[整理]二次函数与实际问题最大值问题.

合集下载

实际问题与二次函数(最大值问题)

实际问题与二次函数(最大值问题)
小结:
26.3实际问题与二次函 数
1.什么样的函数叫二次函数? 形如y=ax2+bx+c(a、b、c是常数,a≠0)
的函数叫二次函数
2.如何求二次函数y=ax2+bx+c(a≠0) 的最值?有哪几种方法?写出求二 次函数最值的公式
(1)配方法求最值(2)公式法求最值
b 4ac-b 当x=- 时,y有最大(小)值 2a 4a
综上x=64时y最大,最大值为6240元
创新学习
某果园有100棵橙子树,每一棵树平均结 600个橙子.现准备多种一些橙子树以提高 产量,但是如果多种树,那么树之间的距离和 每一棵树所接受的阳光就会减少.根据经验 估计,每多种一棵树,平均每棵树就会少结5 个橙子.若每个橙子市场售价约2元,问增种 多少棵橙子树,果园的总产值最高,果园的 总产值最高约为多少?
某商品现在的售价为每件60 元,每星期可卖出300件,市 场调查反映:每涨价1元,每 星期少卖出10件;每降价1元, 每星期可多卖出20件,已知 商品的进价为每件40元,如 何定价才能使利润最大?
请大家带着以下几个问题读题:
(1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是 自变量?哪些量随之发生了变化?
解:设商品售价为x元,则x的取值范围 为40(1+40%)≤x≤40(1+60%) 即56≤x≤64
若涨价促销,则利润 y=(x-40)[300-10(x-60)] =(x-40)(900-10x) =-10x2-1300x-36000 =-10[(x-65)2-4225]-36000 =-10(x-65)2+6250 ∵60≤x≤64 ∴由函数图像或增减性知当 x=64时y最大,最大值为6240元 若降价促销,则 利润y=(x-40)[300+20(60-x)] =(x-40)(1500-20x) =-20(x2-115x+3000) =-20(x-57.5)2+6125 ∵56≤x≤60 ∴由函数图像或增减性知 当x=57.5时y最大,最大 值为6125元

(完整版)二次函数解决实际问题归纳

(完整版)二次函数解决实际问题归纳

二次函数解决实际问题归纳及练习一、应用二次函数解决实际问题的基本思路和步骤:1、基本思路:理解问题→分析问题中的变量和常量以及它们之间的关系→用函数关系式表示它们的关系→用数学方法求解→检验结果的合理性;解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。

(1)利用二次函数解决利润最大问题此类问题围绕总利润=单件利润×销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。

例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x﹥0)①求M型服装的进价②求促销期间每天销售M型服装所获得的利润W的最大值。

(2)利用二次函数解决面积最值例:已知正方形ABCD边长为8,E、F、P分别是AB、CD、AD上的点(不与正方形顶点重合),且PE⊥PF,PE=PF问当AE为多长时,五边形EBCFP面积最小,最小面积多少?2、用二次函数解抛物线形问题常见情形具体方法抛物线形建筑物问题几种常见的抛物线形建筑物有拱形桥洞、涵洞、隧道洞口、拱形门窗等运动路线(轨迹)问题运动员空中跳跃轨迹、球类飞行轨迹、喷头喷出水的轨迹等(1)建立适当的平面直角坐标系,将抛物线形状的图形放到坐标系之中;(2)从已知和图象中获得求二次函数表达式所需条件;(3)利用待定系数法求出抛物线的表达式;(4)运用已求出抛物线的表达式去解决相关问题。

牢记(1)解决这类问题的关键首先在于建立二次函数模型,将实际问题转化为数学问题,其次是充分运用已知的条件利用待定系数法求出抛物线的表达式;(2)把哪一点当作原点建立坐标系,将会直接关系到解题的难易程度或是否可解;(3)一般把抛物线形的顶点作为坐标系的原点建立坐标系,这样得出的二次函数的表达式最为简单。

二次函数与实际问题

二次函数与实际问题

二次函数与实际问题(总11页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实际问题与二次函数一、利用函数求图形面积的最值问题一、 围成图形面积的最值1、 只围二边的矩形的面积最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1) 设矩形的一边长为 米),面积为y (平方米),求y 关于x的函数关系式;(2) 当x 为何值时,所围成的苗圃面积最大最大面积是多少解:(1)设矩形的长为x (米),则宽为(18- x )(米),根据题意,得:x x x x y 18)18(2+-=-=;又∵180,0180<x<x >x >∴⎩⎨⎧-(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9)1(2182=-⨯-=-=a b x 时,81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。

