人教版数学《全等三角形》全文课件

合集下载

(人教版)八年级数学上册:12.1《全等三角形》ppt课件

(人教版)八年级数学上册:12.1《全等三角形》ppt课件

记作:△ABC≌△DEF
读作 : △ABC全等于 △DEF
注意:书写全等式时要 求把对应顶点字
母放在对应的位 置上。
A
D
B
CE
F
互相重合的顶点叫做对应顶点
AD BE CF 互相重合的边叫做对应边
AB与DE BC与EF AC与DF 互相重合的角叫做对应角
∠A与∠D ∠B与∠E ∠C与∠F
三角形的变换 ⑴.平移
D
C
E
A
A
D
B
(5)
C
(6) B
试一试(1):先 和写对出应全角等式,再指出它们的对应边
C
F
A
D
B
E
∵△ABC≌△DEF
∴AB=DE,BC=EF,AC=DF.
∴∠A= ∠D,∠B= ∠E,∠C= ∠F.
试一试(2):先 和写 对出应全角等式,再指出它们的对应边 C
A
B
∵△ABC≌△ABD
∴AB=AB,BC=BD,AC=AD.
如果你手上有一 张长方形纸片,怎样使 长方形变成两个最大的 全等三角形,而总面积 又没 变化?
下图是一个等边三角形, 你能把它分成两个全等 三角形吗?你能把它分 成三个全等三角形吗? 四个呢?六个呢?
再见
2.全等三角形的对应角相等。 ∵△ABC≌△DEF (已知)
∴ AB=DE,BC=EF,AC=DF(全等三角形的对应边相等)
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等)
试一试: 先写出全等式,再指出它们的对应边
和对应角 C
C
F
D
B
A
DB
(1)
A
C
E
D (4)

《全等三角形》_PPT完整版人教版1

《全等三角形》_PPT完整版人教版1

即∠BAC=∠DAE
B
D
C
在△ABC和△ADE 中
AC=AE(已知)
∠BAC=∠DAE(已证)
AB=AD(已知)
∴ △ABC≌△ADE(SAS)
《全等三角形》教学分析人教版1-精 品课件p pt(实 用版)
《全等三角形》教学分析人教版1-精 品课件p pt(实 用版)
1.边角边:有两边和它们的___夹__角____对应相等的
“两边一夹角” 2.顺序:在应用时一定要按边→角→边的顺序排
列条件,绝不能出现边→边→角(或角→边→边) 的错误,因为边边角(或角边边)不能保证两个 三角形全等.
《全等三角形》教学分析人教版1-精 品课件p pt(实 用版)
《全等三角形》教学分析人教版1-精 品课件p pt(实 用版)
探究活动2:SSA能否判定两个三角形全等
复习回顾: 1. 三角形全等的判定方法1:
三边对应相等的两个三角形全等
A
E
B
C
F
G
在 ABC 和 EFG中,
AB=EF
BC=FG AC=EG
∴ ABC ≌ EFG (SSS)
除了SSS外,还有其他情况吗?
当两个三角形满足六个条件中的3个时,有四种情况:
三角
×
三边

两边一角

两角一边
12.2.2三角形全等的判定 SAS
1、掌握三角形全等的“边角边” 条件;
2、能运用定理进行有条理的思考 和简单的推理。
合作探究:
1、先任意画一个△ABC,然后根据38页中 所给方法画△A'B'C';
2、这两个三角形全等吗?你发现了什么?
两边 和 它们的夹角 分别相等的两个三角

