第六章参数估计(zuizhong)资料

合集下载

统计学第六章参数估计

统计学第六章参数估计

第五节 必要样本容量的确定
一、平均数的必要样本容量 二、成数的必要样本容量 三、影响必要样本容量的因素
特点
抽样推断方法与其它统计调查方法相 比,具有省时、省力、快捷的特点,能以 较小的代价及时获得总体的有关信息。
1. 根据样本资料对总体的数量特征作出具有一定 可靠性的估计和推断 2. 按照随机性原则从全部总体中抽取样本单位 3. 抽样推断必然会产生抽样误差
参参第数数六估估章计计
本章内 容
一、抽样推断的基本概念与原理
二、参数估计中的点估计
三、参数估计中的区间估计
四、抽样组织方式及其参数估计
五、必要样本容量的确定
第一节 抽样推断的基本概念与原理 一、抽样推断的特点和作用 二、重复抽样与不重复抽样 三、抽样误差与抽样平均误差 四、抽样推断的理论基础 (大数法则、中心极限定理) 五、参数估计的基本步骤
3. 根据所要求的置信水平,查正态分布表、t分布 表或其他分布表获得对应的概率度,然后再计算出抽 样极限误差,最后对总体参数作出区间推断。
点估计
点估计,也称定值估计,就是以样本估计量 直接代替总体参数的一种推断方法。 点估计常用方法:矩估计法、极大似然估计法。
点估计量的优良标准
1. 无偏性
E(x); E(p)
数落在抽样平均数 x 的范围之内;总体成 x
数落在抽样成数 pp 的范围之内。
例题2
概率度
总体参数的区间估计
例题3
开头例题
例题3
例题3
开头例题
简单随机抽样
简单随机抽样又叫纯随机抽样, 是最简单、最普遍的抽样组织方法。 它是按照随机性原则直接从总体的全 部单位中,抽取若干个单位作为样本 单位,保证总体中每个单位在抽选中 都有同等被抽中的机会。

第六章参数估计

第六章参数估计

113第六章 参数估计一、 知识点1. 点估计的基本概念2. 点估计的常用方法(1) 矩估计法① 基本思想:以样本矩作为相应的总体矩的估计,以样本矩的函数作为相应的总体矩的同一函数的估计。

(2) 极大似然估计法设总体X 的分布形式已知,其中),,,(21k θθθθΛ=为未知参数,),,(21n X X X Λ为简单随机样本,相应的),,,(21n x x x Λ为它的一组观测值.极大似然估计法的步骤如下:① 按总体X 的分布律或概率密度写出似然函数∏==ni i n x p x x x L 121);();,,,(θθΛ (离散型)∏==ni i n x f x x x L 121);();,,,(θθΛ (连续型)若有),,,(ˆ21nx x x Λθ使得);,,,(max )ˆ;,,,(2121θθθn n x x x L x x x L ΛΛΘ∈=,则称这个θˆ为参数θ的极大似然估计值。

称统计量),,,(ˆ21nX X X Λθ为参数θ的极大似然估计量。

② 通常似然函数是l θ的可微函数,利用高等数学知识在k θθθ,,,21Λ可能的取值范围内求出参数的极大似然估计k l x x x nl l ,,2,1),,,,(ˆˆ21ΛΛ==θθ 将i x 换成i X 得到相应的极大似然估计量k l X X X nl l ,,2,1),,,,(ˆˆ21ΛΛ==θθ 注:当);,,,(21θn x x x L Λ不可微时,求似然函数的最大值要从定义出发。

