k0,b=0图像经过二、四象限。

一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.5.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值解方程组从“形”的角度看,确定两直线交点的坐标.数据的分析数据的代表:平均数、众数、中位数、极差、方差八班级数学知识点(总结)函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)
用数形结合的思想方法,通过画图观察,概括 正比 例函数的图象特征及性质.
y =2x
6
4
y= 1 x
2
3
-5
O
-2
5
x
三.类比学习
当k<0 时,正比例函数的图象特征及 性质又怎样呢?
请各小组画出函数y =-3x 和y =-1.5x 的 图象,进行小组合作研究.
总结提升
y=kx (k是常数,k≠0)的图象是一条经过 原点的直线
函数 大致图象 经过的象限 从左 y随x的 向右 增大而
y=kx k>0
第三、一象限 上升 增大
y=kx k<0
第二、四象限 下降 减小
现在,我们有画正比例函数图象的简便 画法了吗?
四.正比例函数的性质
正比例函数的图象都是经过原点的一条直线 (1)当k>0时,函数y=kx的图象经过三、一象限
从左到右上升,即函数y随x的增大而增大 (2)当k<0时,函数y=kx的图象经过二、四象限,
点(0, 0 )与点( 1,-3 ), y随x的增大 而 减小 。 3.下列图象哪个可能是函数y=-1.2x的图象( B)
A
B
C
D
你一定行!
4.请用两点画出直线 y 4x 的图象。
5.若点 (-1,m),(2,n)都在直线y=-4x上, 试比较m,n的大小
你一定行!
五、知识回顾 谈谈本节课你的收获。
六、分层作业
必做题:P120第一、二题。 选做题:若点 (-1,a),(2,b)都在 直线y=kx上,试比较a,b的大小
课件说明
本课是在上一节课学习正比例函数概念的基础上,进 一步研究其图象及其性质.
学习目标: 1.会画正比例函数的图象; 2.能根据正比例函数的图象和表达式 y =k(k≠0)

八年级数学下册正比例函数(基础)知识点归纳及典型例题解析

八年级数学下册正比例函数(基础)知识点归纳及典型例题解析

正比例函数(基础)知识点归纳及典型例题解析 【学习目标】1. 理解正比例函数的概念,能正确画出正比例函数y kx=的图象;的图象; 2. 能依据图象说出正比例函数的主要性质,解决简单的实际问题.的实际问题.【要点梳理】【正比例函数,知识要点】 要点一、正比例函数的定义1、正比例函数的定义一般的,形如y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数叫做正比例函数..其中k 叫做比例系数叫做比例系数. . 2、正比例函数的等价形式 (1)、y 是x 的正比例函数;的正比例函数;(2)、y k x =(k 为常数且k ≠0); (3)、若y 与x 成正比例;成正比例; (4)、k xy =(k 为常数且k ≠0).要点二、正比例函数的图象与性质正比例函数y kx =(k 是常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y kx =.当k >0时,直线y kx =经过第一、经过第一、三象限,三象限,三象限,从左向右上升,从左向右上升,从左向右上升,即随着即随着x 的增大y 也增大;当k <0时,直线y kx =经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小反而减小. .要点三、待定系数法求正比例函数的解析式由于正比例函数y kx =(k 为常数,k ≠0 )中只有一个待定系数k ,故只要有一对x ,y 的值或一个非原点的点,就可以求得k 值. 【典型例题】类型一、正比例函数的定义1、已知1(2)m y m x -=+,当m 为何值时,y 是x 的正比例函数?函数?【思路点拨】正比例函数的一般式为(0)y kx k =¹,要特别注意定义满足0k ¹,x 的指数为1. 【答案与解析】解:由题意得,2011m m +¹ìïí-=ïî解得解得m =2 ∴当m =2时,y 是x 的一次函数的一次函数. .【总结升华】理解正比例函数的概念应抓住解析式中的两个主要特征:(1)k 不等于零;(2)x 的指数是1. 举一反三:【变式】如果函数23(2)m y m x -=+是正比例函数,那么m 的值是值是________________________..【答案】解:由定义得220,31,m m +¹ìí-=î 解得 2.2.m m ¹-ìí=±î ∴m =2. 类型二、正比函数的图象和性质2、(2018秋•灵武市校级期中)在同一直角坐标系上画出函数y=2x y=2x,,y=y=﹣﹣x ,y=y=﹣﹣0.6x 的图象.的图象. 【思路点拨】分别在每个函数图象上找出两点,画出图象,根据函数图象的特点进行解答即可.图象,根据函数图象的特点进行解答即可. 【答案与解析】解:列表:解:列表:描点,连线:描点,连线:【总结升华】本题考查的是用描点法画函数的图象,具体步骤是列表、描点、连线具体步骤是列表、描点、连线. .3、(2018春•马山县期末)已知正比例函数y=kx (k ≠0)的图象经过点(﹣6,2),那么函数值y 随自变量x 的值的增大而的值的增大而 .(填“增大”或“减小”) 【思路点拨】根据正比例函数的性质来判断根据正比例函数的性质来判断. . 【答案】减小;减小;【解析】解:把点(﹣6,2)代入y=kx ,得到:2=﹣6k ,解得k=﹣<0,则函数值y 随自变量x 的值的增大而减小.【总结升华】此题主要考查了正比例函数的性质,关键是确定函数中k 的值,当k >0时,随着y 的增大x 也增大;当k <0时,随着y 的增大x 反而减小反而减小. . 举一反三: 【变式】(20182018•伊宁市校级一模)下列关于正比例函•伊宁市校级一模)下列关于正比例函数y=y=﹣﹣5x 的说法中,正确的是(的说法中,正确的是( ) A .当x=1时,时,y=5 y=5B .它的图象是一条经过原点的直线.它的图象是一条经过原点的直线C .y 随x 的增大而增大的增大而增大D .它的图象经过第一、三象限.它的图象经过第一、三象限 【答案】B ;解:解:A A 、当x=1时,时,y=y=y=﹣﹣5,错误;,错误;B 、正比例函数的图象是一条经过原点的直线,正确;确;C 、根据k <0,得图象经过二、四象限,,得图象经过二、四象限,y y 随x 的增大而减小,错误;的增大而减小,错误;D 、图象经过二四象限,错误;、图象经过二四象限,错误; 故选B .【正比例函数,例3】4、如图所示,在同一直角坐标系中,一次函数1y k x =、2y k x =、3y k x =、4y k x = 的图象分别为1l 、2l 、3l 、4l ,则下列关系中正确的是(则下列关系中正确的是( )A .1k <2k <3k <4kB .2k <1k <4k <3kC .1k <2k <4k <3kD .2k <1k <3k <4k【答案】B ;【解析】首先根据直线经过的象限,知:2k <0,1k <0,4k >0,3k >0,再根据直线越陡,|k |越大,知:2||k >|1k |,|4k |<|3k |.则2k <1k <4k <3k【总结升华】此题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k 的符号,再进一步根据直线的平缓趋势判断k 的绝对值的大小,最后判断四个数的大小数的大小..类型三、正比函数应用5、如图所示,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程s 与时间t 的函数关系,则他们行进的速度关系是(关系,则他们行进的速度关系是().A .甲比乙快.甲比乙快B B .乙比甲快.乙比甲快C C .甲、乙同速.甲、乙同速D .不一定.不一定 【思路点拨】观察图象,在t 相同的情况下,有s s>乙甲,故易判断甲乙的速度大小.【答案】A ;【解析】由s vt =知,s v t=,观察图象,在t 相同的情况下,有ss>乙甲,故有s s vv t t=>=甲乙乙甲.【总结升华】此问题中,l 甲、l 乙对应的解析式y kx =中,k 的绝对值越大,速度越快.的绝对值越大,速度越快.举一反三:【变式】如图,【变式】如图,OA OA OA,,BA 分别表示甲、乙两名学生运动的函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快(速度每秒快() A.2.5米 B.2米 C.1.5米D.1米【答案】C ;提示:从图中可以看出甲用了8秒钟跑了64米,速度是8米/秒,乙用了8秒钟跑了52米,速度是132米/秒,所以快者的速度比慢者的速度每秒快1.5米.。

