(完整版)无刷电机的设计最终版
直流无刷电机毕业设计
![直流无刷电机毕业设计](https://img.taocdn.com/s3/m/8ad85f6f6529647d262852bc.png)
直流无刷电机毕业设计毕业设计论文论文题目:直流无刷电机学生姓名:学生学号:专业班级:指导教师:日期:AbstractBrushless DC Motor摘要无刷直流电机是最近发展起来的结合了多学科技术的一种新型电机,结合机电一体化,具有高速度、高效率、高动态响应、高热容量和高可靠性、免维护等优点,同时还具有低噪声和长寿命等特点。
非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最佳选择。
目前无刷电机已广泛应用于各种领域,如医疗仪器、分析仪器、材料处理、过程控制、机床工业、纺织工业、轻工机械、电动自行车等。
无刷直流电机的控制要比普通有刷电机的控制要复杂得多。
目前直流电机的控制方法主要有两种,一种是采用专用得直流电机控制芯片,如Motorola公司的MC33035;另一种控制方法各个厂家根据自己的需求采用单片机或DSP进行开发设计。
本设计主要采用嵌入式单片机ATMEGA48写入控制程序,从而形成一种高性能直流无刷电机控制器。
其不但能实现MC33035直流电机控制芯片的全部功能,而且具有接口灵活,功能完善,成本低廉、全数字控制等优点,用户能根据不同应用场合进行灵活配置。
关键词:无刷直流电机、HALL、PWM目录Abstract ............................................................................................... 错误!未定义书签。
摘要..................................................................................................... 错误!未定义书签。
(完整word版)无刷直流永磁电动机设计流程和实例
![(完整word版)无刷直流永磁电动机设计流程和实例](https://img.taocdn.com/s3/m/0e4ab31e19e8b8f67d1cb9c4.png)
无刷直流永磁电动机设计实例一. 主要技术指标1。
额定功率:W 30P N = 2。
额定电压:V U N 48=,直流 3。
额定电流:A I N 1<3。
额定转速:m in /10000r n N = 4。
工作状态:短期运行 5. 设计方式:按方波设计 6。
外形尺寸:m 065.0036.0⨯φ二. 主要尺寸的确定1. 预取效率63.0='η、 2。
计算功率i P '直流电动机 W P K P NNm i 48.4063.03085.0'=⨯==η,按陈世坤书。
长期运行 N i P P ⨯''+='ηη321 短期运行 N i P P ⨯''+='ηη431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=27.计算电枢内径m n B A P D N s i i i 23311037.110000255.0110008.048.401.61.6-⨯=⨯⨯⨯⨯⨯=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-⨯= 8。
气隙长度m 3107.0-⨯=δ 9. 电枢外径m D 211095.2-⨯= 10。
极对数p=111. 计算电枢铁芯长 m D L i 221108.2104.12--⨯=⨯⨯='='λ根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-⨯12。
极距 m p D i 221102.22104.114.32--⨯=⨯⨯==πτ 13。
输入永磁体轴向长m L L m 2108.2-⨯==三.定子结构1. 齿数 Z=62. 齿距 m z D t i 22110733.06104.114.3--⨯=⨯⨯==π3. 槽形选择梯形口扇形槽,见下图。
电动自行车无刷直流电机控制器设计最终版
![电动自行车无刷直流电机控制器设计最终版](https://img.taocdn.com/s3/m/1d84316b4a7302768e9939dc.png)
2016届毕业生毕业设计说明书题目: 电动自行车无刷直流电机控制器设计院系名称:电气工程学院专业班级:自动F1205 学生姓名:余现飞学号: 2指导教师:王秀霞教师职称:讲师2016 年5月21 日摘要近年来社会经济快速发展的同时我们生活的环境也在遭受严重破坏。
随着民众的环境保护意识和资源节约意识不断提高,开发应用一种清洁、节能的新型交通工具已成为社会迫切的需要。
电动自行车的出现有效的解决了这一难题,极大满足了人们的需要,已经成为人们日常短距离出行常用的交通工具。
本文围绕无刷直流电机控制技术方面的问题,主要了解对转子位置检测、PWM 脉宽调制和电机控制策略等重要方面的问题,设计一个以PIC16F72单片机为控制核心的的无刷直流控制器,能够实现对电机基本的控制功能。
设计采用PIC16F72单片机作为控制系统的控制单元,采用IR2130驱动芯片为晶体管桥式电路提供驱动信号,实现对电机运行状态的有效控制。
该系统通过利用反电动势过零点法获取的转子位置信号输入到控制芯片,然后对输入的信号进行数据处理而后输入到驱动芯片来改变驱动电路中MOSFET管的导通顺序,进而实现对无刷直流电机的转速和正反转的控制。
通过欠压和过电流保护电路的设计实现对控制芯片和驱动芯片的保护,使系统能够可靠稳定的运行。
关键词:无刷直流电机;控制系统;IR2130;PIC16F72Title Design of Brushless DC Motor Controller for Electric BicycleAbstractIn recent years, the rapid development of social economy at the same time our living environment has also suffered serious damage. With the people's awareness of environmental protection and resource conservation, the development and application of a new type of clean and energy saving vehicle has become an urgent need of the society. The emergence of electric bicycles effectively solve this problem, greatly meet the needs of people, has become a common means of transportation for people's daily short distance travel.This paper focuses on the technical aspects of the brushless DC motor control, mainly to understand the