2、 只围三边的矩形的面积最值例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。

问如何围,才能使养鸡场的面积最大 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值, 即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。

3、 围成正方形的面积最值例3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少(2)两个正方形的面积之和可能等于12cm 2吗 若能,求出两段铁丝的长度;若不能,请说明理由.(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm由题意得: 17)420()4(22=-+x x解得: 4,1621==x x 当161=x 时,20-x=4;当42=x 时,20-x=16答:这段铁丝剪成两段后的长度分别是16厘米、4厘米。

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。

《实际问题与二次函数》(几何图形最值)

《实际问题与二次函数》(几何图形最值)

2023-11-08CATALOGUE目录•引言•二次函数基本概念•几何图形与二次函数•二次函数最值概念•几何图形最值问题求解•实际问题最值应用案例01引言几何图形最值问题是数学中的一个经典问题,它涉及到图形的形状、大小和位置的最优化。

在实际生活中,几何图形最值问题也有广泛的应用,例如建筑设计、城市规划、物理研究等。

课程背景介绍1课程目标23理解几何图形最值的基本概念和解决方法。

学习如何运用数学方法和计算机技术求解几何图形最值问题。

掌握常见的几何图形最值问题的建模和求解技巧。

课程大纲1. 几何图形最值的基本概念最值的定义和性质几何图形的参数化课程大纲2. 求解方法与技术问题的数学建模微积分方法课程大纲010203线性代数方法数值计算方法计算机模拟技术3. 常见的几何图形最值问题直线段的最短长度圆形的最大面积课程大纲课程大纲椭圆形的最小周长立体图形的最大体积 4. 应用案例分析010302课程大纲02城市规划中的最值问题03物理研究中的最值问题02二次函数基本概念当轴动区间定时,二次函数的最值出现在对称轴上。

具体地,如果对称轴为x=-b/2a,那么当x=-b/2a时,二次函数取得最小值y=c-b^2/4a。

当轴定区间动时,二次函数的最值出现在区间的端点或对称轴上。

具体地,如果对称轴为x=-b/2a,那么当x=-b/2a时,二次函数取得最小值y=c-b^2/4a;当x取区间端点时,二次函数取得最大值。

当轴动区间动时,二次函数的最值出现在区间的端点、对称轴或二者重合处。

具体地,如果对称轴为x=-b/2a,那么当x=-b/2a时,二次函数取得最小值y=c-b^2/4a;当x取区间端点时,二次函数取得最大值。

03几何图形与二次函数矩形与二次函数在几何图形中最值问题中有着密切的联系。

详细描述在矩形中,长和宽可以看作是二次函数图像的两个根,而面积则可看作是二次函数的顶点。

因此,矩形的最值问题可以通过二次函数来求解。

九下数学课件利用二次函数解决实际问题中的最值问题(课件)

九下数学课件利用二次函数解决实际问题中的最值问题(课件)

【归纳总结】
最大值问题的一般步骤:
(1)利用应用题中已知条件和学过有关数学公式列出关系数;
(2)把关系式转化为二次函数的关系式;
(3)求二次函数的最大值或最小值.
知识点一 根据文字语言解决问题
【变式1】某工厂2019年产品的产量为100吨,该产品产量的年平均增长
率为x(x>0),设2021年该产品的产量为y吨,则y关于x的函数表达式为
解:设药店每天获得的利润为W元,由题意得
W=(x-50)(-2x+220)=-2(x-80)2+1 800.
∵-2<0,
∴当x=80时,W有最大值,最大值是1 800.
答:每桶消毒液的销售价定为80元时,药店每天获得的利润最大,最
大利润是1 800元.
知识点二 根据函数的图像解决问题
【变式2】一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场
k=-500,

解得
5k+b=9 500,
b=12 000.
∴y=-500x+12 000.
知识点二 根据函数的图像解决问题
(2)在销售过程中要求售价不低于进价,且不高于15元/件.若某一周该商品的销
售量不少于6 000件,求这一周该商场销售这种商品获得的最大利润和售价
分别为多少?
解:根据“在销售过程中要求售价不低于进价,且不高于 15 元/
随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售
策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销
售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整
数).
(1)写出y与x的函数表达式;
知识点二 根据函数的图像解决问题