八年级数学下册教学课件《正比例函数的图象与性质》

八年级数学下册教学课件《正比例函数的图象与性质》

求正比例函数解析式的步骤: (1)设:设出正比例函数解析式 y = kx(k 是常数,k ≠ 0); (2)代:将一组 x,y 的值代入函数解析式,得到关于 k 的 方程; (3)求:解方程求出 k 的值; (4)写:写出正比例函数解析式.
巩固练习
题型一 正比例函数的图象和性质的运用
1.已知关于 x 的正比例函数 y = (m+1) xm23 ,若 y 随 x
y
(2)y = -1.5x,y = -4x;
6 5

① 列表
3
2
② 描点
1 –6 –5 –4 –3 –2 –1 O
–1
③ 画线
–2
–3
–4
–5
–6
1 23 4 5 6 x
y = -1.5x
x … -1 0 1 … y … 4 0 -4 …
(2)y = -1.5x,y = -4x; ① 列表 ② 描点 ③ 画线
知识点二 正比例函数的性质
当 k > 0 时,直线 y = kx 从左向右上升,即随着 x 的增大 y 也增大; 当 k < 0 时,直线 y = kx 从左向右下降,即随着 x 的增大 y 反而减小;
思考
经过原点与点(1,k)(k 是常数,k ≠ 0)的直线是 哪个函数的图象?画正比例函数的图象时,怎样画最简单? 为什么?
y
6 5 4 3 2 1
–6 –5 –4 –3 –2 –1 O –1 –2 –3 –4 –5 –6
1 23 4 5 6 x
y = -1.5x y = -4x
图1
图2
【观察发现】 4 个函数图象都是经过原点的直线. 图1 中的函数图象经过第三、第一象限.
图2 中的函数图象经过第二、第四象限.