important aspects of the rotor position detection, pulse width modulation (PWM) and motor control strategy, design a PIC16F72 MCU as the control core of the brushless DC controller to realization of electric machine the basic control function. PIC16F72 microcontroller is used as the control unit of the control system, and the IR2130 driver chip is used to provide the driving signal for the transistor bridge circuit to realize the effective control of the motor running state. The system by using the back EMF zero method to obtain the rotor position signal input to the control chip, and the input signal of data processing which is then input to the driver chip to change the driving circuit of MOSFET conduction sequence and then realize to turn Hayawa Masa inversion of control of Brushless DC motor. Through the design of under voltage and over current protection circuit, the protection of the control chip and the drive chip can be realized, so that the system can run reliably and stably.Keywords:Bushless DC motor;Control system;IR2130;PIC16F72目次1绪论 01.1无刷直流电机的发展概况和趋势 01.2课题研究的目的和意义 01.3设计的要求与内容 02硬件器件的选择 (2)2.1整体硬件结构图 (2)2.2 电机本机的选择 (3)2.3主控芯片的选择 (3)2.4驱动芯片的选择 (4)2.5转子位置检测方法的选择 (5)3硬件电路设计 (6)3.1电源电路模块 (6)3.2驱动电路模块 (6)3.3电流检测模块 (7)3.4转子位置检测电路模块 (8)3.5欠压检测电路模块 (9)3.6速度控制电路模块 (9)3.7刹车电路模块 (10)3.8单片机最小系统 (11)4 软件设计 (12)4.1主程序 (12)4.2定子绕组换相子程序 (13)结论 (14)致谢 (15)参考文献 (16)附录 (17)1绪论1.1无刷直流电机的发展概况和趋势19世纪40年代有刷直流电动机诞生,在相当长的一个阶段内凭借它优秀的线性机械特性、调速范围宽、较大的启动转矩等特点在诞生以来在电动车驱动装置中占据着主导地位,但普通的直流电动机存在换向时电刷和换向器的强迫性接触造成电机运行不稳定,可靠性差,经常需要定期维护和保养,而且电刷和换向器接触时会产生火花和噪音等缺点大大限制了其应用范围。
BLDC电动机本体设计及控制原理(详细版)
![BLDC电动机本体设计及控制原理(详细版)](https://img.taocdn.com/s3/m/f9f81733854769eae009581b6bd97f192279bf3a.png)
BLDC电动机本体设计及控制原理(详细版)一、引言直流无刷电动机(Brushless DC Motor,BLDC)是近年来研究与应用领域日益扩大的电机类型。
它具有高效率、高转矩、低噪音、长使用寿命等优点,广泛应用于电动汽车、航空航天、家用电器、微型机器人等领域。
本文主要论述BLDC电动机本体设计及控制原理。
二、BLDC电动机结构及工作原理BLDC电动机主要由转子、定子、传感器、电路控制系统等部分组成。
1. 转子转子是BLDC电动机的核心部分,主要由磁铁和轴组成。
磁铁通常采用强磁性永磁体,由于磁阻较小、磁延迟性小,因此稳定性好,容易控制。
轴材料通常为钢铁材料,既满足强度要求,又具备较高的刚度。
转子采用永磁体的励磁方式,可以降低电机的故障率。
2. 定子定子是BLDC电动机的外部部分,主要由铁芯和绕组组成。
定子铁芯通常由硅钢片穿插叠压而成,目的是避免铁芯中涡流的损耗。
绕组则由若干个线圈组成,其数量与定子极数有关。
3. 传感器传感器主要包括霍尔元件和编码器。
霍尔元件主要用于检测转子磁极位置,编码器用于检测转子具体位置。
这些传感器输出的信号可以通过控制器计算得到电机的精确位置和转速。
4. 电路控制系统电路控制系统主要由驱动电路和控制器组成。
由于BLDC电机是三相交流电机,因此需要采用三相桥式电路进行驱动。
这种电路可以通过PWM技术实现精确的电机控制。
BLDC电动机的工作原理是依靠磁场作用产生电动力矩,具体而言,是依靠定子电流的旋转磁场作用与永磁体产生相互作用力而产生电动力矩的。
BLDC电机通过不断改变定子电流方向和大小来控制电机的转速和方向。
三、BLDC电动机控制原理1. 电机转速控制为了实现BLDC电动机的精确控制,需要对电机的转速进行控制。
一般采用PID控制算法对电机进行控制。
PID算法通过将实际转速与设定值进行比较,计算出误差,然后根据误差大小来调整控制电压的大小和方向。
这种方法可以有效地降低电机的振动和噪声,提高电机的精度和稳定性。
无刷电机设计西安微电机
![无刷电机设计西安微电机](https://img.taocdn.com/s3/m/f4c90b3d8f9951e79b89680203d8ce2f01666554.png)
无刷电机设计西安微电机一、无刷电机简介无刷电机,顾名思义,是一种没有刷子的电机。
它采用电子换向器来实现电机的运转,与有刷电机相比,具有更高的运行效率、更低的噪音和更长的使用寿命。
无刷电机在众多领域得到了广泛的应用,如家电、工业自动化、电动汽车等。
二、无刷电机设计原理无刷电机的设计原理主要包括以下几个方面:1.电机本体设计:包括定子、转子、轴承等主要部件的设计,其中定子磁场和转子磁场的设计是关键。
2.电子换向器设计:电子换向器是无刷电机的核心部件,其性能直接影响到电机的性能。
常见的电子换向器有开关磁阻电机、永磁同步电机、BLDC电机等。
3.控制电路设计:控制电路负责对电机的转速、转向等进行控制,常见的控制方法有电压调速、电流调速、频率调速等。
三、无刷电机设计步骤1.确定设计目标:包括电机的功率、转速、效率、噪音等性能指标。
2.选择电机类型:根据设计目标和技术要求,选择合适的无刷电机类型。
3.设计电机本体:根据选定的电机类型,设计定子、转子等主要部件。
4.设计电子换向器:根据电机类型和性能要求,设计电子换向器。
5.设计控制电路:根据电机控制方式和要求,设计控制电路。