实际问题与二次函数(利用函数求面积最值问题)

实际问题与二次函数(利用函数求面积最值问题)

实际问题与二次函数利用二次函数解决面积最大问题杨店中学九4班王玉倩复习导入1.抛物线y=a x 2+bx +c 的最值问题(1)若a >0,则当x =时,y min =;(2)若a <0,则当x =时,y max =。

2. 填空(1)二次函数y=2(x −3)2+5的对称轴是,顶点坐标是,当x =时,y 的值是.(2)二次函数y=-3(x +4)2-1的对称轴是,顶点坐标是,当x =时,y 的值是.-b2a -b 2a4ac −b 24a 4ac −b 24a 直线x =3(3,5)3最小5直线x =-4(-4,-1)-4最大-13.练习:求出函数的顶点坐标和最值S=-2x2+12x=-2(x2-6x)=-2(x2-6x+9-9)=-2(x−3)2+18所以顶点坐标是(3,18),即x=3时,最大值S=18你能用这个式子想出一个符合条件的实际问题吗?学习目标:知识与技能:能根据具体几何问题中的数量关系,列出二次函数解析式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型。

过程与方法:1.从“数”(解析式)和“形”(图象)的角度理解二次函数与实际生活中“最值”问题之间的联系,体会“数形结合”的思想。

2.通过转化模型,让学生学会合作、交流。

情感态度与价值观:通过用二次函数解决实际生活中的问题,体验函数知识的实际应用价值,感受数学与人类生活的密切关系。

教学重难点:重点:应用二次函数解决几何图形中有关的最值问题难点:函数特征与几何特征的相互转化以及讨论最值在何处取得探究新知例1:如图,一边靠学校院墙,其他三边用12m 长的篱笆围成一个矩形花圃,设矩形ABCD 的边AB=x m ,面积为S m2(1)写出S 与x 之间的函数关系式;(2)当x 取何值时,面积S 最大,最大值是多少?AB CD解:(1)S=x (12-2x )x12-2xx即S=-2x 2+12x(?)(2) S=-2x 2+12x=-2(x −3)2+18 (0<x <6)即:当AB 边长为3m 时,S 的面积最大,为18m20510152002468S/m 2x /mx …12345…S…1016181610…思考:1.解决实际问题中最值问题就是求二次函数的什么量?2.对这种类型的题应该先怎么做?要注意些什么?小结实际问题数学模型(二次函数)数学问题的解(图象、性质)实际问题的解抽象(转化)求解(最值)检验合作探究如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式及自变量的取值范围;(2)当x 取何值时所围成的花圃面积最大,最大值时多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.(提示:注意第(2)问与第(3)问区别)ABCDxxx x 24-4x解:(1)∵AB 的长为x 米,篱笆长为24米,∴花圃的宽为(24-4x )米∴S=x (24-4x )=-4x 2+24x (0<x <6)(2)当x =-b2a=3m 时,S 最大值=4ac−b 24a=36m 2(3)∵墙的可用长度为8米,∴0<24-4x ≤8,∴4≤x <6∴当x =4m 时, S 最大值=32m 2.归纳总结求实际问题极值的一般步骤:(1)求出函数解析式,写出自变量取值范围;(2)画出大致图像;(3)用配方法或者公式法求最大值或最小值,或根据自变量的取值范围求最大值或最小值.1.本节课学习的主要内容是什么?2.学习过程中的数学思想有哪些?(1)数学建模思想;(2)数形结合思想课后巩固书:习题22.3 复习巩固第3、4题课时练:第47页要点突破1;第48页要点突破2。

22.3实际问题与二次函数--共3课时(整理)

22.3实际问题与二次函数--共3课时(整理)