人教版初二数学下册:正比例函数(提高)知识讲解

人教版初二数学下册:正比例函数(提高)知识讲解

正比例函数(提高)【学习目标】1. 理解正比例函数的概念,能正确画出正比例函数y kx =的图象;2. 能依据图象说出正比例函数的主要性质,解决简单的实际问题. 【要点梳理】【高清课堂:389342 正比例函数,知识要点】 要点一、正比例函数的定义 1、正比例函数的定义一般的,形如y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.2、正比例函数的等价形式 (1)、y 是x 的正比例函数; (2)、y kx =(k 为常数且k ≠0); (3)、若y 与x 成正比例; (4)、k xy=(k 为常数且k ≠0). 要点二、正比例函数的图象与性质正比例函数y kx =(k 是常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y kx =.当k >0时,直线y kx =经过第一、三象限,从左向右上升,即随着x 的增大y 也增大;当k <0时,直线y kx =经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小.要点三、待定系数法求正比例函数的解析式由于正比例函数y kx =(k 为常数,k ≠0 )中只有一个待定系数k ,故只要有一对x ,y 的值或一个非原点的点,就可以求得k 值.【典型例题】类型一、正比例函数的定义【高清课堂:389342 正比例函数,例1】1、若函数22432m ny xm n -+=-+-是y 关于x 的正比例函数,求m 、n 的值.【思路点拨】正比例函数的一般式为(0)y kx k =≠,要特别注意定义满足0k ≠,x 的指数为1.【答案与解析】 解:由题意,得221320m n m n -+=⎧⎨-=⎩ 解得 11.5m n =⎧⎨=⎩∴当1, 1.5m n ==时,y 是x 的正比例函数.【总结升华】理解正比例函数的概念应抓住解析式中的两个主要特征:(1)k 不等于零;(2)x 的指数是1. 举一反三: 【变式】(2014春•凉州区校级月考)x 、y 是变量,且函数y=(k+1)x |k|是正比例函数,求K 的值.【答案】解:根据正比例函数的定义可得:k+1≠0,|k|=1,解得;k=1.【高清课堂:389342 正比例函数,例2】2、设有三个变量x 、y 、z ,其中y 是x 的正比例函数,z 是y 的正比例函数 (1)求证:z 是x 的正比例函数;(2)如果z =1,x =4时,求出z 关于x 的函数关系式. 【答案与解析】解:(1)由题意,设11(0)y k x k =≠,22(0)z k y k =≠,12,k k 为常数12z k k x =∴ 120,0k k ≠≠∴120k k ≠且为常数∴z 是x 的正比例函数;12z k k x =∴12(0)k k ≠(2)当z =1,x =4时,代入12z k k x = ∴1214k k =∴z 关于x 的函数关系式是14z x =. 【总结升华】在本题中,按照题意,比例系数要设为不同的12,k k ,不要都设为k ,产生混淆.举一反三:【变式】已知z m y =+,m 是常数,y 是x 的正比例函数,当x =2时,z =1;当x =3时,z =-1,求z 与x 的函数关系.【答案】解:由题意,y kx =,z m kx =+ ,∵x =2时,z =1;当x =3时,z =-1, ∴1=m +2k ,-1=m +3k 解得k =-2,m =5 ∴z =-2x +5.类型二、正比函数的图象和性质3、(2016•眉山)若函数y=(m ﹣1)x |m|是正比例函数,则该函数的图象经过第 象限.【思路点拨】根据正比例函数定义可得:|m|=1,且m ﹣1≠0,计算出m 的值,然后可得解析式,再根据正比例函数的性质可得答案. 【答案与解析】解:由题意得:|m|=1,且m ﹣1≠0, 解得:m=﹣1, 函数解析式为y=﹣2x , ∵k=﹣2<0,∴该函数的图象经过第二、四象限.【总结升华】此题主要考查了正比例函数的定义和性质,关键是掌握形如y=kx (k 是常数,k≠0)的函数叫做正比例函数;正比例函数y=kx (k 是常数,k≠0),当k >0时,直线y=kx 依次经过第三、一象限,从左向右上升,y 随x 的增大而增大;当k <0时,直线y=kx 依次经过第二、四象限,从左向右下降,y 随x 的增大而减小. 举一反三:【变式】已知正比例函数()21y t x =-的图象上一点(1x ,1y ),且1x 1y <0,那么t 的取值范围是( ) A. t <12 B .t >12 C .t <12或t >12D .不确定 【答案】A ;提示:因为1x 1y <0,所以该点的横、纵坐标异号,即图象经过二、四象限,则2t -1<0,t <12. 类型三、正比例函数的应用4、已知正比例函数4y x =的图像上有一点P(x ,y )和一点A(6,0),O 为坐标原点,且△PAO 的面积等于12,你能求出P 点坐标吗?【思路点拨】画出草图,可知三角形的底边长为|OA|=6,高为P 点纵坐标的绝对值,利用面积等于12求解. 【答案与解析】解:依题意:1122PS OA y =⋅⋅=∵O (0,0),A (6,0)∴OA =6 ∴4,44p P P y y y ===-∴或41,(1,4)P y x P ==当时,此时;41,(1,4)P y x P =-=---当时,此时P 1414-综上:点的坐标为(,)或(-,)【总结升华】求点的坐标需要求点到坐标轴的垂线段的长,利用面积即可求出垂线段的长.附录资料:菱形(基础)=【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理. 【要点梳理】【高清课堂 特殊的平行四边形(菱形) 知识要点】 要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件. 要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质: 1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题. 要点三、菱形的判定 菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形. 要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF ⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式1】(2015•温州模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=度.【答案】50;解:在菱形ABCD 中,AB ∥CD ,∴∠CDO=∠AED=50°, CD=CB ,∠BCO=∠DCO , ∴在△BCO 和△DCO 中,,∴△BCO ≌△DCO (SAS ), ∴∠CBO=∠CDO=50°.【高清课堂 特殊的平行四边形(菱形) 例1】【变式2】菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ). A.21 B.4 C.1 D.2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1. 类型二、菱形的判定2、如图所示,在△ABC 中,CD 是∠ACB 的平分线,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE ∥AC ,DF ∥BC 知四边形DECF 是平行四边形,再由∠1=∠2=∠3得到邻边相等即可. 【答案与解析】解:四边形DECF 是菱形,理由如下: ∵ DE ∥AC ,DF ∥BC∴ 四边形DECF 是平行四边形. ∵ CD 平分∠ACB ,∴ ∠1=∠2 ∵ DF ∥BC , ∴ ∠2=∠3, ∴ ∠1=∠3. ∴ CF =DF ,∴ 四边形DECF 是菱形. 【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形. 举一反三:【变式】如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF是菱形吗?请说明理由.【答案】解:四边形AEDF是菱形,理由如下:∵ EF垂直平分AD,∴△AOF与△DOF关于直线EF成轴对称.∴∠ODF=∠OAF,又∵ AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴ AE∥DF,同理可得:DE∥AF.∴四边形AEDF是平行四边形,∴ EO=OF又∵AEDF的对角线AD、EF互相垂直平分.∴AEDF是菱形.3、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACD,交AD于点G,交AB于点E,EF⊥BC于点F.求证:四边形AEFG是菱形.【思路点拨】由角平分线性质易知AE=EF,欲证四边形AEFG是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.∴ EF AG.∴四边形AEFG是平行四边形.又∵ AE=AG,∴四边形AEFG是菱形.方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴ AG=FG.∴ AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.举一反三:【变式】如图所示,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证四边形DEBF是菱形.【答案】证明:(1)ABCD中,AB∥CD,AB=CD∵ E、F分别为AB、CD的中点∴ DF=12DC,BE=12AB∴ DF∥BE.DF=BE∴四边形DEBF为平行四边形∴ DE∥BF(2)证明:∵ AG∥BD∴∠G=∠DBC=90°∴△DBC为直角三角形又∵ F为边CD的中点.∴ BF=12DC=DF又∵四边形DEBF为平行四边形∴四边形DEBF是菱形类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).【总结升华】菱形可以看作是由直角三角形组成的,因而铺满墙面后,要计算空白菱形的个数和阴影菱形的个数.将相同的图形拼在一起,在顶点周围的几个图形也能拼成一定的图案,不要忽略周围图形的拼接.。