6.电机性能测试与优化:对设计好的电机进行性能测试,并根据测试结果进行优化。
四、无刷电机在西安微电机的应用西安微电机作为我国微电机行业的领军企业,一直致力于无刷电机的研发和生产。
其产品广泛应用于电动汽车、工业自动化、家电等领域,受到了广泛关注和好评。
五、总结与展望无刷电机凭借其优越的性能和广泛的应用前景,已成为电机行业的研究热点。
随着技术的不断发展和创新,无刷电机的性能将进一步提升,应用领域也将不断拓展。
(完整版)无刷电机的设计最终版
![(完整版)无刷电机的设计最终版](https://img.taocdn.com/s3/m/843ca042195f312b3169a5b0.png)
9-10 直流无刷电机的设计9-10-1直流无刷电机的概述直流电机有无可伦比的优点,体积小,重量轻,结构简单,速度变化范围大,供源简单,移动方便,价格低廉,制造简单,工艺性好等等,是我国用量最大的一种电机。
但是直流电机由于换向的需要,因此必需要由电刷和换向器来换向。
由于换向器和电刷的作用,就给电机带来各种不良的影响,如噪声,电刷运行寿命,电机干扰和电机本身体积等问题。
直流电机最大的缺点是电机寿命远远不如交流电机,交流同步电机等等无刷电机。
交流电机,交流同步电机是交流供电的,由于用的是交流电源,在50HZ 的交流电源中,一对极的交流异步电机的同步理论转速是:m in /30001506060r p f n =⨯=⨯=,在交流同步电机中的同步转速也应该为m in /3000r ,如果把电源的频率调高或调低,则电机的工作转速也可以很高或者较低的。
但这个电机的供源是交流电,如果把直流电源通过电路的转换,变成可以交变的波形供给交流电机或交流同步电机,那么交流异步电机或交流同步电机也可以很好的转动起来的,这就是直流无刷电机的最直观的概念。
要把直流电转换成单相或三相交变电源,在上世纪中叶还是一个非常麻烦的事,那时只有电子真空管,体积很大,输出电流很小,那时台式收音机就有12英寸的电视机那么大,无法和现在手指那么大的MP3相比拟。
后来发明了半导体和相应的各种半导体技术使电子控制技术推向了一个新纪元。
各种电源逆变,分配技术,换相技术的相继出现,许多高性能,高功率的半导体器件的研制成功,从而使电机领域出现了机电一体化的步进电机,直流无刷电机,并迅速在各个领域得到了广泛的应用。
当出现了永磁直流无刷电机后,就体现了它强大的生命力,永磁直流无刷电机有许多优点,如干扰小,(电路部分有一定的电磁干扰的),运行寿命长,调速性能好,控制方法多,输出力矩大,过载能力强,调速范围宽,起动响应快,运行平稳,效率高等。
永磁无刷直流电机有许多交流异步电机,步进电机和直流电机不具备的优点。
无刷电机的设计最终版
![无刷电机的设计最终版](https://img.taocdn.com/s3/m/9a65e56302768e9951e7387d.png)
9-10 直流无刷电机的设计9-10-1直流无刷电机的概述直流电机有无可伦比的优点,体积小,重量轻,结构简单,速度变化范围大,供源简单,移动方便,价格低廉,制造简单,工艺性好等等,是我国用量最大的一种电机。
但是直流电机由于换向的需要,因此必需要由电刷和换向器来换向。
由于换向器和电刷的作用,就给电机带来各种不良的影响,如噪声,电刷运行寿命,电机干扰和电机本身体积等问题。
直流电机最大的缺点是电机寿命远远不如交流电机,交流同步电机等等无刷电机。
交流电机,交流同步电机是交流供电的,由于用的是交流电源,在50HZ 的交流电源中,一对极的交流异步电机的同步理论转速是:m in /30001506060r p f n =⨯=⨯=,在交流同步电机中的同步转速也应该为m in /3000r ,如果把电源的频率调高或调低,则电机的工作转速也可以很高或者较低的。
但这个电机的供源是交流电,如果把直流电源通过电路的转换,变成可以交变的波形供给交流电机或交流同步电机,那么交流异步电机或交流同步电机也可以很好的转动起来的,这就是直流无刷电机的最直观的概念。
要把直流电转换成单相或三相交变电源,在上世纪中叶还是一个非常麻烦的事,那时只有电子真空管,体积很大,输出电流很小,那时台式收音机就有12英寸的电视机那么大,无法和现在手指那么大的MP3相比拟。
后来发明了半导体和相应的各种半导体技术使电子控制技术推向了一个新纪元。
各种电源逆变,分配技术,换相技术的相继出现,许多高性能,高功率的半导体器件的研制成功,从而使电机领域出现了机电一体化的步进电机,直流无刷电机,并迅速在各个领域得到了广泛的应用。
当出现了永磁直流无刷电机后,就体现了它强大的生命力,永磁直流无刷电机有许多优点,如干扰小,(电路部分有一定的电磁干扰的),运行寿命长,调速性能好,控制方法多,输出力矩大,过载能力强,调速范围宽,起动响应快,运行平稳,效率高等。
永磁无刷直流电机有许多交流异步电机,步进电机和直流电机不具备的优点。
无刷电机设计西安微电机
![无刷电机设计西安微电机](https://img.taocdn.com/s3/m/d8147f23a200a6c30c22590102020740be1ecded.png)
无刷电机设计西安微电机【原创版】目录1.无刷电机的设计概述2.无刷电机的工作原理3.无刷电机的设计流程4.无刷电机的设计要点5.西安微电机无刷电机设计案例6.无刷电机的发展前景正文一、无刷电机的设计概述无刷电机是一种在工业生产和日常生活中广泛应用的电机,与有刷电机相比,它具有更低的噪音、更长的使用寿命和更高的效率。
因此,无刷电机的设计已经成为电机领域的一个重要研究方向。
本文将从无刷电机的设计概述、工作原理、设计流程、设计要点以及西安微电机无刷电机设计案例等方面进行详细介绍。
二、无刷电机的工作原理无刷电机的主要构成部分包括转子、定子和控制器。
其中,转子是电机的旋转部分,定子是电机的固定部分,控制器则是控制电机运转的核心部分。
无刷电机的工作原理是利用霍尔传感器检测转子的位置,通过控制器调整电机的电流和电压,使电机在预定的速度和方向上运转。
三、无刷电机的设计流程无刷电机的设计流程主要包括以下几个步骤:1.确定设计目标:根据实际应用需求,明确电机的功率、转速、扭矩等参数。
2.选择电机类型:根据设计目标和应用场景,选择适合的无刷电机类型,如直流无刷电机、交流无刷电机等。
3.设计电机结构:设计电机的定子和转子结构,以满足电机的性能要求。
4.确定控制器方案:根据电机的性能要求,选择合适的控制器硬件和软件方案。
5.进行仿真和测试:对设计的无刷电机进行仿真和测试,以验证其性能是否满足设计要求。
四、无刷电机的设计要点在设计无刷电机时,需要重点关注以下几个方面:1.转子设计:转子是电机的旋转部分,其设计和制造对电机的性能和寿命有很大影响。
2.磁场设计:无刷电机的磁场设计是影响电机性能的关键因素,需要根据电机的实际应用需求进行优化。
3.控制器设计:控制器是无刷电机的核心部分,其性能直接影响电机的运转效果。
4.系统优化:在设计无刷电机时,需要对整个系统进行优化,以提高电机的性能和效率。
五、西安微电机无刷电机设计案例西安微电机是一家专业从事无刷电机设计、生产和销售的企业。
无刷电机的课程设计
![无刷电机的课程设计](https://img.taocdn.com/s3/m/1cb09ad8eff9aef8951e0660.png)
3.1无刷直流电动机的组成结构和工作原理3.1.1无刷直流电动机的结构无刷直流电机的定子是由定子冲片(钢片叠加而成)和放置在各个槽中的绕组组成[18](如图3-1所示)。