3. 估计量的评选标准(1) 无偏性:设),,(ˆˆ21nX X X Λθθ=是参数θ的估计量,如果θθ=)ˆ(E ,则称θˆ为θ的无偏估计量。

(2) 有效性:设1ˆθ,2ˆθ是θ的两个无偏估计,如果)ˆ()ˆ(21θθD D ≤,则称1ˆθ较2ˆθ更有效。

4. 区间估计114 (1) 定义 设总体X 的分布函数族为{}Θ∈θθ),;(x F .对于给定值)10(<<αα,如果有两个统计量),,(ˆˆ111n X X Λθθ=和),,(ˆˆ122n X X Λθθ=,使得{}αθθθ-≥<<1ˆˆ21P 对一切Θ∈θ成立,则称随机区间)ˆ,ˆ(21θθ是θ的双侧α-1置信区间,称α-1为置信度;分别称1ˆθ和2ˆθ为双侧置信下限和双侧置信上限. (2) 单侧置信区间(3) 一个正态总体下未知参数的双侧置信区间(置信度为α-1)二、 习题 1. 选择题(1) 设n X X X ,,,21Λ是来自总体X 的一个样本,则以下统计量①)(211n X X + ②)2(14321n X X X X X n ++++-Λ ③)2332(101121n n X X X X +++-作为总体均值μ的估计量,其中是μ的无偏估计的个数是A.0B.1C.2D.3(2) 设321,,X X X 是来自正态总体)1,(μN 的样本,现有μ的三个无偏估计量321332123211216131ˆ;1254131ˆ;2110351ˆX X X X X X X X X ++=++=++=μμμ其中方差最小的估计量是A.1ˆμB.2ˆμC. 3ˆμD.以上都不是 (3) 设0,1,0,1,1为来自0-1分布总体B(1,p)的样本观察值,则p 的矩估计值为 。

第六章系统辨识与参数估计-数据预处理及相容性检验(精品)

第六章系统辨识与参数估计-数据预处理及相容性检验(精品)

1第六章 数据预处理及相容性检验6.1 前言航行器航行试验数据用于参数辨识之前,需要对试验数据进行预处理和数据相容性检验,目的在于尽可能消除含在数据中的各种噪声和系统误差,以提高辨识结果的准确度。

数据预处理包括:数据野值的识别、剔除与补正;数据加密;数据平滑与微分平滑;滤除高频噪声及以传感器位置校正等。

数据相容性检验的主要功能是将数据中的常值误差,特别是零位漂移误差辨识出来并重新建立没有常值误差的试验数据。

本章还以某型航行器的实测数据预处理为例,给出了具有实际应用意义的数据处理技术及结果。

6.2 数据处理的理论基础6.2.1 信号的分类用数学来描述待辨识系统的某一组输入和某一组输出时间函数间的关系是辨识的基础。

在选择信号的描述方法时,必须考虑信号表示的两个方面:①要表现出信号载有信息的属性;②要给出研究过程信息传递特性的方法。

按时间函数的特点来表达信息,可将信号分为连续信号和采样信号。

在许多情况下,信号的记录可以采用这两种信号中的任一种。

两种信号的记录均有各自的特点,但是利用计算机对记录的信号作处理时,往往需要采样信号,即使采用连续信号,也必须对信号作采样处理。

采样运算是线性运算,即当我们用算子ψ(.)表示这一运算时,对一切α和β,信号u(t)和y(t)均有ψαβαψβψ[()()][()][()]u t y t u t y t +=+(6-2-1)按幅度划分,信号可以分为模拟信号、量化信号和二进制信号。

二进制信号是量化信号的极限情况,量化运算是非线性运算。

因此,在处理量化信号时,这种非线性造成许多数学上的困难。

确定性信号与随机信号也是系统建模和参数辨识中常用的信号分析方式。

由于工程的实际环境,对随机信号的讨论更具有实际意义。

6.2.2 随机信号的描述为了讨论问题的方便,在此我们首先介绍随机信号的一些统计性质。

与确定性信号不一样,对随机信号询问其幅度的瞬时值是没有多少意义的,所以最有用的量是那些关于统计性质的量,如谱密度、数学期望值、方差和相关函数等。

西北工业大学《概率论与数理统计》课件-第六章 参数估计

西北工业大学《概率论与数理统计》课件-第六章 参数估计
最大概率的思想就是最大似然法的基本思想 .
(2) 似然函数
定义6.1 设总体X的分布密度(或分布律)为 p(x; ), 其中 (1, 2, ,m )为未知参数. 又设
( x1, x2,, xn ) 为自总体X的样本(X1,X2,…,Xn) 的一 个观察值,则称样本的联合分布
n
L( ) p(x1, x2, … , xn; ) p( xi; )
2º似然估计方程组与最大似然估计之间没有必 然
从中解得 pˆ k n
参数 p的估计值
这时, 对一切 0< p <1, 均有
P{Y k; pˆ } P{Y k; p}
综上所述: 设某试验的可能结果为: A1, A2 , ···, Ai , ···
若在一次试验中,某结果 Ai 出现,则应选择参 数使Ai 出现的概率最大.
以上这种选择一个参数使得实验结果具有
(k 1,2,, m)
(4) 求最大似然估计(MLE)的步骤:
1 写出似然函数
(1, 2 , ,m )
n
L( ) L( x1, x2,, xn; ) p( xi; )
n
i 1
2 取对数 ln L( ) ln p( xi; )
i 1
3 解似然方程(组)
ln L

ln L
2
为来自总体X的简单随机样本. 矩估计法的具体步骤:
1 求出k E( X k ) (1,2,,m ), k 1,2,,m;
2 要求k Ak , k 1,2,, m
这是一个包含 m个未知参数1,2 ,,m的方程组.
3 解出其中1,2,,m , 用ˆ1,ˆ2,,ˆm表示.
4 用方程组的解ˆ1, ˆ2 , ,ˆm 分别作为 1,2 ,,m的估计量,这个估计量称为