专题08 正(反)比例函数基础概念压轴题型全攻略(解析版)

专题08 正(反)比例函数基础概念压轴题型全攻略(解析版)

专题08正(反)比例函数基础概念压轴题型全攻略【考点导航】目录【典型例题】 (1)【考点一函数概念的辨析】 (1)【考点二正(反)比例概念的辨析】 (2)【考点三由图像求正(反)比例函数解析式】 (2)【考点四由函数的应用求定义域】 (3)【过关检测】 (4)【典型例题】【考点一函数概念的辨析】【例题1】下列各图象中,y不是x的函数有()A.B.C.D.【答案】B【分析】本题主要考查了函数的概念,根据函数的概念,观察图像,逐项进行判断即可.熟练掌握函数的概念:如果给x的一个值,y都有唯一确定的值与其对应,那么y是x的函数,是解题关键.【详解】解:A,C,D选项.给出一个x都对应唯一y值,y是x的函数,故A,C,D选项.不符合题意B选项一个x值对应两个y值,y不是x的函数,故B选项符合题意.故选:B.【变式1】下列曲线不能表示y是x的函数的是()A.B.C.D.【答案】C【分析】本题主要考查了函数的定义,根据函数的定义逐一判断即可求解,在定义中特别要注意,对于x 的每一个值,y都有唯一的值与其对应是解题的关键.【详解】解:根据函数的定义可得:A、B、D都符合函数的定义,故不符合题意;C、对x的一个值y的值不是唯一的,则不能表示y是x的函数,故符合题意;故选:C.【变式2】下列曲线中不能表示y是x的函数的是()A.B.C.D.【答案】B【分析】根据函数的定义,在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,判定即可.【详解】解:∵A、C、D的图象都满足对于x的每一个确定的值,y都有唯一的值与其对应,∴A、C、D的图象能表示y是x的函数;故A、C、D选项不符合题意;B的函数图象,对任意0x 的一个值,y的对应值都有两个,不符合函数的定义,故此选项符合题意;故选:B.【点睛】本题考查了函数的定义,掌握函数的定义的应用是解题关键.....【分析】由题意的函数依据函数的概念可知对于的每一个确定的值,此进行分析判断即可.【详解】解:如图,D选项中的图象,对每一个确定的的值,有两个yABC选项中的图象,对每一个确定的故选:D.【点睛】本题主要考查函数的概念,注意掌握函数的定义:设在一个变化过程中有两个变量A .B ...【答案】C【分析】根据杠杆平衡的条件确定函数解析式及自变量取值范围,然后结合选项判断即可.【详解】解:根据题意得23xy ⨯⨯=,即30y x=且(015)x <≤,的函数关系图象如图所示,根据图象得到下列结论,你认为正确的结论是()①这次比赛的全程是500米;②乙队先到达终点;③比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快;④乙与甲相遇时乙的速度是375米/分钟;⑤在1.8分钟时,乙队追上了甲队.A.①③④B.①②⑤C.①②④D.①②③④⑤【答案】C【分析】由横纵坐标可直接判断①、②;观察图象比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面可判断③;由图象得乙队在1.1至1.9分钟的路程为300米,可判断④;分别求出在1.8分钟时,甲队和乙队的路程,可判断⑤.【详解】解:①由纵坐标看出,这次龙舟赛的全程是500m,故①正确;②由横坐标可以看出,乙队先到达终点,故②正确;③∵比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面,∴乙队的速度比甲队的速度慢,故③错误;④∵由图象可知,乙队在1.1分钟后开始加速,加速的总路程是500-200=300(米),加速的时间是1.9-1.1=0.8(分钟),∴乙与甲相遇时,乙的速度是300÷0.8=375(米/分钟),故④正确.⑤甲队:500÷2×1.8=450(米),乙队:200+(500-200)÷(1.9-1.1)×(1.8-1.1)=462.5(米),故⑤错误.故选C.【点睛】本题主要考查一次函数的图象与实际应用,准确识图是解题的关键.【变式2】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【答A .1.4kgB .5kgC .7kg 【分析】将点()5,1.4代入m Vρ=【详解】解: 点()5,1.4在ρ=1.45m ∴=,解得:7m =,故选:C .【考点四由函数的应用求定义域】A .(900180y x x =-<<C .(29001803y x x =-<<︒【分析】根据等腰三角形的性质,三角形的外角的性质即可求解.∵AB AC =,CE DE =,∴12x ∠+=∠,13y ∠+=∠∵2∠是CBD △的外角,【点睛】考查函数关系式及函数自变量的取值范围,根据题意,找到所求量的等量关系是解决问题的关键.应注意一次函数的一般形式为y kx b =+(k ,b 是常数,且0k ≠),以及自变量的取值范围.【过关检测】一.选择题、,所以、,所以、,在双曲线的每一支上,、,抛物线开口向上,当二.填空题【分析】根据三角形的面积公式即可求得.【详解】解:∵=6AC,∴12ABDBD AC S=⨯() 11262x=⨯-⨯336x=-+,即:336S x =-+.故答案为:336S x =-+.【点睛】本题考查了函数关系式,掌握三角形的面积公式是解题的关键.三.解答题17.已知正比例函数y kx =图像经过点()2,4-,求:(1)这个函数的解析式;(2)判断点()2,1A -是否在这个函数图像上;(3)图像上两点()11,B x y ,()22,C x y ,如果12x x >,比较1y ,2y 的大小.【答案】(1)2y x=-(2)不在(3)12y y <【分析】(1)将()2,4-代入y kx =,利用待定系数法求解;(2)将2x =代入(1)中所求解析式,看y 值是否为1-即可;(3)根据k 值判断正比例函数图象的增减性,即可求解.【详解】(1)解: 正比例函数y kx =的图象经过点()2,4-,∴2x =时,4y =-∴24k =-解得2k =-∴这个函数的解析式为2y x =-;(2)解:将2x =代入2y x =-中得:2241y =-⨯=-≠-,∴点()2,1-不在这个函数图象上;(3)解: 20k =-<,∴y 随x 的增大而减小,又 12x x >∴12y y <.【点睛】本题考查正比例函数的图象及性质,解题的关键是利用待定系数法求出函数解析式,根据比例系数判断函数图象的增减性.(1)求此函数的解析式;(2)当气体体积为3100m时,气压是多少?(3)当气球内的压强大于150kPa【答案】(1)96PV=(2)气压是。