一般无刷直流电机的定子结构和同功率的异步电机是相同的,不同只是它绕组的分布方式。
大部分无刷直流电机的三相绕组是绕成星型的。
每相绕组都是由若干个线圈组成的,每极下的绕组数目都是均等的。
根据其定子绕组的反电动势波形,有梯形波和正弦波两种。
反电动势波形为梯形波的是无刷直流电机,反电动势波形为正弦波的电机就是我们通常讲的永磁同步电机,在第六章我们会重点介绍。
图3-1 无刷直流电机的定子无刷直流电机的转子是由永磁体组成的,磁钢的磁极N和S是交替放置的。
根据所需要的磁场密度选择合适的永磁体。
铁氧体是很常用的永磁体,随着的科技的不断进步,稀土永磁体应用越来越广泛。
铁氧体永磁材料和稀土永磁体相比,它的价格比较低廉,但是磁通密度低,而稀土永磁体价格高,但是它得最大磁能积大,剩磁高,矫顽力搞。
在同样尺寸下,稀土永磁体比铁氧体得到更高的转矩。
衫钴永磁体和钕铁硼永磁体是稀土永磁体中的代表。
图3-2是几种不同的转子磁极结构。
a、表面式转子结构b、内置式转子结构 c、实心转子结构图3-2 无刷直流电机的几种转子结构与有刷直流电机不同,无刷直流电机的换向是电子控制的。
无刷直流电机在运行时,必须按一定顺序给定子绕组通电,我们如果知道转子的位置就可以在定子绕组上加相应的信号。
目前无刷直流电机的转子位置是通过安装在定子的霍尔传感器检测的,图3-3是一个无刷直流电机的结构示意图,霍尔传感器固定在电机定子上。
大部分无刷直流电机中嵌有3个霍尔传感器。
当转子永磁体磁极经过霍尔传感器时,传感器就会给出一个高电平或者低电平,表明N极或S极经过,根据霍尔传感器得到的信号我们可以的确定电机的位置。
图3-3 无刷直流电机的结构图3.1.2无刷直流电机的霍尔传感器位置检测从前面的分析,无刷直流电机正常工作的关键是在定子上安装有霍尔传感器,它的信号检测直接影响电机的正常工作。
(完整版)三相无刷直流电机系统结构及工作原理
![(完整版)三相无刷直流电机系统结构及工作原理](https://img.taocdn.com/s3/m/e600f9dca0c7aa00b52acfc789eb172ded6399c2.png)
(完整版)三相⽆刷直流电机系统结构及⼯作原理三相⽆刷直流电机系统结构及⼯作原理2.1电机的分类电机按⼯作电源种类可分为:1.直流电机:(1)有刷直流电机:①永磁直流电机:·稀⼟永磁直流电动机;·铁氧体永磁直流电动机;·铝镍钴永磁直流电动机;②电磁直流电机:·串励直流电动机;·并励直流电动机;·他励直流电动机;·复励直流电动机;(2)⽆刷直流电机:稀⼟永磁⽆刷直流电机;2.交流电机:(1)单相电动机;(2)三相电动机。
2.2⽆刷直流电机特点·电压种类多:直流供电交流⾼低电压均不受限制。
·容量范围⼤:标准品可达400Kw更⼤容量可以订制。
·低频转矩⼤:低速可以达到理论转矩输出启动转矩可以达到两倍或更⾼。
·⾼精度运转:不超过1 rpm.(不受电压变动或负载变动影响)。
·⾼效率:所有调速装置中效率最⾼⽐传统直流电机⾼出5~30%。
·调速范围:简易型/通⽤型(1:10)⾼精度型(1:100)伺服型。
·过载容量⾼:负载转矩变动在200%以内输出转速不变。
·体积弹性⼤:实际⽐异步电机尺⼨⼩可以做成各种形状。
·可设计成外转⼦电机(定⼦旋转)。
·转速弹性⼤:可以⼏⼗转到⼗万转。
·制动特性良好可以选⽤四象限运转。
·可设计成全密闭型IP-54IP-65防爆型等均可。
·允许⾼频度快速启动电机不发烫。
·通⽤型产品安装尺⼨与⼀般异步电机相同易于技术改造。
2.3⽆刷直流电机的组成直流⽆刷电动机的结构如图2.1所⽰。
它主要由电动机本体、位置传感器和电⼦开关线路三部分组成。
电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。
其定⼦绕组⼀般制成多相(三相、四相、⽆相不等),转⼦由永久磁钢按⼀定极对数(2p=2,4,…)组成。
无刷直流电动机的设计
![无刷直流电动机的设计](https://img.taocdn.com/s3/m/aadba309ce84b9d528ea81c758f5f61fb6362854.png)
无刷直流电动机的设计无刷直流电动机(BLDC)是一种基于电子换向器和磁传感器的新型电机,具有高效率、高功率密度、高可靠性、无摩擦等优点,广泛应用于工业、农业、家电和汽车等领域。
本文将介绍无刷直流电动机的设计原理、设计流程和一些关键技术。
一、设计原理无刷直流电动机的工作原理是利用永磁体和电流产生的磁场相互作用,从而产生转矩。
它的转子由一个或多个永磁体组成,通过电流换向器控制电流的方向,从而实现转子的旋转。
无刷直流电动机通常采用三相设计,每相之间的换向角为120度。
二、设计流程1.确定电机的额定功率和转速。
根据设计要求,确定电机的额定功率和转速。
这些参数将决定电机的尺寸、材料和冷却方式等。
2.选择永磁材料和磁路设计。
根据电机的运行环境和功率需求,选择合适的永磁材料。
同时,设计磁路以确保磁通密度的均匀分布和最小的磁路损耗。
3.设计定子绕组和绝缘系统。
根据电机的功率和电压要求,设计定子绕组。
同时,设计合适的绝缘系统以确保电机的安全性和可靠性。
4.确定电流换向器的拓扑和控制策略。
选择合适的电流换向器拓扑(如半桥、全桥等)以及控制策略(如PWM控制、电流环控制等),以实现电机的换向操作。
5.进行磁场分析和电磁设计。
通过磁场分析软件,进行电磁设计。
通过磁场分析,可以得到电机的特性曲线、转矩和功率密度等指标。
6.进行结构设计和热分析。
根据电机的尺寸和电机的工作环境,进行结构设计和热分析。
结构设计要考虑机械强度、制造成本等因素,热分析要考虑散热方式和绝缘系统。
7.制造和测试。
根据设计图纸进行电机的制造。
制造完成后,进行测试,通过测试结果对电机的设计进行修正和优化。
三、关键技术1.电磁设计技术。
电磁设计是无刷直流电动机设计的核心技术,它涉及到永磁体选材、磁路参数计算、磁场分析等方面。
2.电流换向器设计技术。
电流换向器是控制无刷直流电动机运行的关键部件,它的设计直接影响到电机的性能。
目前常用的换向器有半桥、全桥等拓扑,选择合适的拓扑和控制策略对电机的效率和稳定性有重要影响。
无刷直流电动机设计
![无刷直流电动机设计](https://img.taocdn.com/s3/m/8f498203f12d2af90242e6c0.png)
无刷直流电动机硬件设计3.1 逆变主电路设计3.1.1 功率开关主电路图3-1 功率开关主电路原理图逆变器将直流电转换成交流电向电机供电。
与一般逆变器不同,它的输出频率不是独立调节的,而是受控于转子位置信号,是一个“自控式逆变器”。
由于采用自控式逆变器,无刷直流电动机输入电流的频率和电机转速始终保持同步,电机和逆变器不会产生振荡和失步,这也是无刷直流电动机的重要优点之一。
3.1.2 逆变开关元件选择和计算MOSFET在1960年由贝尔实验室(Bell Lab.)的D. Kahng和 Martin Atalla 首次实验成功,这种元件的操作原理和1947年萧克莱(William Shockley)等人发明的双载子晶体管(Bipolar Junction Transistor, BJT)截然不同,且因为制造成本低廉与使用面积较小、高整合度的优势,在大型积体电路(Large-Scale Integrated Circuits, LSI)或是超大型积体电路(Very Large-Scale Integrated Circuits, VLSI)的领域里,重要性远超过BJT。