第六章 参数值的估计

第六章 参数值的估计

第六章 参数值的估计 第一节 参数估计的一般问题一、估计量与估计值参数估计就是用样本统计量去估计总体参数,如用X 估计μ,用S2估计2σ,用p 估计π等。

总体参数可以笼统地用一个符号θ表示。

参数估计中,用来估计总体参数的统计量的名称,称为估计量,用θ表示,如样本均值、样本比例等就是估计量。

用来估计总体参数时计算出来的估计量的具体数值,叫做估计值。

二、点估计与区间估计——参数估计的两种方法 1、点估计用样本估计量θ的值直接作为总体参数θ的估计量值。

2、区间估计它是在点估计基础上,给出总体参数估计的一个区间,由此可以衡量点估计值可靠性的度量。

这个区间通常是由样本统计量加减抽样误差而得到。

以样本均值的区间估计来说明区间估计原理:根据样本均值的抽样分布可知,重复抽样或无限总体抽样情况下,样本均值,由此可知,样本均值落在总体均值两侧各为一个标准误差范围内的概率为0.6827,两个标准误差范围0.9545,三个标准误差范围0.9973,并可计算出样本均值落在μ的两侧任何一个标准误差范围内的概率(根据已知的μ,σ计算)。

但实际估计时,μ是未知的,因而不再是估计样本均值落在某一范围内的概率,而只能根据已设定的概率计算这个范围的大小。

例如:约有95%的样本均值会落在距μ的两个标准误差范围内,即约有95%的样本均值所构造的两个标准误差的区间会包括μ。

在区间估计中,由样本统计量所构造的总体参数的估计区间,称为置信区间,区间的最小值为置信下限,最大值为置信上限。

例如,抽取了1000个样本,根据每个样本构造一个置信区间,其中有95%的区间包含了真实的总体参数,而5%的没有包括,则称95%为置信水平/置信系数。

构造置信区间时,可以用所希望的值作为置信水平,常用的置信水平是90%,95%,99%,见下表:α称为显著性水平,表示用置信区间估计的不可靠的概率,1-为置信水平。

如何解释置信区间:如用95%的置信水平得到某班学生考试成绩的置信区间为(60,80),即在多次抽样中有95%的样本得到的区间包含了总体真实平均成绩,(60,80)这个区间有95%的可能性属于这些包括真实平均成绩的区间内的一个。

统计学总体参数估计ppt课件

统计学总体参数估计ppt课件
统计推断的过程
样本
总体
样本统计量 如:样本均值、比例、方差
总体均值、比例、方差等
*
第六章 总体参数估计
第一节 参数估计的一般问题 一、估计量与估计值 用来估计总体参数的统计量的名称,称为估计量,用符号 表示。 用来估计总体参数时计算出来的估计量的具体数值,称为估计值。 (例:样本均值80就是估计值)
第六章 总体参数估计
第一节 参数估计的一般问题 第二节 一个总体参数的区间估计 第三节 两个总体参数的区间估计 第四节 样本容量的确定
*
第六章 总体参数估计
参数估计在统计方法中的地位
参数估计
假设检验
统计方法
描述统计
推断统计
*
第六章 总体参数估计
*
第六章 总体参数估计
第三节 两个总体参数的区间估计 一、两个总体均值之差的区间估计 二、两个总体比例之差的区间估计 三、两个总体方差比的区间估计
*
第六章 总体参数估计
两个总体参数的区间估计
总体参数
符号表示
样本统计量
均值之差
比例之差
方差比
*
第六章 总体参数估计
*
第六章 总体参数估计
例题:一家保险公司收集到由36投保人组成的随机样本,得到每个投保人的年龄数据如表所示。试建立投保人年龄90%的置信区间。样本标准差: 表:36个投保人年龄的数据 S=
23
35
39
27
36
44
36
42
46
43
31
33
42
53
45
54
*
第六章 总体参数估计
【例】一家食品生产企业以生产袋装食品为主,现从某天生产的一批食品中随机抽取了25袋,测得每袋重量如下表所示。已知产品重量的分布服从正态分布。以95%的置信水平建立该种食品重量方差的置信区间