2020学年八年级数学下册 第十九章19.2.1 正比例函数 第2课时 正比例函数的图象与性质练习

2020学年八年级数学下册 第十九章19.2.1 正比例函数 第2课时 正比例函数的图象与性质练习

第2课时 正比例函数的图象与性质知识点 1 正比例函数的图象1.正比例函数y =2x 的大致图象是( )图19-2-12.经过以下一组点可以画出函数y =-3x 的图象的是( ) A .(0,0)和(3,-1) B .(1,-3)和(-1,3) C .(1,3)和(-3,1) D .(-1,-3)和(1,3)3.若正比例函数y =kx 的图象在第二、四象限,则k 的取值可以是( ) A .1 B .0或1 C .±1 D .-14.[2018·常州]一个正比例函数的图象经过点(2,-1),则它的解析式为( ) A .y =-2x B .y =2x C .y =-12x D .y =12x5.已知正比例函数y =(k +1)x 的图象经过第一、三象限,则k 的取值范围是________. 6.已知函数:①y =12x ,②y =x ,③y =2x ,④y =-2x .(1)在同一平面直角坐标系中画出各函数的图象;(2)观察这些函数的图象可以发现,随着|k |的增大,直线与y 轴的位置关系有何变化?(k 指比例系数) (3)猜想函数①和④的图象的位置关系.知识点 2 正比例函数的性质7.对于函数y =-2x ,下列说法不正确的是( ) A .它的图象是一条直线 B .y 随着x 的增大而增大 C .它的图象过点(-1,2) D .它的图象经过第二、四象限8.在关于x 的正比例函数y =(k -1)x 中,y 随x 的增大而减小,则k 的取值范围是( ) A .k <1 B .k >1 C .k ≤1 D .k ≥19.已知正比例函数y =kx (k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( )A .y 1+y 2>0B .y 1+y 2<0C .y 1-y 2>0D .y 1-y 2<010.若正比例函数y =(1-4m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时, y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m <14D .m >1411.[2018·陕西]如图19-2-2,在矩形AOBC 中,A (-2,0),B (0,1).若正比例函数y =kx 的图象经过点C ,则k 的值为( )图19-2-2A .-12 B.12C .-2D .212.已知正比例函数y =3x 的图象经过点A (-1,y 1),B (-2,y 2),则y 1________y 2(填“>”“<”或“=”).13.写出一个图象经过第一、三象限的正比例函数y =kx (k ≠0)的解析式:________.14.如图19-2-3,三个正比例函数的图象对应的解析式为:①y =ax ,②y =bx ,③y =cx ,则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .b >a >cD .b >c >a图19-2-3 图19-2-415.放学后,小明骑车回家,他经过的路程s (千米)与所用时间t (分)的函数关系如图19-2-4所示,则小明的骑车速度是________千米/分.16.已知正比例函数y =kx (k 是常数,k ≠0),当-3≤x ≤1时,对应的y 的取值范围是-1≤y ≤13,且y 随x 的增大而增大,则k 的值为________.17.已知正比例函数y =kx ,当x =1时,y =2.(1)求正比例函数的解析式; (2)求当x =-1时的函数值;(3)当y 的取值范围是0≤y ≤5时,求x 的取值范围.18.2[018·昆明改编]如图19-2-5,点A 的坐标为(4,2),将点A 绕坐标原点O 旋转90°后,再向左平移1个单位长度得到点A ′,求过点A ′的正比例函数图象的解析式.图19-2-519.如图19-2-6,已知正比例函数y=kx的图象经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式.(2)在x轴上是否存在一点P,使△AOP的面积为5?若存在,求出点P的坐标;若不存在,请说明理由.图19-2-6拓广探究创新练冲刺满分20.[2018·贵港]如图19-2-7,直线l的解析式为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3;…;按此作法进行下去,则点A n的坐标为________.图19-2-7教师详解详析1.B 2.B3.D [解析] ∵正比例函数y =kx 的图象在第二、四象限,∴k <0.故选D. 4.C5.k >-1 [解析] ∵正比例函数y =(k +1)x 的图象经过第一、三象限,∴k +1>0,∴k >-1. 6.解:(1)如图:(2)观察这些函数的图象可以发现,随着|k |的增大,直线与y 轴的夹角越来越小. (3)函数①和④的图象互相垂直. 7.B8.A [解析] 由正比例函数的性质可知:当y 随x 的增大而减小时,k -1<0,即k <1.故选A. 9.C10.D [解析] 因为当x 增大时,y 减小,说明函数y 随着x 的增大而减小,则有1-4m <0,解得m >14.故选D.11.A [解析] 由A (-2,0),B (0,1)可得C (-2,1).把点C 的坐标代入y =kx ,得-2k =1,解得k =-12.故选A. 12.>13.y =2x (答案不唯一) [解析] ∵正比例函数y =kx 的图象经过第一、三象限, ∴k >0,当k 取2时可得函数解析式为y =2x .14.B [解析] ∵y =ax ,y =bx ,y =cx 的图象都在第一、三象限,∴a >0,b >0,c >0.∵直线越陡,则|k |越大,∴c >b >a .15.0.2 16.1317.解:(1)将x =1,y =2代入y =kx ,得k =2, 故正比例函数的解析式为y =2x .(2)当x =-1时,y =2×(-1)=-2. (3)∵0≤y ≤5,∴0≤2x ≤5, 解得0≤x ≤52.18.解:当点A 绕坐标原点O 逆时针旋转90°后,再向左平移1个单位长度得到点A ′, 则A ′(-3,4).设过点A ′的正比例函数图象的解析式为y =k 1x , 则4=-3k 1, 解得k 1=-43,则过点A ′的正比例函数图象的解析式为y =-43x .同理可得:当点A 绕坐标原点O 顺时针旋转90°后,再向左平移1个单位长度得到点A ″,则A ″(1,-4). 设过点A ″的正比例函数图象的解析式为y =k 2x , 则k 2=-4,则过点A ″的正比例函数图象的解析式为y =-4x .综上所述,过点A ′的正比例函数图象的解析式为y =-43x 或y =-4x .19.解:(1)∵点A 的横坐标为3,且△AOH 的面积为3, ∴点A 的纵坐标为-2,∴点A 的坐标为(3,-2). ∵正比例函数y =kx 的图象经过点A , ∴3k =-2,∴k =-23,∴正比例函数的解析式是y =-23x .(2)存在.∵△AOP 的面积为5,点A 的坐标为(3,-2), ∴OP =5,∴点P 的坐标为(5,0)或(-5,0).20.(2n -1,0) [解析] 直线l 的解析式为y =3x ,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点B 1,可知点B 1的坐标为(1,3),以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2,则OA 2=OB 1,所以OA 2=12+(3)2=2,所以点A 2的坐标为(2,0).同理,可求得点B 2的坐标为(2,2 3),故OA 3=22+(2 3)2=4,则点A 3的坐标为(4,0),所以点B 3的坐标为(4,4 3).…所以点A n 的坐标为(2n -1,0).。