近年来由于MOSFET元件的性能逐渐提升,除了传统上应用于诸如微处理器、微控制器等数位讯号处理的场合上,也有越来越多类比讯号处理的积体电路可以用MOSFET来实现。
表3-1对IGBT、GTR、GTO 和电力MOSFET的优缺点的比较器件优点缺点IGBT 开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电压驱动,驱动功率小开关速度低于电力MOSFET,电压,电流容量不及GTOGTR 耐压高,电流大,开关特性好,通流能力强,饱和压降低 开关速度低,为电流驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题GTO电压、电流容量大,适用于大功率场合,具有电导调制效应,其通流能力很强 电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低电 力 MOSFET 开关速度快,输入阻抗高,热稳定性好,所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题电流容量小,耐压低,一般只适用于功率不超过10kW 的电力电子装置通过上述的比较,我选择MOSFET 。
(完整版)无刷直流电机数学模型完整版
![(完整版)无刷直流电机数学模型完整版](https://img.taocdn.com/s3/m/0cce6758f8c75fbfc67db28d.png)
电机数学模型以二相导通星形三相六状态为例,分析 BLDC 的数学模型及电磁转矩等特性。
为了便于分析,假定:a) 三相绕组完全对称,气隙磁场为方波,定子电流、转子磁场分布皆对称; b) 忽略齿槽、换相过程和电枢反应等的影响; c) 电枢绕组在定子内表面均匀连续分布;d) 磁路不饱和,不计涡流和磁滞损耗。
则三相绕组的电压平衡方程可表示为:式中:-,「:■「:为定子相绕组电压(V); L L I 为定子相绕组电流(A); -三:为定子相绕组电动势(V); L 为每相绕组的自感(H) ; M 为每相绕组间的 互感(H); p 为微分算子p=d/dt 。
三相绕组为星形连接,且没有中线,则有得到最终电压方程:图•无刷直流电机的等效电路无刷直流电机的电磁转矩方程与普通直流电动机相似, 其电磁转矩大小与磁 通和电流幅值成正比(1)L-M 0 0'r 0d r 0 .5 0 r.L - MT 电=十细⑸所以控制逆变器输出方波电流的幅值即可以控制 BLDC 电机的转矩。
为产 生恒定的电磁转矩,要求定子电流为方波,反电动势为梯形波,且在每半个周期 内,方波电流的持续时间为120°电角度,梯形波反电动势的平顶部分也为120° 电角度,两者应严格同步。
由于在任何时刻,定子只有两相导通,贝U :电磁功率可表示为:二.二 (6)电磁转矩又可表示为:-:二……(7)无刷直流电机的运动方程为:T e -T L -Bto = J^= JPo>其中〔为电磁转矩;幷为负载转矩;B 为阻尼系数;•••为电机机械转速;J 为电机的转动惯量。
传递函数:无刷直流电机的运行特性和传统直流电机基本相同, 其动态结构图可以采用直流 电机通用的动态结构图,如图所示:由无刷直流电机动态结构图可求得其传递函数为= K1 UW ——T L1 + T 狙丫 V '1+T^ L(8)图2.无刷直流电机动态结构图式中:K i为电动势传递系数,•• - — , Ce为电动势系数;K2为转矩传递函数,:- ,R为电动机内阻,Ct为转矩系数;T m为电机时间常数,」7—, G为转子重量,D为转子直径。
BLDC无刷直流电动机-设计
![BLDC无刷直流电动机-设计](https://img.taocdn.com/s3/m/1616534ff18583d04964597a.png)
BLDC无刷直流电动机-设计————————————————————————————————作者:————————————————————————————————日期:摘要序言由于BLDC无刷直流电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。
一个多世纪以来,电动机作为机电能量转换装置,其应用范围已遍及国民经济的各个领域以及人们的日常生活中。
其主要类型有同步电动机、异步电动机和直流电动机三种。
由于传统的直流电动机均采用电刷以机械方法进行换向,因而存在相对的机械摩擦,由此带来了噪声、火化、无线电干扰以及寿命短等弱点,再加上制造成本高及维修困难等缺点,从而大大限制了它的应用范围,致使目前工农业生产上大多数均采用三相异步电动机。
针对上述传统直流电动机的弊病,早在上世纪30年代就有人开始研制以电子换向代替电刷机械换向的BLDC无刷直流电动机。
经过了几十年的努力,直至上世纪60年代初终于实现了这一愿望。
上世纪70年代以来,随着电力电子工业的飞速发展,许多高性能半导体功率器件,如GTR、MOSFET、IGBT、IPM等相继出现,以及高性能永磁材料的问世,均为BLDC无刷直流电动机的广泛应用奠定了坚实的基础。
关键字:BLDC,各个领域,发展,高性能ABSTRACTPrefaceDue to a series of advantages of the structure of BLDC brushless DC motor not only has the simple AC motor, reliable operation, convenient maintenance and so on, but also have many advantages of DC motor and high operation efficiency, no excitation loss and good speed performance, the application in various fields of today's national economy growing popularity.More than a century, the motor as an electromechanical energy conversion devices, its application scope has been in every field of the national economy and people's daily life. A synchronous motor, induction motor and DC motor for the three main types of. Because the conventional DC motor adopts brush reversing in a mechanical way, so there are relative mechanical frictions, which brings the cremation, radio interference and noise, short life and other weaknesses,shortcomings coupled with high manufacturing cost and difficult