第6章参数估计1

第6章参数估计1
5-14
表5-3 10人中有放回抽二人的全部可能样本
第二次抽取可能被抽中的人员
1
2
3
4
5
6
7
8
9
10
1
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
1,10
(1)
(1.5)
(2)
(2.5)
(3)
(3.5)
(4)
(4.5)
(5)
(5.5)
2
2,1
2,2
2,3
2,4
2,5
2,6
2,7
2,8
2,9
第六章 参数估计
第一节 抽样的基本概念与数学原理 第二节 名词解释 第三节 参数的点 第四节 抽样分布 第五节 正态总体的区间估计 第六节 大样本区间估计
5-1
第一节 统计推论
一、什么是统计推论 特点:资料来源于实践、抽样结果不唯一 二、统计推论的内容 1.参数估计 2.假设检验
第三节 参数的点估计
一、总体参数的点估计 均值、方差、成数的点估计 二、评价估计值的标准 1.无偏性 2.有效性 3.一致性
5-28
一、总体参数的点估计 1.总体均值的点估计 2.总体比例的点估计 3.总体方差的点估计
5-29
(一)参数估计的定义与种类 所谓参数估计,就是用样本统计量去估
5-12
【例 5-2】 对某公司 10 名推销员用放回抽样方式抽取容量为 n=2
n
的样本(y1,y2),构造统计量 Y

( i1
yi
)
/
n

第六章 参数估计

第六章  参数估计
4 December 2010
宁波工程学院
理学院
第六章 参数估计
第12页 12页
6.1.2 极(最)大似然估计
定义6.1.1 设总体的概率函数为P(x;θ ),将样本 的联合概率函数看成θ 的函数
L (θ ) = L (θ ; x1 ,⋯ , xn ) = p ( x1 ; θ ) ⋅ p ( x2 ; θ ) ⋅⋯ ⋅ p ( xn ; θ )
宁波工程学院
理学院
第六章 参数估计
第9页
例6.1.3 x1, x2, …, xn 是来自(a,b)上的均匀分布 U(a,b)的样本,a与b均是未知参数,这里k=2, 由于
a+b EX = , 2 (b − a ) 2 Var( X ) = , 12
不难推出
a = EX − 3Var( X ), b = EX + 3Var( X ),
第7页
二、概率函数P 二、概率函数P(x,θ)已知时未知参数的矩法估计 设总体的分布含有k个未知参数 θ ,⋯,θ ,那么 1 k 它的前k阶矩 µ1, µ2 ,⋯, µk 都是这k个参数的函数
µi = gi (θ1,⋯,θk ) 从这k个方程中解出 θ = θ (µ ,⋯, µ ) j j 1 k
4 December 2010
宁波工程学院
理学院
第六章 参数估计
第20页 20页
§6.2 点估计的评价标准
6.2.1 相合性
点估计量不可能等同于参数的真实取值。但根据 格里纹科定理,完全可以要求估计量随着样本量 的不断增大而逼近参数真值,这就是相合性
ˆ ˆ 定义6.2.1 θn = θn ( x1,⋯, xn ) 是θ 的一个估计量,若对 任何一个ε>0,有