人教版八年级上册数学《全等三角形》PPT教学课件

人教版八年级上册数学《全等三角形》PPT教学课件
点评
一个图形经过平移、翻折、旋转后,图形的位置变化了,但形状、大 小没变,即平移、翻折、旋转前后的图形全等,其中重合的顶点叫对 应点,重合的边叫对应边,重合的角叫对应角。(注意:书写全等三 角形时对应顶点的字母写在对应的位置上)
【例1】如图所示,图中有两个三角形全等,根据已知条件, △ABC ≌ △ ADC。写出其全等的对应边和对应角。 A
全等三角形
1 教学目标
目录
CON
2 教学重难点 3 教学过程
4 教学反思
教学目标
理解全等形,全等三角形的概念,会找全等 三角形的对应边,对应角和对应顶点。
掌握全等三角形的性质,并进行简单的推理和 计算。 通过图形变换,培养学生动态观点,研究几 何图形。
教学重难点

全等三角形的性质
难 找全等三角形的对应边、
点评归纳
全等三角形的对应边相等,全等三角形的对应角相等。
【例2】如图所示, △ABD ≌ △EBC,
D
AB=3cm,BC=5cm,求DE的长
E
A
B
C
教师导引:求DE的长只需求DB、BE的长,这可由△ABD △EBC得到。
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
对应角
教学过程
一、情景引入
请同学们观察下列各组图片,想一想,他们有什么共同特征?
结论
每组图片的大小和形状都相同
二、新知探究,合作交流 探究一:全等形及全等三角形的概念
你能举一些生活中类似于上面的图形吗?

把一块三角尺在纸板上,画下图形,照图形裁下来的 纸板与三角形的形状、大小是否完全一样?

全等三角形课件人教版八年级数学上册

全等三角形课件人教版八年级数学上册
∠A与∠D ∠B与∠E ∠C与∠F
A
D
LOGO
CE
F
只有经过平移 后的两个三角 形才能重合么?
哪些变换能得到两个三角形全等?
平移
翻折
LOGO
旋转
LOGO
全等变化 一个图形经过平移、翻折、旋转后, 位置 变化
了,但_形_状_和_大_小_都没有改变,即平移、翻折、旋 转前后的两个图形_全等_.
全等三角形的性质 : 全等三角形的_对__应__边___相等,_对__应__角___相等. B
第十二章 全等三角形
12.1 全等三角形
学习目标
LOGO
1
掌握怎样的两个图形是全等形、全等三角形,能应用符 号语言表示两个三角形全等;
2 经历探索全等三角形性质的过程, 在观察中寻求新知,在探索中培养 学生发现问题、解决问题的能力。
3 让让学生在观察、实践中感受全等 三角形的对应美以及全等在生活中 的较高使用价值,激发学生热爱科 学、勇于探索的精神。
解:结论:EF∥NM
其他结论吗?
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N.
∴ EF∥NM.
第一单元
谢谢
F
如图,△ABD≌△EBC,如果AB=3cm,BC=5cm,∠D=30°,求 BE,BD的长和∠C的度数.
解:∵△ABD≌△EBC,
D
∴AB=EB,BD=BC(全等三角形对应边相等), E
∠D=∠C(全等三角形对应角相等). ∵AB=3cm,BC=5cm,∠D=30°,
AB
C
∴BE=3cm,BD=5cm,∠C=30°.
新课导入 LOGO
观察:下列各组图形的形状与大小有什么特点?
(1)

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

人教版八年级数学上册《全等三角形》PPT优质课件

人教版八年级数学上册《全等三角形》PPT优质课件
【结论】全等三角形的对应边相等,全
等三角形的对应角相等。
知识梳理
知识点一:全等形
1.能够完全重合的两个图形叫做全等形。
2.全等形关注的是两个图形的形状和大小.一个图形经过平移
、翻折、旋转后,位置变化了,但形状、大小都没有改变,即
平移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6
等时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△
≌△ ,指出所有的对应边和对应
角.,AC与DB,BC与CB是对应边;
AB与DC
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
点E平分线段BC;
(3)DE ⊥ BC,
理由如下:因为△ BDE ≌△ CDE,所以BD = CD,
BABC中,点A的坐标为( − 1,1),点C的坐

标为 ( − 2,2) ,点 B 的坐标为 ( − 5,1) ,如果 △
ABD与 △ ABC全等,求点D的坐标。
10∠ ,则 =
.
【结论】本题考查全等三角形的性质,解题时应
注重识别全等三角形中的对应边,要根据对应角
去找对应边.
知识梳理
例题 2:如图所示,△ 沿直线 向右平移线段 长的距离后与△

重合,则△△

;相等的角有
∠ = ∠
,相等的边有
, =
边,写出其他对应边和对应角.
【解答】对应边:AN与AM,BN与CM;
对应角:∠BAN与∠CAM,∠ANB与∠AMC.