maintenance etc, which greatly limits its scope of application, resulting in the current agricultural and industrial production most adopt the three-phase asynchronous motor.In view of the disadvantages of traditional DC motor, in the early 30's of the last century began to develop in the electronic commutation instead of brush commutation of Brushless DC motor BLDC. After decades of effort, until in the early 60 century finally realized this desire. The last century since the 70's, with the rapid development of power electronics industry, many high performance semiconductor power devices, such as GTR, MOSFET, IGBT, IPM appeared in succession, and the advent of high performance permanent magnetic materials, and laid a solid foundation for wide application of BLDC in Brushless DC motor.Keywords: BLDC, each field, the development of high performance目录摘要 (I)目录 .................................................................................................................................. I I 第1章引言.. (1)1.1设计目的和要求 (1)1.1.1设计的目的 (1)1.1.2设计的要求 (1)1.2设计的主要内容 (1)1.3设计原则 (1)第2章小区环境与住宅情况 (3)2.1 小区的位置与气候 (3)2.2 住宅小区基本情况 (3)第3章住宅小区负荷计算 (4)3.1供配电系统概述 (4)3.2负荷分级及供电要求 (4)3.2.1 负荷分级的相关规范 (4)3.2.2本工程的负荷情况 (5)3.3 电源及高压供配电系统 (6)3.3.1电源的选择 (6)3.3.2根据用户的需求判断 (7)3.3负荷计算 (8)3.3.1住宅小区住户照明用电计算方法 (8)3.3.2其他负荷计算方法 (10)3.3.3详细负荷计算方法 (11)3.3.4其他用电负荷计算 (13)第4章电源配电房设备及发电油机的比较与选择 (15)4.1配电房设备 (15)4.1.1断路器与熔断器 (17)4.1.2直流供电系统 (17)4.2电油机 (18)4.2.1油机发电机组 (18)4.2.2柴油发动机和汽油发动机的比较 (18)4.2.3电动机的启动 (19)4.2.4对双电源切换的要求 (21)4.2.5发电机循环运行时间 (22)第5章电气安全、防雷和接地保护 (24)5.1安全常识 (24)5.2防雷系统的概述、等级和措施 (24)5.2.1防雷系统的概述 (24)5.2.2建筑物的防雷等级 (24)5.2.3高层建筑物的防雷措施 (26)5.3接地系统概述 (29)参考文献 (32)致谢 (33)附录 (34)附表一噪声的标准 (34)附表二变压器进线柜图 (35)附表三配电柜出线图 (36)附表四发电机接线图 (37)附表五配电室接地图 (38)第1章引言1.1设计目的和要求1.1.1设计的目的随着人们对生活环境和品质的不断提高,高科技的发展,电与人们的生活越来越密切相关了。
无刷直流电机设计
![无刷直流电机设计](https://img.taocdn.com/s3/m/ef21a8e6172ded630b1cb6f6.png)
无感无刷直流电机之电调设计全攻略前 言 (1)1. 无刷直流电机基础知识 (2)1.1 三个基本定则 (2)1. 左手定则 (2)2. 右手定则(安培定则一) (3)3. 右手螺旋定则(安培定则二) (3)1.2 内转子无刷直流电机的工作原理 (3)1. 磁回路分析法 (4)2. 三相二极内转子电机结构 (5)3. 三相多绕组多极内转子电机的结构 (7)1.3外转子无刷直流电机的工作原理 (8)1. 一般外转子无刷直流电机的结构 (8)2. 新西达2212外转子电机的结构 (8)1.4 无刷直流电机转矩的理论分析 (14)1. 传统的无刷电机绕组结构 (14)2. 转子磁场的分布情况 (15)3. 转子的受力分析 (16)4. 一种近似分析模型 (18)1.5 换相与调速 (19)1. 换相基本原理 (19)2. 新西达2212电机的换相分析 (24)3. 调速 (28)2. 无感无刷电调的驱动电路设计 (30)2.1 电池电压监测电路 (30)2.2 换相控制电路 (30)1. 六臂全桥驱动电路原理 (31)2. 功率场效应管的选择 (33)2.3 电流检测电路 (45)2.4 反电势过零检测电路 (49)2.5 制作你自己的电调线路板 (50)3. 无感无刷电调的软件设计 (52)3.1 电流检测 (52)3.2 定时器延时与PWM信号 (53)1. 定时器初始化 (54)2. 定时器T0的溢出中断服务程序 (54)3. 利用T0延时(毫秒极) (54)4. 利用T0延时(微秒极) (55)5. PWM信号的产生 (55)3.3 过零事件检测与电机换相 (56)1. BLMC.h中定义的宏 (56)2. 过零检测与换相代码分析 (59)3.4 启动算法 (63)1. 函数Anwerfen启动流程分析 (63)2. 启动算法机理探究 (65)3.5 上电时的MOSFET自检 (68)1. 函数Delay和DelayM (68)2. 函数MotorTon自检流程分析 (68)3.6 让你的电机演奏音乐 (70)3.7 通信模块 (72)1. PPM解码 (72)2. TWI总线通信 (74)3. 串口通信 (74)4. 指令的收入函数SollwertErmittlung (75)4. 德国MicroKopter项目BL-Ctrl电调程序主程序代码流程分析(V0.41版本) (77)5.1 全局变量列表 (78)5.2 main主函数流程分析 (80)1. 进入while(1)前的准备工作 (80)2. while(1)主循环内容分析 (81)5. 高级话题 (86)5.1 电机的控制模型 (86)5.2 四轴上的校正策略 (87)附录一 (88)附录二 (89)附录三 (93)附录四 (94)前 言关注开源四轴项目也有近一年了,前期都以潜水为主,业余时间主要是在啃那些控制和导航的理论书籍。
无刷直流电动机设计
![无刷直流电动机设计](https://img.taocdn.com/s3/m/a6231d4d69eae009581bec3f.png)