第六章参数估计

第六章参数估计

第六章参数估计参数估计是指在统计学中,根据从总体中获取的样本数据,对总体参数的值进行估计的一种方法。

参数估计是统计推断的基础,它通过样本数据来推断总体的特征,并给出一个接近总体参数真值的估计值。

在本章中,我们将介绍参数估计的方法和一些常用的估计量。

一、点估计点估计是参数估计的一种方法,它是通过一个单一的数值来估计总体参数的值。

在点估计中,我们通过样本数据计算出一个估计量,作为总体参数的估计值。

点估计的关键是选择一个合适的估计量,这个估计量应当是无偏的、一致的以及有效的。

1.无偏性在参数估计中,无偏性是指估计量的期望值等于被估计的参数的真值。

如果一个估计量的期望值等于被估计参数的真值,则称该估计量是无偏的。

例如,对于总体均值的估计,样本均值是一个无偏估计量。

2.一致性在参数估计中,一致性是指随着样本容量的增加,估计量的值趋于总体参数的真值。

如果一个估计量的值在样本容量趋向无穷时收敛到被估计参数的真值,则称该估计量是一致的。

一致性是估计量的重要性质,它保证了估计量在大样本情况下的准确性。

3.有效性在参数估计中,有效性是指估计量的方差最小。

如果一个估计量的方差比其他估计量的方差都小,则称该估计量是有效的。

有效性是估计量的理想性质,它表示估计量具有较好的精确性。

二、区间估计区间估计是参数估计的另一种方法,它不仅给出了总体参数的一个点估计,还给出了一个置信区间。

置信区间是总体参数的一个估计范围,反映了总体参数的不确定性。

1.置信水平在区间估计中,置信水平是指在一次次重复取样中,估计的置信区间包含总体参数的比例。

通常使用95%或99%的置信水平。

2.置信区间的构造构造置信区间的方法有多种,常见的有正态分布的置信区间、t分布的置信区间以及bootstrap的置信区间等。

其中,正态分布的置信区间适用于大样本情况,t分布的置信区间适用于小样本情况,bootstrap的置信区间则是一种非参数方法。

3.置信区间的解释置信区间的解释是指一个置信区间中的统计学意义。

第6章 分类变量的统计描述与参数估计

第6章  分类变量的统计描述与参数估计

6.1.2 多个分类变量的联合描述 分类变量的联合描述使用列联表; 列联表是因分类变量的各类别交叉而成的复合频 数表,被称为行×列表; 列联表的分析结果直观、易比较; 应用列联表进行变量的交叉分析是数据分析报告 中分析结果显示的主要方式之一; 列联表分二维表和多维表(或n维表); 单元格内可给出原始频数、行与列百分比和总百 分比。
(3)率(Rate) 率是一个具有时间、速度、强度含义 的概念或指标,用于说明某个时期内某个 事件发生的频率或强度,其计算公式为: 某事件的发生率=观察期内发生某事件的对 象数/该时期开始时的观察对象数
相对数在使用时应当注意适用条件: 样本量较大时相对数比较稳定; 基数不同相对数不能直接相加求和。
第6章 分类变量的统计描述 与参数估计
2013.10
离散变量是把取值范围为有限个数或者是 一个数列构成的变量。 分类变量是表示分类情况的离散变量。 根据类别的有序性,分类变量可分为有序 分类变量(Ordinal Variable)和无序分类 变量(Nominal Variable),这两类变量 在统计描述上没有差别。
(2)构成比(Proportion) 构成比是把观察对象分为k个部分,其中 某一个/多个部分的例数占总例数的比例。它 描述某个事物内部各构成部分所占的比重,其 计算公式为: 构成比=某一组成部分的样本数/总样本数 构成比的分子必须是分母的一部分,所以 其取值0-1,百分比是一个标准的构成比,而 累计频率则是构成比概念的直接延伸。
6.1 指标体系概述
6.1.1 单个分类变量的统计描述 1.频数分布 频数(绝对频数)是指本类别出现的次数; 百分比(构成比)是指本类别出现的次数占 总次数的百分比,即本类别出现次数/总次 数×100%。

第六章抽样与参数估计

第六章抽样与参数估计

第六章 抽样与参数估计学习目标知识目标:理解抽样与估计的基本原理;掌握抽样推断、抽样分布、统计量和参数估计的基本概念和计算方法。

能力目标:能够根据统计研究目的和统计对象的特点组织抽样调查,计算样本指标(样本均值和样本方差),并依据样本对总体的数量特征(总体均值和总体比例)作出估计。

参数估计是统计推断的一种重要形式之一,包括参数的点估计和区间估计两类。

在本章中我们介绍统计推断的基本原理,抽样和抽样分布的基本概念,参数的点估计与几种重要的区间估计方法,参数估计量的优良性标准也在本章作简要叙述。

第一节 抽样与抽样分布关键词:总体和样本;抽样及抽样推断;参数和统计量;抽样分布一、抽样推断的基本概念(一)总体和样本抽样推断是从统计总体中抽取部分单位组成样本进行调查的。

统计总体,简称为总体,它是指所要研究的客观现象的全体,组成总体的每一个元素称为个体。

例如我们要研究某市居民的家庭收入水平,那么该市所有居民的家庭收入便构成研究总体,而每一户居民的家庭收入就是个体。

一般来说,我们所研究的总体,即研究对象的某项数量指标X ,是一个随机变量,它的取值在客观上有一定的分布。

实际上,我们对总体的研究,就是对相应的随机变量X 的分布的研究。

因此,今后将不区分总体和相应的随机变量。

为了推断总体的某些数量特征,我们一般是从总体中抽取一部分个体进行观察,即随机抽样。

随机抽样就是按照机会均等的原则(即随机原则)从总体中抽取一部分个体的过程。

假如我们抽取了n 个个体,且这n 个个体的某一指标为),,,,(21n X X X 我们称这n 个个体的指标),,,(21n X X X 为一个子样或样本,并且一般称为简单随机样本(即子样的每个分量都机会均等的来自同一总体,各个分量之间是相互独立的),n 称作子样的容量。