人教版全等三角形的判定 PPT

人教版全等三角形的判定 PPT

D
B
HC
∴△DBH≌△DCH(SSS)
如图,已知AB=CD,AD=CB,E、F分别是AB,CD 的中点,且DE=BF,说出下列判断成立的理由.
①△ADE≌△CBF ②∠A=∠C
解:①∵E、F分别是AB,CD的中点( 已知)
∴AE=
1 2
AB
CF= 12CD(线段中点的定义)
又∵AB=CD
∴AE=CF
DF C
AD = CB
在△ADE与△CBF中 AE= CF
AB = CD
A EB
∴△ADE≌△CBF ( SSS )
② ∵ △ADE≌△CBF
∴ ∠A=∠C
(
全等三角形 对应角相等)
如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。
A
D
解: △ABC≌△DCB
理由如下:
B
C
AB = CD AC = BD
小明家的衣橱上镶有两块全等 的三角形玻璃装饰物,其中一块被 打碎了,妈妈让小明到玻璃店配一 块回来,请你说说小明该怎么办?
互动探究
1.只给一个条件(一组对应边相等或一组对应角相等)。 ①只给一条边:
②只给一个角:
60°
60°
60°
2.给出两个条件:
①一边一内角:
30° ②两内角:
30°50° ③两边:
∴ ∠ A= ∠ C (全等三角形的对应角相等)
4、如图,AB=AC,BD=CD,BH=CH,图中
有几组全等的三角形?它们全等的条件是什么A?
解:有三组。
在△ABH和△ACH中 ∵AB=AC,BH=CH,AH=AH ∴△ABH≌△ACH(SSS);
在△ABH和△ACH中

数学人教版八年级上册12.1 全等三角形.1 全等三角形(共47张PPT)

数学人教版八年级上册12.1 全等三角形.1 全等三角形(共47张PPT)