初二数学《正比例函数和反比例函数》PPT复习

初二数学《正比例函数和反比例函数》PPT复习
的坐标及k、m的值。
案例分析三
已知正比例函数y=ax(a≠0)的 图像与反比例函数y=b/x(b≠0) 的图像交于C、D两点,且C、D 两点关于原点对称,若点C的坐 标为(3,2),求a、b的值及D点
的坐标。
05 典型例题解析与思路拓展
典型例题选讲
例题1
已知正比例函数 y = kx (k ≠ 0) 的图像经过点 (2, -4),求该正比
在同一平面直角坐标系中,正比例函数 的图像是一条过原点的直线,且关于原 点对称。
比例系数k决定了直线的倾斜程度,k>0 时,直线从左下方向右上方延伸;k<0 时,直线从左上方向右下方延伸。
性质 图像是一条经过原点的直线。
反比例函数定义及性质
性质
图像是分布在两个象限内的双曲 线。
比例系数k决定了双曲线的形状和位置 ,k>0时,双曲线位于第一、三象限; k<0时,双曲线位于第二、四象限。
06 课堂互动环节
学生提问答疑
学生可以向老师提出关于正比例函数 和反比例函数概念、性质、图像等方 面的疑问。
老师会针对学生的问题,进行详细的 解答和辅导,确保学生能够理解和掌 握相关知识。
小组讨论分享学习心得
学生可以分组进行讨论,分享自己在学习正比例函数和反比 例函数过程中的心得和体会。
小组内成。
例题2
已知反比例函数 y = k/x (k ≠ 0) 的图像经过点 (3, 4),求该反比例 函数的解析式。
例题3
已知正比例函数 y = 2x 和反比例函 数 y = 8/x,求这两个函数图像的交 点坐标。
解题思路与方法总结
对于正比例函数,已知一点坐 标,可以通过代入法求出函数 的解析式。
经济学问题

【人教版】八年级数学下册课件-19.2.1 正比例函数

【人教版】八年级数学下册课件-19.2.1 正比例函数

描点(在直角坐标系中描出
y
表格中数对对应的点);
y=-1.5x
连表线格(连中的接点直很角多坐,标可系以中选的
3 2
点),如取图几.个有代表性的作图。
1
用同样的方法,我们可以 得到y=-4x的图象,如图.
-2 -1 O 1 2 x -1 -2
状元成才路
y=-1.5x
x … -3 -2 -1 0 1 2 3 …
根据题意画图,如下,当k>0时,A( 6,6),
此 A得’k时=(S-6k△,A.3因O6B),=此此12k=×时±6kS△×A.36O=B=12,12 ×解(得-k=6k6
3
k
.当k<0时,
2
)×6=12,解
2
2
状元成才路
错因分析:解题时忽略了k值的正负 情况,导致漏解.在解答此类型的题目时, 要根据题目条件画出图形,分类讨论.
因为两点确定一条直线,所以可用两点法画 正比例函数y=kx(k是常数,k≠0)的图象.一般地, 过 原 点 与 点 (1,k)(k≠0)的 直 线 , 即 正 比 例 函 数 y=kx(k是常数,k≠0)的图象.
状元成才路
知识点 3 正比例函数解析式的确定
例3 已知正比例函数y=kx经过点(-1,2), 求这个正比例函数的解析式.
状元成才路
19.2 一次函数
19.2.1 正比例函数
R·八年级数学下册
状元成才路
新课导入
两个变量x,y成正比例, 且 比 例 系 数 是 k(k ≠ 0) , 你 能 写出y与x的关系式吗?
状元成才路
学习目标
(1) 知 道 什 么 样 的 函 数 是 正 比 例 函 数 , 能 根 据正比例函数的定义确定字母系数的值.