在一次抽样之后,观察到子样),,,(21n X X X 的一组确定的值),,,(21n x x x ,称为容量为n 的子样的观察值(或数据)。

第六章《概率论与数理统计教程》课件

第六章《概率论与数理统计教程》课件

1

例5. 设X服从[0,λ]区间上的均匀分布,参数
λ>0,求λ的最大似然估计. 1 解:由题意得: X ~ f ( x; )
1 L( x1 , x 2 ,..., x n ; ) n 0
0 x
0 其它 0 x1 , x 2 ,..., x n
dL n n1 0 d
其它
无解.
应用最大似然估计基本思想: L越大,样本观察值越可能出现 取 max( x1 , x 2 ,..., x n ) 此时,L取值最大, 所以,所求最大似然估计为 max( x1 , x 2 ,..., x n )
考虑L的取值,要使L取值最大,λ应最小, 0 x1 , x 2 ,..., x n


例2 设总体 X ~ N ( , 2 ) ,其中 及 2 都是未知参数,如
果取得样本观测值为 x1 ,, x n , 求 及 2 的矩估计值。
解: 因为总体X的分布中有两个未知参数,所以应考虑一、二阶 原点矩,我们有 v1 ( X ) E ( X )
v 2 ( X ) E( X 2 ) D( X ) [ E( X )]2 2 2
e

e
1 2
2
2
( x )2 2 2
e
L( x1 , x 2 ,..., x n ; , )
2
i 1
1 2
2
( xi )2
(
2
1 2
2

1 2 2
) e
n

i 1
n
( xi )2

1 n 2 n 1 n 2 2 ) 2 ( x i ) ln 2 ln L n ln( ( xi ) 2 i 1 2 2 2 n 2 2 i 1 1 ln L 1 n Xi X 2 ( xi ) 0 n i 1 i 1 1 n 2 1 n n ln L n 1 ( xi )2 ( xi X )2 2 2 4 ( x i ) 0 n i 1 n i 1 2 2 2 i 1

统计学,刘照德06-1第六章 参数估计

统计学,刘照德06-1第六章  参数估计

第一节 点估计
点估计的求解方法主要有 : • 矩估计法 • 最大似然估计法
第一节 点估计
一 、矩估计法
• 矩估计法是一种常用的估计方法,其基本 思想是,用样本原点矩作为总体原点矩的 估计。
第一节 点估计
• 设k个参数 ( , , ),求 k个参数 ˆ (ˆ ,ˆ ,ˆ ) 矩估计 需要建立k个方程,方法是:设总体 的一个样本观测值是 (x , x ,, x ) ,其l阶原点 1 A x 矩 ,总体观测量X的l阶原点矩 n ml E( X l ) ml ( ) ,用样本原点矩Al作为总体 原点矩ml的估计,得出k个方程Al =ml(θ )(l =1,…,k),解此方程组得出的 即为参数 的矩 估计。
对于给定的抽样方法 ,不同的抽样,就有不同的 ˆ , ˆ) 估计区间 ( 1 2
在用同样方法构造的总体参数的多个估计区间 中,包含总体参数真值的区间所占的比例称为 置信水平,表示为 (1 - 。 2.为是未包含总体参数的区间所占的比例。 •
3. 常用的置信水平值有 99%, 95%, 90%
第一节点估计??????????222221???xexdxemxem??????2221??????aa??????21221??aaa????????????????niiniixxnxxnx12122211?????二最大似然估计法?最大似然方法的基本思想是固定样本观测值在可能的取值中挑选使似然函数达到最大从而概率p达到最大的作为参数的估计
1 2
ˆ) P(
ˆ 的抽样分布 1
B A
ˆ2 的抽样分布
ˆ

第一节 点估计
• 3.一致性 依 设 为 的一个估计量,若当 n 时, ,则称 为 的一致估计量。此即 概率收敛于 随着样本容量n的增大,点估计量 越来越接近 被估总体参数 。

第六章---参数估计ppt课件

第六章---参数估计ppt课件
50
1、条件分析:总体分布为正态,且总体方差已 知,用正态法进行估计。 2、计算标准误 3、确定置信水平为0.95,查表得
51
4、计算置信区间 D=0.95时 D=0.99时
52
解释:总体均数μ落在75.61-84.39之间的可 能性为95%,超出这一范围的可能只有5%。而 作出总体μ落在74.22-85.78之间结论时的正 确概率为99%,犯错误的可能性为1%。
38
( 二)、 分布法, 未知 1、前提条件: 总体正态分布, n不论大小,
2、使用 t分布统计量
D=0.95时 D=0.99时
39
例:总体正态, 未知,




平均数0.95的置信区间是多少?