前言人类在进入工业化社会之后,大量使用地球上石油、煤等化石能源,空气中的二氧化碳和二氧化硫急剧增加,造成了酸雨蔓延和温室效应,特别在二十世纪后期,酸雨大面积扩展,几乎蔓延至所有国家,“厄尔尼诺现象”、“主尼拉现象”频繁出现。
酸雨造成农作物减产,大片森林死亡;温室效应给工农业生产和人民生活造成的损失,无法估量。
目前,发展中国家的空气还在进一步恶化,我国作为世界上最大的发展中国家。
环境问题已经引起党和国家以及人民群众重视。
随着我国改革开放的深入,人民的生活水平日益提高,在家用轿车还没有普及的情况下,摩托车和燃油助动车得以广泛使用,这给我国城市的环境问题带来很大压力,例如在上海市,1995年中心城区内机动车的一氧化碳、非甲烷有机物和氧化氮排污负荷分别占该区域内相应的排放总量的76%、93%和44%;一些城市如上海、广州、合肥、济南等,己相继出台政策法规,停止有限量核发摩托车和燃油助动车的牌照。
因此,研制生产出一种无污染、低噪声的交通工具来替代摩托车和燃油助动车,已是时代的需要。
电动自行车正是在这样的呼唤下,逐步走进人们的生活中。
电动自行车与摩托车、燃油助动车相比较,它具有突出的优点:为了解决燃油车对环境造成的严重污染和缓解日益突出的能源危机,许多国家都在寻找替代燃油机车的交通工具。
相继开发了以天然气、甲醇为燃料的交通工具,相比之下,电动车以零污染、高效率、低噪音的特点被认为是真正的“绿色”交通工具,而电动汽车受到机电、电池的限制,批量进入市场还有一定的难度,电动自行车却得到迅速的发展。
中国是一个自行车王国,据报道全国自行车拥有量为4.5亿。
随着我国城市化进程加快,用电动自行车替代摩托车、燃油助动车和自行车,一方面可以缓解城市中大气污染问题,另一方面也可以提高人们的生活节奏,因此电动自行车的社会需求市场巨大,据专家预测,本世纪初,我国电动自行车年需求量将达到100万辆以上。
目前,我国市场上国产电动自行车的品种规格较多,驱动多数用有刷或无刷的轮式直流电机,工作电压为24V、36V或48V,功率在150W--400W之间;蓄电池一般用的是免维护铅酸蓄电池,容量为12Ah,充电时间在3--8小时左右,充电一次行驶里程约50Km 左右;车速低于20Km/h,爬坡能力在4度上下;车型有普通型和豪华型,车重约35Kg,载重量约75Kg,一百公里耗电量在1kwh.由于电动自行车的诸多优点,市场需求量大,因此电动自行车在未来的发展潜力比1无刷直流电动机的设计较大;但是目前市场上的电动自行车还或多或少存在一`些不够完善的地方。
BLDC电动机本体设计及控制原理(详细版)
![BLDC电动机本体设计及控制原理(详细版)](https://img.taocdn.com/s3/m/b77c3ecafad6195f302ba665.png)
2021/3/7
CHENLI
25
无刷直流电动机发展历史
三大技术有力推动了永磁无刷 直流电动机的快速发展
█ 功率半导体器件
█ 计算机控制技术
█ 高性能稀土永磁材料
2021/3/7
CHENLI
26
无刷直流电动机发展历史
█ 70 年代以来,随着新型功率半导体器件(如 GTR,MOSFET,IGBT,IPM)相继出现,计算机 控制技术(单片机、DSP,新的控制理论)的快速 发展,以及高性能稀土永磁材料(如 钐钴、钕铁硼) 的问世,无刷直流电动机得到快速发展,容量不断 增大,并获得了越来越广泛的应用。
制
器
控制电路
AS
霍尔位置 传感器
B
C
2021/3/7 三相永磁无刷直流CH电EN动LI 机系统图
62
无刷直流电动机系统组成
过压
保护电路
过流保护
电流采样
离合器故障
车速 转速 扭矩
PDPINT
TMS320LF2407
6路 PWM
MOS驱 动器
IR2130
SCI CAP
6路 MOSFET 输出电流
BLDCM
CHENLI
46
无刷与有刷直流电动机比较
█ 通常 BLDCM 带有转子位置检 测传感器,而 DCM 则不需这种位 置检测装置。
2021/3/7
CHENLI
47
无刷直流电动机概述
4. 无刷直流电动机 的特点
2021/3/7
CHENLI
48
无刷直流电动机主要特点
█ 永磁无刷结构
电机免维护,可高速运行,因此 可降低电机体积和重量,具有高功率 和转矩密度和高效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9-10 直流无刷电机的设计9-10-1直流无刷电机的概述直流电机有无可伦比的优点,体积小,重量轻,结构简单,速度变化范围大,供源简单,移动方便,价格低廉,制造简单,工艺性好等等,是我国用量最大的一种电机。
但是直流电机由于换向的需要,因此必需要由电刷和换向器来换向。
由于换向器和电刷的作用,就给电机带来各种不良的影响,如噪声,电刷运行寿命,电机干扰和电机本身体积等问题。
直流电机最大的缺点是电机寿命远远不如交流电机,交流同步电机等等无刷电机。
交流电机,交流同步电机是交流供电的,由于用的是交流电源,在50HZ 的交流电源中,一对极的交流异步电机的同步理论转速是:m in /30001506060r p f n =⨯=⨯=,在交流同步电机中的同步转速也应该为m in /3000r ,如果把电源的频率调高或调低,则电机的工作转速也可以很高或者较低的。
但这个电机的供源是交流电,如果把直流电源通过电路的转换,变成可以交变的波形供给交流电机或交流同步电机,那么交流异步电机或交流同步电机也可以很好的转动起来的,这就是直流无刷电机的最直观的概念。
要把直流电转换成单相或三相交变电源,在上世纪中叶还是一个非常麻烦的事,那时只有电子真空管,体积很大,输出电流很小,那时台式收音机就有12英寸的电视机那么大,无法和现在手指那么大的MP3相比拟。
后来发明了半导体和相应的各种半导体技术使电子控制技术推向了一个新纪元。
各种电源逆变,分配技术,换相技术的相继出现,许多高性能,高功率的半导体器件的研制成功,从而使电机领域出现了机电一体化的步进电机,直流无刷电机,并迅速在各个领域得到了广泛的应用。
当出现了永磁直流无刷电机后,就体现了它强大的生命力,永磁直流无刷电机有许多优点,如干扰小,(电路部分有一定的电磁干扰的),运行寿命长,调速性能好,控制方法多,输出力矩大,过载能力强,调速范围宽,起动响应快,运行平稳,效率高等。
永磁无刷直流电机有许多交流异步电机,步进电机和直流电机不具备的优点。
它广泛应用于办公机械,电脑,音响,通风行业,自动控制,仪器仪表,汽车,国防工业等等领域,特别一提的是,在电脑中,光驱动器,硬盘,DVD 等大量用了非常精密的形式不一的永磁无刷直流电机,目前社会上人们所骑的电动自行车上的电机绝大都数是采用了永磁直流无刷电机,这个量非常可观,这些也是用得最广泛,生产量最多的直流无刷电机。
永磁直流无刷电机已经在时刻影响着人们的生活,在左右人类的生活的历史。
随着控制器的小型化,模块化,以前做得较大的控制器现在可以做得更小,有的可以和电机做在一起,使永磁无刷电机使用起来那么方便,那么的得心应手。
许多永磁直流电机日益被永磁无刷直流电机所替代。
在电机界,研究,开发永磁直流无刷电机是一种新的趋势。
这方面的论著也比以往多起来了。
9-10-2永磁直流无刷电机工作原理从电磁原理看,电机中如果一个永磁多极磁钢的转子(一对极也可以),外面的定子是由相对应极数的线圈组成,定子线圈如果能够产生一个单向的旋转磁场(不是脉振磁场)的话,转子因为该磁场的磁极作用而跟转,这样电机就可以转动起来,如果转子上加了个负载,为了使转子能够同步转动,电源必须需供给电机定子更大的电流,从而产生相应的磁场,电机就能作功。