19.2.1《正比例函数+》+课件++2023--2024学年人教版八年级数学下册+

19.2.1《正比例函数+》+课件++2023--2024学年人教版八年级数学下册+

(3)每个练习本的厚度为 2cm,一些练习本摞在一 起的总厚度h(单位:cm) 随练习本的本数n的变化 而变化。
(4)冷冻一个0℃的物体, 使它每分钟下降2℃,物
体 温度T(单位:℃)随冷
冻 时间t(单位:min)的变 化而变化。
04教学过程---概念探究
函数解析式 l =2πr m =7.8V
观察出h = 2n T = -2t
解:h = 0.5n .
(4)冷冻一个0℃的物体,使它每分下降 2℃,物体的温度T(单位:℃)随冷冻时 间t(单位:分)的变化而变化.
解:T = -2t .
认真观察以上出现的四个函数解析式,分别说出
哪些是常量、自变量和函数.
函数解析式 常量 自变量 函数
这些函数有什 么共同点?
(1)l=2πr

步骤
方法
假设、带入、求解 待定系数法
04教学过程---巩固拓展
一 1.下列函数关系中,属于正比例函数关系的是(


A.圆的面积S与它的半径r


B.行驶速度不变时,行驶路程s与时间t
式 的
C.正方形的面积S与边长a

D.工作总量(看作“1” )一定,工作效率w与工

作时间 t
04教学过程---巩固拓展
2 (4) y 2 ; 二、解析x式的特点
(1)若y=(m-1)x是正比例函数,m取值范围是

(2)当n 时,y=2xn是正比例函数;
(3)当k 时,y=3x+k是正比例函数.
04教学过程---概念运用
三、解析式的求法
若正比例函数的自变量x等于-4时,函数y的值等于2。 (1)求正比例函数的解析式;(2)求当x=6时函数y的值.

人教版同步教参数学八年级下册-一次函数(一):正比例函数

人教版同步教参数学八年级下册-一次函数(一):正比例函数

一次函数第 1 节正比例函数【知识梳理】1、正比例函数的定义一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。

备注:(1)正比例函数y=kx必须满足两个条件:①比例系数k≠0,②自变量x的次数是1(2)在判断一个函数是否是正比例函数时,只要看其是否满足y=kx(k≠0)的形式即可;若求函数的解析式,只要求出比例系数k的值,解析式就可以确定了。

(3)求正比例函数的解析式采用待定系数法,即设所求解析式为y=kx,将图象上的点的坐标代入解析式,求出k即可。

2、正比例函数的图象与性质=(k是常数,k≠0)的图象是一条经过原点与点(1,k)的直线,我们称正比例函数y kx=。

其图象和性质如下表:它为直线y kx3、确定正比例函数的关系式=(k是常数,k≠0),就是确定比例系数k(k≠0)的值,一确定正比例函数的关系式y kx般步骤如下:(1)先根据条件设出函数解析式y kx =;(2)确定一对自变量和函数的对应值(或图象上一个点的坐标); (3)把对应值代入函数解析式,列出方程,解方程求出k 的值; (4)确定函数解析式。

【诊断自测】1、下列函数中是正比例函数的有( ) ①y kx =;②13y x =-;③1y x=;④2y x =-;⑤1y x =-+ A.①③ B.② C.①③⑤ D.①②④2、如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于________。

3、画正比例函数2y x =的图象。

4、如图所示的函数图象中,正比例函数的图象是( )。

A . B. C. D.5、111(,)P x y ,222(,)P x y 是正比例函数y x =-图象上的两点,则下列判断正确的是( )。

A. 12y y > B. 12y y < C.当12x x <时,12y y > D.当12x x <时,12y y < 6、正比例函数y kx =的图象经过点A (1,3), (1)求这个函数的解析式;(2)请判断点B (2,6)是否在这个正比例函数的图象上,并说明理由。

19.2.1 正比例函数(第2课时)课件2021—2022学年人教版数学八年级下册

19.2.1 正比例函数(第2课时)课件2021—2022学年人教版数学八年级下册

;(2)y=-1.5x,y=-4x.
解:(1)函数y=2x中自变量x可为任意实数.
①列表如下:
x

3
2
1
0
1
2
3

y

6
4
2
0
2
4
6

探究新知
②描点;
y=2x
③连线.