,试问总体
40
解: 1、条件分析:总体正态, 未知,

于30,只能用 分布
2、计算标准误
3、计算自由度
9
一、点估计
(一)意义 含义:直接用样本统计量的值作为总体参数的估 计值 无偏估计量:恰好等于相应总体参数的统计量。
例8-1;假设某市六岁男童平均身高110.7cm,随机 抽取113人测得平均身高110.70cm.总体的平均数, 标准差是多少
10
(二)良好点估计的条件
无偏性: 一致性: 有效性: 无偏估计量的变异性问题。
47
1 、条件分析:总体分布为非正态, 未知, >30,只能用近似正态估计法。
2、计算标准误
3、确定置信水平为0.95,查表得
48
4、计算置信区间
5、结果解释:该校的平均成绩有95%的可能落 在50.2~54.0之间。
49
课堂练习
已知某总体为正态分布,其总体标准差为10。 现从这个总体中随机抽取n1=20的样本,其平 均数分别80。试问总体参数μ在0.95和0.99的 置信区间是多少。

第6章 参数估计

第6章 参数估计

是取自总体 X 的样本 ,
n
则样本的联合分布律
P{ X 1 x1 ,, X n xn } p ( xi , ),
i 1
对确定的样本观察值 x1 , x2 ,, xn , 它是未知参数
的函数, 记为
L( ) L( x1 , x2 ,, xn , ) p ( xi , ),
这位同学命中的概率, 故一般会猜测这一枪是猎人 射中的. 最大似然估计法的思想: 在已得到试验结果的情况 下, 应寻找使这个结果出现的可能性最大的那个

值作为 的估计 ˆ.
第28页
离散型总体的情形:
P{ X x} p( x, ),
x1 , x2 , , xn
设总体 X 的概率分布为 其中 为未知参数. 如果
本, 试求 , 2 的矩估计量. 1 E ( X ) , 解
2 E ( X 2 ) D( X ) [ E ( X )]2 2 2 ,
X 令 2 2 n 1 2 2 S X n
X 2 n 1 2 S n
2 (n / 2)
可以证明,当n时, 有cn1. 这说明 s 是 的渐近无偏估计。
教材P304例6.1.3(Jackknife)
第7页
设 T ( x) 是基于样本x ( x1 , x2 ,, xn ) 的关于参数 g ( )
1 的估计量,且满足 E T ( x) g ( ) O( ). 如以 x( i )表示从 n 样本中删去 xi 后的向量,则 T ( x) 的刀切统计量为
6.2.1替换原理和矩法估计
替换原理是指用样本矩及其函数去替换相应的总 体矩及其函数,譬如: ˆ • 用样本均值估计总体均值E(X),即 E( X ) x ; ˆ • 用样本方差估计总体方差Var(X),即 Var( X ) s 2 • 用样本的 p 分位数估计总体的 p 分位数, • 用样本中位数估计总体中位数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 一般地,将构造置信区间的步骤重复很多次, 置信区间包含总体参数真值的次数所占的比例 称为置信水平。
2020/6/3
15
区间估计(interval estimate)
– 比如,某班级平均分数在75~85之间, 置信水平是95%
置信区间
样本统计量 (点估计)
置信下限
置信上限
2020/6/3
16
置信区间 (confidence interval)
是有偏估计量,则它的
偏差量为
偏差= E( )-
2020/6/3
24
无偏性(unbiasedness)
注:
E(x) ,x 具有无偏性。
对于
s2
n
1
1
(
xi
x)2
,E(s 2 )
2
s 2 具有无偏性
2020/6/3
25
一致性(consistency)
• 一致性:随着样本容量n的增大,估计量的 值越来越接近被估计的总体参数
12
区间估计(interval estimate)
1. 在点估计的基础上,给出总体参数估 计的一个区间范围,该区间是由样本 统计量加减抽样误差而得到的
2. 根据样本统计量的抽样分布能够对样 本统计量与总体参数的接近程度给出 一个概率度量
2020/6/3
13
区间估计(interval estimate)
2. 没有给出估计值接近总体参数程度的信息
3. 点估计的方法有矩估计法、顺序统计量法、 最大似然法、最小二乘法等
2020/6/3
11
X
p
P
2 s 2
2
X X n 1
点估计完全正确的概率通常为0。因 此,我们更多的是考虑用样本统计量 去估计总体参数的范围 区间估计。
2020/6/3
本章主要内容
• 第一节 参数估计的一般问题 • 第二节 一个总体参数的区间估计 • 第三节 样本容量的确定
2020/6/3
1
参数估计在统计方法中的地位
• 统计方法
描述统计
推断统计
2020/6/3
参数估计
假设检验
2
统计推断的过程
总体
2020/6/3