列表分析2: 总利润=单件利润×数量
总利润=单件利润×数量 (60-40+x) (300-10x)
请继续完成.
利润 6000
探究2.已知某商品的进价为每件40元,售价是 每件60元,每星期可卖出300件。市场调查反映: 如调整价格 ,每涨价一元,每星期要少卖出10 件。该商品应定价为多少元时,商场能获得最 大利润? 分析与思考: 在这个问题中,总利润是不是一个变量? 如果是,它随着哪个量的改变而改变?
y
6 4 2
0
-4 -2 2
x
探究新知
探究1:某水产养殖户用长40m的围网,在水库中 围一块矩形的水面,投放鱼苗,要使围成的水面 面积最大,它的长应是多少米?
解:设矩形的长为xm,则宽为(20-x)m,根据 题意得: y=x(20-x)=-x2 +20x (0<x<20)
∵a= -1<0 ∴当x= -b/2a =10时,y最大=100m2 .
∴此球不能投中
y ax 4 4
2
(0≤x≤8)
20 抛物线经过点 0, 9 20 2 a0 4 4 9
探究延伸:
若假设出手的角度和力度都不变, 则如何才能使此球命中?
(1)跳得高一点 (2)向前平移一点
①在出手角度和力度都不变的情况下,小明的出手 高度为多少时能将篮球投入篮圈?
B
2.2
F
0.7
E x D
CO
0.4
1.如图,一单杠高2.2米,两立柱 之间的距离为1.6米,将一根绳子 的两端栓于立柱与铁杠结合处, 绳子自然下垂呈抛物线状。一身 高0.7米的小孩站在离立柱0.4米处, A 其头部刚好触上绳子,求绳子最 低点到地面的距离。

实际问题与二次函数商品利润最大问题

实际问题与二次函数商品利润最大问题

实际问题与二次函数商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x档的产品一天的总利润为y元,则有y=[10+2(x-1)][76-4(x -1)]=-8x2+128x+640=-8(x-8)2+1152.当x=8时,y最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.。

二次函数的实际应用----最值问题以及设计方案问题

二次函数的实际应用----最值问题以及设计方案问题

二次函数的实际应用——最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,a b ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小1.二次函数c 中,2b ac =,且0x =时4y =-,则( ) A.4y =-最大 B.4y =-最小 C.3y =-最大 D.3y =-最小2..已知二次函数22)3()1(-+-=x x y ,当x =_________时,函数达到最小值。

3..若一次函数的图像过第一、三、四象限,则函数()A.最大值B..最大值C.最小值D.有最小值4.若二次函数2()y a x h k =-+的值恒为正值, 则 _____. A. 0,0a k <> B. 0,0a h >> C. 0,0a k >> D. 0,0a k << 5.函数92+-=x y 。

当-2<X<4时函数的最大值为6.若函数322-+=x x y ,当24-≤≤-x 函数值有最 值为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(3分) (2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3分)(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?(4分)2.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式;(2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)?类型二1.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。

二次函数与最值问题练习题(含答案)

二次函数与最值问题练习题(含答案)