同样可以画出
1
函数y=3 的图象.
y=
观察发现:
①这两个图象都是经过原点的 直线 .而且
都经过第 一、三
象限;
作业
内容
必做题:练习册第2课时正比
例函数的性质基础达标
选做题:练习册第2课时正比
例函数的性质能力提升
解:k1<k2 <0<k3 <k4
|k|越大,越接近y轴;|k|越小,越接近x轴.
x
O
y =k2 x
y =k1 x
课堂小结
图象:
经过原点的直线.
正比例函数的
图象及性质
性质:
当k>0时,图像经过第一、三象限,y的值随
着x值的增大而增大;
当k<0时,图像经过第二、四象限,y的值随
着x值的增大而减小.
课后作业
又∵y的值随着x值的增大而减小,
∴m<0,故m=-2
巩固练习
1.已知正比例函数y=(k+5)x.
k<-5
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
解析:因为函数图象经过第二、四象限,所以k+5<0,解得k<-5.
=-8
(2)若函数图象经过点(3,-9),则k_____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例函数(基础)知识点归纳及典型例题解析 【学习目标】
1. 理解正比例函数的概念,能正确画出正比例函数
y kx =的图象;
2. 能依据图象说出正比例函数的主要性质,解决简单的实际问题.
【要点梳理】
【正比例函数,知识要点】 要点一、正比例函数的定义 1、正比例函数的定义
一般的,形如y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数. 2、正比例函数的等价形式 (1)、y 是x 的正比例函数; (2)、y k x =(k 为常数且k ≠0); (3)、若y 与x 成正比例; (4)、k x
y =(k 为常数且k ≠0).
要点二、正比例函数的图象与性质
正比例函数y kx =(k 是常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y kx =.当k >0时,直线y kx =经过第一、三象限,从左向右上升,即随着x 的增大y 也增大;当k <0时,直线y kx =经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小.
要点三、待定系数法求正比例函数的解析式
由于正比例函数y kx =(k 为常数,k ≠0 )中只有一个待定系数k ,故只要有一对x ,y 的值或一个非原点的点,就可以求得k 值. 【典型例题】
类型一、正比例函数的定义
1、已知1
(2)m y m x -=+,当m 为何值时,y 是x 的正比例
函数?
【思路点拨】正比例函数的一般式为(0)y kx k =≠,要特别注意定义满足0k ≠,x 的指数为1. 【答案与解析】
解:由题意得,20
11m m +≠⎧⎪⎨-=⎪⎩
解得 m =2
∴当m =2时,y 是x 的一次函数. 【总结升华】理解正比例函数的概念应抓住解析式中的两个主要特征:(1)k 不等于零;(2)x 的指数是1. 举一反三:
【变式】如果函数23
(2)m y m x -=+是正比例函数,那么m 的
值是________.
【答案】
解:由定义得
220, 31,
m m +≠


-=⎩解得 2.
2.
m
m
≠-




∴m=2.
类型二、正比函数的图象和性质
2、(2018秋•灵武市校级期中)在同一直角坐标系上画出函数y=2x,y=﹣x,y=﹣0.6x的图象.
【思路点拨】分别在每个函数图象上找出两点,画出图象,根据函数图象的特点进行解答即可.
【答案与解析】
解:列表:
描点,连线:
【总结升华】本题考查的是用描点法画函数的图象,
具体步骤是列表、描点、连线.
3、(2018春•马山县期末)已知正比例函数y=kx (k≠0)的图象经过点(﹣6,2),那么函数值y随自变量x的值的增大而.(填“增大”或“减小”)【思路点拨】根据正比例函数的性质来判断.
【答案】减小;
【解析】解:把点(﹣6,2)代入y=kx,得到:2=﹣6k,
解得k=﹣<0,
则函数值y随自变量x的值的增大而减小. 【总结升华】此题主要考查了正比例函数的性质,关键是确定函数中k的值,当k>0时,随着y的增大x也增大;当k<0时,随着y的增大x反而减小.
举一反三:
【变式】(2018•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()
A.当x=1时,y=5
B.它的图象是一条经过原点的直线
C.y随x的增大而增大
D.它的图象经过第一、三象限
【答案】B;
解:A 、当x=1时,y=﹣5,错误;
B 、正比例函数的图象是一条经过原点的直线,正确;
C 、根据k <0,得图象经过二、四象限,y 随x 的增大而减小,错误;
D 、图象经过二四象限,错误; 故选B .
【正比例函数,例3】
4、如图所示,在同一直角坐标系中,一次函数1
y k x =、
2y k x =、3y k x =、4y k x = 的图象分别为1l 、2l 、3l 、4l ,
则下列关系中正确的是( )
A .1
k <2
k <3
k <4
k
B .2
k <1
k <4
k
<3
k
C .1
k <2
k <4
k <3
k
D .2
k <1
k <3
k
<4
k
【答案】B ;
【解析】首先根据直线经过的象限,知:2
k <0,1
k <0,
4k >0,3k >0,再根据直线越陡,|k |越大,知:2||k >|1k |,|4k |<|3k |.则2k <1k <4k <3k
【总结升华】此题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k 的符号,再进一步根据直线的平缓趋势判断k 的绝对值的大小,最后判断四个数的大小.
类型三、正比函数应用
5、如图所示,射线l 甲
、l 乙
分别表示甲、乙两名运动
员在自行车比赛中所走路程s 与时间t 的函数关系,则他们行进的速度关系是( ).
A .甲比乙快
B .乙比甲快
C .甲、乙同速
D .不一定
【思路点拨】观察图象,在t 相同的情况下,有s s >乙甲

故易判断甲乙的速度大小. 【答案】A ;
【解析】由s vt =知,s v t
=,观察图象,在t 相同的情况
下,有s
s >乙甲,故有s s v v t t
=
>=甲乙
乙甲.
【总结升华】此问题中,l
甲、l

对应的解析式y kx
中,
k的绝对值越大,速度越快.
举一反三:
【变式】如图,OA,BA分别表示甲、乙两名学生运动的函数图象,图中s和t分别表示运动路程
和时间,根据图象判断快者的速度比慢者的
速度每秒快()
A.2.5米
B.2米
C.1.5米
D.1米
【答案】C;
提示:从图中可以看出甲用了8秒钟跑了64米,速度是8米/秒,乙用了8秒钟跑了52米,速度
是13
2
米/秒,所以快者的速度比慢者的速度每秒快1.5米.。

相关文档
最新文档