样本统计量

如:样本均值
、比率、方差
3
参数估计
2020/6/3
17
置信区间 (confidence interval)
•我们用95%的置信水平得到某班学生考试成 绩的置信区间为60-80分,如何理解? •错误的理解:60-80区间以95%的概率包含 全班同学平均成绩的真值;或以95%的概率 保证全班同学平均成绩的真值落在60-80分 之间。
•正确的理解:如果做了多次抽样(如100 次),大概有95次找到的区间包含真值,有5 次找到的区间不包括真值。
– 如果样本均值x =80,则80就是的估计

2020/6/3
8
点估计与区间估计
参数估计的方法
估计方法
点估计
区间估计
2020/6/3
10
点估计(point estimate)
1. 用样本的估计量直接作为总体参数的估计 值
– 如用样本均值直接作为总体均值的估计
– 如用两个样本均值之差直接作为总体均 值之差的估计
2020/6/3
19
置信区间与置信水平
样本均值的抽样分布
x
/2
1–
/2
x
x
(1 - ) % 区间包含了 % 的区间未包含
2020/6/3
20
区间估计的图示
x z 2 x
x
- 2.58x
x
-1.65 x
+1.65x +2.58x
-1.96x
+1.96x
90%的样本
95% 的样本
P(ˆ) 较大的样本容量 B
较小的样本容量
A
2020/6/3
ˆ
26
一致性(consistency)
• 一、估计量与估计值 • 二、点估计与区间估计 • 三、评价估计量的标准
2020/6/3
6
估计量与估计值
估计量与估计值
1. 估计量:用于估计总体参数的随机变量
– 如样本均值,样本比率、样本方差等
– 如样本均值就是总体均值 的一个估计

2. 参数用 表示,估计量用 表示
3. 估计值:估计参数时计算出来的统计量的具 体值
• 抽样估计就是根据样本提供的信息对 总体的某些特征进行估计或推断。用 来估计总体特征的样本指标也叫估计 量或统计量,待估计的总体指标也叫 总体参数,所以抽样估计又称参数估 计。
2020/6/3
4
估计新生儿的体重
估计废品率 估计湖中鱼数
估计降雨量
… …
2020/6/3
5
第一节 参数估计的一般问题
1. 由样本统计量所构造的总体参数的估计区间称 为置信区间
2. 统计学家在某种程度上确信这个区间会包含真 正的总体参数,所以给它取名为置信区间
3. 用一个具体的样本所构造的区间是一个特定的 区间,我们无法知道这个样本所产生的区间是 否包含总体参数的真值
– 我们只能是希望这个区间是大量包含总体参
数真值的区间中的一个,但它也可能是少数 几个不包含参数真值的区间中的一个
2020/6/3
14
区间估计(interval estimate)
• 注意对上式的理解: • 例如抽取了1000个样本,根据每一个样本均值
构造了一个置信区间,这样,由1000个样本构 造的总体参数的1000个置信区间中,有95%的 区间包含了总体参数的真值,而5%的置信区间 则没有包含。这里,95%这个值被称为置信水 平(或置信度)。

3.设总体参数为

L
U
为样本确定的
两个统计量,对于给定的 (0 1),有
P( L
U
)=1-α
ቤተ መጻሕፍቲ ባይዱ
,称(

L
U)为参数
的置信度为
1-α
的置信区间,

L
U

别称为置信下限、上限,通称置信限,
α为显著性水平, 1-α 为置信度。
• 常用的置信水平值有 99%, 95%, 90% • 相应的 为0.01,0.05,0.10
99% 的样本
2020/6/3
21
评价估计量的标准
无偏性(unbiasedness)
• 无偏性:估计量抽样分布的数学期望等于 被估计的总体参数
P(ˆ)
无偏
A
有偏
B
ˆ
2020/6/3
23
无偏性(unbiasedness)


为总体未知参数
的估计量


E( )

则称

的无偏估计量,称
具有无
偏性。如果
2020/6/3
18
置信区间 (confidence interval)
•真值只有一个,一个特定的区间“总是包含” 或“绝对不包含”该真值。但是,用概率可以 知道在多次抽样得到的区间中大概有多少个区 间包含了参数的真值。 •如果大家还是不能理解,那最好这样回答有 关区间估计的结果: •该班同学平均成绩的置信区间是60-80分, 置信度为95%。
相关文档
最新文档