二次函数与最值 题集一、实际问题中的最值(1)(2)1.如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为米的篱笆围成,若墙长为米,设这个苗圃垂直于墙的一边长为米.苗圃园若苗圃园的面积为平方米,求的值.若平行于墙的一边长不小于米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.【答案】(1)(2).有,当时,取得最大值,最大值为.当时,取得最小值,最小值为.【解析】(1)(2)由题意,得:平行于墙的一边长为,根据题意,得:,解得:或,∵,∴.∴.∵矩形的面积,且,即,∴当时,取得最大值,最大值为.当时,取得最小值,最小值为.【标注】【知识点】二次函数的几何问题2.(1)(2)某校在基地参加社会实践活动中,基地计划新建一个矩形的生物园地,一边靠旧墙(墙的最大可用长度为米),另外三边用总长米的不锈钢栅栏围成,与墙平行的一边留一个宽为米的出入口.如图所示,设米.若这个生物园地的面积为平方米,求出与之间的函数关系式,并写出自变量的取值范围.当为多少米时,这个生物园地的面积最大,并求出这个最大面积.【答案】(1)(2).为米时面积最大,最大为平方米.【解析】(1)(2)由题意可知∴∴.当时有最大值平方米.故当为米时,生物园地面积最大,最大面积为平方米.【标注】【知识点】二次函数的几何问题3.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为,设两饲养室合计长,总占地面积为.(1)(2)求关于的函数表达式和自变量的取值范围. 若要使两间饲养室占地总面积达到,则各道墙的长度为多少?占地总面积有可能达到吗?【答案】(1)(2)总占地面积为,.占地总面积达到时,道墙长分别为米、米或米、米;占地面积不可能达到平方米.【解析】(1)(2)∵围墙的总长为米,间饲养室合计长米,∴饲养室的宽米,∴总占地面积为,.当两间饲养室占地总面积达到平方米时,则,解得:或.答:各道墙长分别为米、米或米、米.当占地面积达到平方米时,则,方程的,所以此方程无解,所以占地面积不可能达到平方米.【标注】【知识点】根据条件列二次函数关系式(1)(2)4.某果园有颗橙子树,平均每颗树结个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结个橙子,假设果园多种了棵橙子树.直接写出平均每棵树结的橙子个数(个)与之间的关系.果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【答案】(1)(2)().果园多种棵橙子树时,可使橙子的总产量最大,最大为个.【解析】(1)(2)平均每棵树结的橙子个数(个)与之间的关系为:().设果园多种棵橙子树时,可使橙子的总产量为,则,则果园多种棵橙子树时,可使橙子的总产量最大,最大为个.【标注】【知识点】二次函数的利润问题(1)(2)(3)5.已知某商品每件的成本为元,第天的售价和销量分别为元/件和件,设第天该商品的销售利润为元,请根据所给图象解决下列问题:求出与的函数关系式.问销售该商品第几天时,当天销售利润最大?最大利润是多少.该商品在销售过程中,共有多少天当天的销售利润不低于元.【答案】(1)(2)(3)当时,,当时,.该商品第天时,当天销售利润最大,最大利润是元.共天每天销售利润不低于元.【解析】(1)当时,设与的函数关系式为,∵当时,,当,,∴,解得:∴,∴当时,;当时,.(2)(3),∴当时取得最大值元;∵;∴当时,随的增大而减小,当时,,综上所述,该商品第天时,当天销售利润最大,最大利润是元.当时,,解得,因此利润不低于元的天数是,共天;当时,,解得,因此利润不低于元的天数是,共天,所以该商品在销售过程中,共天每天销售利润不低于元.【标注】【知识点】函数图象与实际问题最大(1)(2)(3)6.某商场将进价为元的冰箱以元售出,平均每天能售出台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低元,平均每天就能多售出台.假设每台冰箱降价元,商场每天销售这种冰箱的利润是元,请写出与之间的函数表达式.(不要求写自变量的取值范围)商场要想在这种冰箱销售中每天盈利元,同时又要使百姓得到实惠,每台冰箱应降价多少元?每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【答案】(1)(2)(3).每台冰箱应降价元.每台冰箱的售价降价元时,商场的利润最大,最大利润是元.【解析】(1)(2)根据题意,得,即.由题意,得.整理,得.解这个方程,得,.(3)要使百姓得到实惠,取.所以,每台冰箱应降价元.对于,当时,.所以,每台冰箱的售价降价元时,商场的利润最大,最大利润是元.【标注】【知识点】二次函数的利润问题最大值(1)(2)7.在新型城镇化型过程中,为推进节能减排,发展低碳经济,我市某公司以万元购得某项节能产品的生产技术后,再投入万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件元.经过市场调研发现,该产品的销售单价定在元到元之间较为合理,并且该产品的年销售量(万件)与销售单价(元)之间的函数关系式为:(年获利年销售收入生产成本投资成本)当销售单价定为元时,该产品的年销售量为多少万件?