这就是直流无刷电机的电磁原理。
由直流电源产生定子上一个旋转磁场,要有二个条件:定子必需有相应能通过电源分配器能够产生均匀旋转磁场的线圈把直流电转换成按一定的规律分配给定子相应线圈电能的电源分配装置因此无刷永磁直流电机必定的由电机和驱动这二部分组成。
永磁无刷直流电机的电机有各种各样的结构和形状,有长圆柱形,转子是永磁的,定子是由象交流电机定子形式一样的,有隐极的也有突极的,这种形式是内转子式的,也有外转子式的,定子是在里面,转子是在外面,转子上粘着磁钢,最典型的就是我们电脑中CPU 的冷却风叶电机,更典型的是电动自行车电机,俗称轮毂电机。
在电机中,交流三相电机运行是非常好的,三相的电角度相差120°,而交流单相电机经电容移相后组成的二相电机,其夹角不能很好地成90°。
在永磁无刷直流电机中,如果能使电机定子产生三相旋转磁场,让转子平稳地转动,这是非常好的,因此许多场合的永磁无刷直流电机中的定子就用三相绕组的排列方法。
实际上,永磁无刷直流电机电源就是把直流电源变成三相或二相脉冲电源,最好产生正弦波提供给电机,但由于从直流波形产生产严格的正弦波是比较困难的,现在好多电子交流稳压器输出的波形还不是严格的正弦波,波形的失真度较大,所以小小的动驱动电源是不可能做到这点的,实际上,方波输出的驱动电源用在永磁无刷直流电机上还是相当的好的。
一般的永磁无刷直流电机是定子和定子线圈的排列的方法和分析问题的观点和交流电机定子基本相似,转子和交流同步电机转子相似,驱动电源和步进电机驱动电源相似。
大都数电机上还增加了转子位置检测传感器。
这是一种机电一体化的电机。
如果读者搞过单,三相交流电机,那么永磁无刷直流电机的定子排线,分布绝对没有问题,如果读者又搞过步进电机的驱动电源的话,那么对无刷电机的驱动电源也是毫无问题的。
永磁无刷直流电机的主要尺寸和线圈匝数的设计计算作者会介绍实用的,比较简单的方法去解决问题的。
所以永磁无刷直流电机的设计也不是非常困难的,没有搞过无刷电机的也不要有畏难情绪。
我们来谈谈如何使电机能够产生一个旋转磁场呢?我们可以从交流电机分析着手。
三相相交流电机三相波形如下图:图9-1-1它们的三相绕组的机角度和电角度都是120°,为此形成一个旋转磁场。
如果我们能使永磁无刷直流电机的定子波形是上述形式,转子是多极永磁体组成,那么运行起来非常好的,如果这样的定子,去掉转子,在定子内放一颗钢珠,那钢珠也会沿定子内腔壁转动起来的。
在电机中有一种叫交流爪极同步电机,它由一个定子线圈产生N对磁极,转子是由N 对磁极组成。
每个相同的极随交流电源的波形同时改变极性。
因此这种电机定子的磁场的脉振的,不具有使转子跟转的旋转磁场,所以这种电机的启动是有问题和相当困难的,人们想尽办法使这种结构比较简单的电机能够启动。
家用的微风扇就是这种交流永磁式同步电机的典型例子。
这种电机是人们设置了定子和转子某些极不太对称时形成的相对磁极中心偏所引起的来回振动,并对设置的扭簧给予一个逐渐增大的弹力,当扭簧的反弹力使转子的运行速度跟上电源的频率变化时,这样转子就转了起来。
因此开启这种微风扇时,发现电扇要来回扭动多次后才能正常工作。
还有许多交流永磁同步电机解决电机启动的办法,如每个极的小部分极用短路环罩起来,使该部分的磁通滞后该极的磁通,二个磁场的夹角非常小,不能成90°标准夹角的圆形旋转磁场。
而是产生了非常椭圆形的旋转磁场,当然这种电机要比脉振磁场好。
这种电机启动力矩小,因为短路环的原因,损耗特别大,因此电机效率很差,又不能调速,这种电机适用范围小。
以上启动方式和运行性能,在高档产品上的不能接受的。
因此永磁无刷直流电机不宜采用这些形式。
在现在的电机中有一种叫爪极步进电机(PM电机),由二个单相爪极同步电机极与极按一定规律的角度拼接而成,一个与定子极对数相同的永磁体转子,二个线圈可以中心抽头,也可以不抽头。
如果抽头就形成了4个线圈,这4个线圈是由驱动电源供电。
驱动电源按一定规律对线圈供电,使线圈通电的时间先后,产生了多极的可以调变速度的旋转磁场,从而使转子跟转起来。
因为该种电机运行是按驱动电源分配的脉冲方波一步一步的转动的,所以称步进电机,这也可以讲它也是一种永磁无刷直流电机,这种电机也有其自身的缺点。
我们是把永磁直流电机的换向器,电刷去掉,借以电子控制电机的换向,达到使转子能象有换向器的永磁直流电机那样很好地转动,这种用电子控制直流电机换向的电机我们称为永磁无刷直流电机。
现在称永磁无刷直流电机基本上都是指的以上形式的电机。
我们在这一节里,对永磁无刷直流电机的工作原理进行简要介绍。
我们用三槽永磁无刷直流电机作个介绍。
一般直流电机的定子是有磁钢而且是固定的,有绕组的转子是转动。
转动是相对的,如果我们设定该电机的有绕组的转子不动,那么相对转子来讲,有磁钢的定子是以同样的速度在转动的。
一般讲,固定不动的是定子,转动的是转子,因此永磁无刷直流电机的转子,不管是内转子或外转子都是粘有磁钢的,而定子都是有绕组而固定不动的。
这一点是永磁直流电机和永磁无刷直流电机的区别之一。
下面是电机需要换向的图9-10-12所示: 这个换向工作一般用换向器来完成,如果用电子控制器来完成,那么这就是无刷电机了。
我们应该说在B图示的位置,线圈的电流必须开始反向B端进入,这样线圈极性反向,二个S极相互排斥,从而使线圈继续同向运行。
如何使转动的线圈能知道自己已经转到在B 图示位置,并指示控制器把电流从A端换到B端输入呢?现在一般的办法是在适当的位置装有磁场检测元件,这个元件一般用霍尔元件。
当一个金属块进入磁场后其金属的两端会产生一个微小的电位差,这个效应是霍尔发现的,所以称霍尔效应。
当霍尔元件刚进入一个磁钢的时候,应该是线圈中心和磁钢中心重合的时候,那个霍尔元件的位置就是我们需要检测和控制电子控制器(分配器)换向的位置。
在这个位置,霍尔元件产生一个微小电压,经过放大器放大,进入开关元件的控制极,完成导通或关闭某些开关元件,从而达到使电机某个线圈的换向的目的。
下图是单极霍尔元件放置位置:图9-10-3这个霍尔元件和线圈相对位置必须固定,并且必须与线圈一起转动才行。
如果是三槽转子的电机,霍尔元件就应该如下放置:图9-10-4极的B线圈就需要换向,转子再旋转60°机械角度时,转子极C已经在磁钢N极的中心了,此时转子C极的C线圈就需要换向,因此虽然线圈夹角为120°机械角度和电角度,但是转子旋转60°角度时,三个线圈的电流状态是相对发生了改变。
就是说,电枢绕组的磁势是以60°步距跳变的,但是转子的运行是连续的。
我们必须要说,这种霍尔元件的放置方法是电机顺时针方向运行,如果逆时针方向运行这种方法,在这种二极三槽电机上看要正常运行是很困难的。
从上面看一个极的电子换向要一个磁极检测霍尔元件,二个受霍尔元件控制的开关管。
所以在三槽转子(即转子上有三个极)的无刷电机中,有三个霍尔元件,六个开关管和三组线圈组成。
而三个线圈大都是星形接法,也有三角形的接法。
以上仅是原理性地解释了无刷电机的运行原理。
但是这样实现是比较烦的,要实现起来较为复杂,相关的方面多,实际工作中,人们用不同的方法来实现直流电机的无刷电子换向。
以下是无刷电机三相星形桥式接法的换流电气原理图:图9-10-6无刷电机设计的书多了起来,经常有讲课。
读者可以看相关的无刷电机专著。