BD
C
想一想: 能否根据下列全等式说出两个
三角形的对应边和对应角
1.△BDC ≌ △FHG
BD=FH DC=HG BC=FG ∠B=∠F ∠D=∠H ∠C=∠G
2.△AOC ≌ △BOD
AO=BO OC=OD AC=BD ∠A=∠B ∠O=∠O ∠C=∠D
请小心:在具体图形中,有时角不能用一个 大写字母表示。
沿BC方向平移一个单位得
到△DEF,则四边形ABFD的
周长为_1_0_____
BE C F
如图△ABD≌ △EBC, AB=3cm,BC=5cm,求DE的长.
D
E
A
B
C
课堂小结
1.能够重合的两个图形叫做 全等形。 互相重合的顶点叫做 对应顶点 。
其中 互相重合的边叫做 对应边 。 互相重合的角叫做 对应角 。
请观察,并说出你看到的现象
请观察,并说出你看到的现象 结论:这两个三角形重合
学习目标 1.掌握全等形及全等三角形的相关 概念。
2.会找全等三角形的对应顶点、对 应角及对应边。
3.理解并掌握全等三角形的性质。
“全等”用符号≌“
A
”来表示 读作“全等于”
D
B
CE
F
三角形ABC 全等于三角形DEF
A
B
● O
D
C
思考题:
如图,已知⊿ABC≌⊿ADE,且∠CAD=
100,∠DFB=900,∠B=250,求∠E和
∠DGB的度数。
A
E
F G
C
B D
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能力提高
如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE. 求证:△ACD≌△CBE.
B E
D
C
A
人教版数 学《全 等三角 形》全 文课件1
课堂总结 人教版数学《全等三角形》全文课件1
证明两个三角形全等的基本思路:
(1):已知两边
找第三边 (SSS) 找夹角 (SAS)
找是否有直角 (HL)
证明:∵ AC⊥BC, AD⊥BD ∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中
AB BA BC AD
∴ Rt△ABC≌Rt△BAD (HL) ∴BD=AC
知识总结: 包括直角三角形
一般三角形 全等的条件:
1.定义(重合)法;
2.SSS;
解题中 3.SAS;
常用的4
种方法 4.ASA;
求证:AC=AD
D
证明:在△ABD和△ABC中
∠1=∠2 (已知)
1
∠D=∠C(已知)
A2
B
AB=AB(公共边)
∴△ABD≌△ABC (AAS)
∴AC=AD
(全等三角形对应
C
边相等)
牛刀小试
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD,垂足分别为C,D,AD=BC,
求证: BD=AC.
B ED C
在AEB和ADC中,
AB=AC
AE=AD
BE=CD
∴ △AEB ≌ △ ADC (sss)
牛刀小试
如图,AC=BD,∠CAB=∠DBA,你能 判断BC=AD吗?说明理由。
C 证明: 在△ABC与△BAD中
AC=BD
A
∠CAB=∠DBA
AB=BA
∴△ABC≌△DEF(SAS)
D B
牛刀小试
不包括其它形 状的三角形
5.AAS.
直角三角形 全等特有的条件:HL.
人教版数 学《全 等三角 形》全 文课件1
我能行
“三月三,放风筝”下图是小东同学自己做
的风筝,他根据AB=AD,BC=DC,不用度
量,就知道∠ABC=∠ADC。请用所学的
知识给予说明。
解: 连接AC
在△ABC和△ADC中, AB=AD(已知) BC=DC(已知)
如图,已知点D在AB上,点E在AC上,BE和CD相
交于点O,AB = AC,∠B = ∠C.
A
求证:BE = CD
证明 :在△ADC和△AEB中 ∠A=∠A(公共角)
D
E
AC=AB(已知)
O
∠C=∠B(已知)
B
C
∴△ADC≌△AEB(ASA)
∴BE=CD(全等三角形的对应边相等)
牛刀小试
已知,如图,∠1=∠2,∠C=∠D
AC=AC(公共边)
∴△ADC≌△ABC(SSS)
∴ ∠ABC=∠ADC (全等三角形的对应角相等)
人教版数 学《全 等三角 形》全 文课件1
人教版数 学《全 等三角 形》全 文课件1
我能行
如图,CD=CA,∠1=∠2,EC=BC. 求证:DE=AB.
人教版数 学《全 等三角 形》全 文课件1
人教版数 学《全 等三角 形》全 文课件1
找这边的另一个邻角(ASA) 已知一边和它的邻角 找这个角的另一个边(SAS
(2):已知一边一角
找这边的对角 (AAS)
已知一边和它的对角 找一角(AAS)
(3):已知两角
找两角的夹边(ASA)
已知角是直角,找一边 (HL)
找夹边外的任意边(AAS)
人教版数 学《全 等三角 形 文课件1
第12章 全等三角形(复习)
教学目标:
1、通过基本训练,巩固第十二章所学的基本内容.
2、通过练习题的学习和综合运用,加深理解第十二章所学的基 本内容,发展能力.
牛刀小试
如图,AB=AC,AE=AD,BD=CE,
求证:△AEB ≌ △ ADC。
A
证明:∵BD=CE
∴ BD-ED=CE-ED, 即BE=CD。
交流平台
本节课你还有不理解的地方吗?
人教版数 学《全 等三角 形》全 文课件1
人教版数 学《全 等三角 形》全 文课件1
布置作业:P56页 8题 9题
人教版数 学《全 等三角 形》全 文课件1
相关文档
最新文档