求该公司第一年的年获利(万元)与销售单价(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?【答案】(1)(2)投资第一年,公司亏损,最少亏损万【解析】(1)(2)把代入,得(万件)当销售单价定为元时,该产品的年销售量为万件.①当时,故当时,最大为,即公司最少亏万.②当时,故当时,最大为,即公司最少亏万.综上,投资第一年,公司亏损,最少亏损万.【标注】【知识点】二次函数的利润问题二、几何问题中的最值(1)(2)1.已知,如图,抛物线与轴交于点,与轴交于,两点,点在点左侧.点的坐标为,.xyOxyO备用图求抛物线的解析式;若点是线段下方抛物线上的动点,求四边形面积的最大值.【答案】(1)(2)..【解析】(1)(2)∵∴∵∴∵过、∴解这个方程组,得∴抛物线的解析式为:.过点作轴分别交线段和轴于点、yOx在中,令得方程解这个方程,得,∴设直线的解析式为∴解这个方程组,得∴的解析式为:∵==设,当时,有最大值.此时四边形面积有最大值.【标注】【知识点】二次函数与面积四边形(1)(2)2.如图,二次函数的图象与轴交于点,,与轴交于点.xyO求二次函数表达式.若点是第一象限内的抛物线上的一个动点,且点的横坐标为,用含有的代数式表示的面积,并求出当为何值时,的面积最大,最大面积是多少?【答案】(1)(2).当时,的面积最大,最大面积是.【解析】(1)∵二次函数的图象与轴交于点,,∴二次函数的解析式为.(2)如图,连接,易得的解析式为.设点的坐标为,则点的坐标为,∴,,,当时,的面积最大,最大面积是.yO【标注】【知识点】二次函数与面积(1)(2)3.如图,已知经过原点的抛物线与轴的另一交点为,现将它向右平移()个单位,所得抛物线与轴交于、两点,与原抛物线交于点.求点的坐标,并判断存在时它的形状(不要求说理).在轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含的式子表示);若不存在,请说明理由.(3)设的面积为,求关于的关系式.【答案】(1)(2)(3)点的坐标为,是等腰三角形.存在,,..【解析】(1)(2)(3)令,得,.∴点的坐标为.是等腰三角形.存在.,.如图,当时,作轴于,设,∵,,∴.∴.∴.把代入,得.∵,∴.如图,当时,作轴于,设∵,,∴.∴.∴.把代入,得.∵,∴.综上可得:.【标注】【知识点】二次函数与面积(1)(2)4.已知抛物线与轴交于,两点,交轴于点,已知抛物线的对称轴为,点,点,为抛物线的顶点.求抛物线的解析式.在轴下方且在抛物线上有一动点,求四边形的面积最大值.【答案】(1)(2).【解析】(1)由、关于对称轴对称,对称轴为,点,得.将、、点的坐标代入函数解析式,得,解得.(2)故抛物线的解析式为.如图,过作轴于点,交于点.设,点坐标为,.,当时,.【标注】【知识点】二次函数与面积四边形最大(1)(2)(3)5.如图,二次函数(为非负整数)与轴交于、两点,与轴交于点.求抛物线的解析式.在直线上找一点,使的周长最小,并求出点的坐标.点在抛物线上,且在第二象限内,设点的横坐标为,问为何值时,四边形的面积最大?并求出这个最大面积.【答案】(1)(2)(3)时,四边形的面积最大,这个最大面积是.【解析】(1)(2)(3)由题意得,,解得:,∵是非负整数,∴或,当时,二次函数的解析式为,当时,二次函数的解析式为,∵图象与轴交于点和点,点、分别在原点的左、右两边,∴当时,二次函数的解析式为不符合题意,∴二次函数的解析式为.如图,作点关于的对称点连接交对称轴于点,.由得点坐标为.当时,.解得,,∴,.设的解析式为,图象过点,,得,解得,∴的解析式为,当时,,点坐标为 时,的周长最小.如图,设点坐标为(),作轴于点,由图可知:四边形梯形.因此时,四边形的面积最大,这个最大面积是.【标注】【知识点】二次函数与面积(1)(2)6.如图,已知抛物线经过,两点.x24y–22O 求该抛物线的解析式.在直线上方的该抛物线上是否存在一点,使得的面积最大?若存在,求出点的坐标及面积的最大值;若不存在,请说明理由.【答案】(1)(2).存在,,面积的最大值为.【解析】(1)(2)把,代入抛物线的解析式得:,解得:,则抛物线解析式为.存在,理由如下:设的横坐标为,则点的纵坐标为,过作轴的平行线交于,连接,,如图所示,x24y–22O 由题意可求得直线的解析式为,∴点的坐标为,∴,∴的面积,当时,,∴此时,面积的最大值为.【标注】【知识点】二次函数与面积最大(1)(2)(3)7.已知二次函数的图象和轴交于点、,与轴交于点,直线上方的抛物线上一动点,抛物线的顶点是点.图求直线的解析式.求面积的最大值及点的坐标.当的面积最大时,在直线上有一动点,使得的周长最小,求周长最小时点的坐标.图【答案】(1)(2)(3).,..【解析】(1)(2)(3)过抛物线上动点作轴的垂线,垂足是,线段交线段于,设,,,∵,∴当时,,此时.关于直线的对称点连接,∵,,∴,∴联立,解得,最大∴.【标注】【知识点】二次函数与动点问题(1)(2)(3)8.如图,抛物线与轴的两个交点分别为、,与轴交于点,顶点为,为线段的中点,的垂直平分线与轴、轴分别交于、.xyO 求抛物线的函数表达式,并写出顶点的坐标.在直线上是否存在一点,使周长最小,若存在,请求出最小周长和点的坐标;若不存在,请说明理由.若点在轴上方的抛物线上运动,当运动到什么位置时,面积最大?并求出最大面积.【答案】(1)(2)(3)抛物线的解析式为,顶点的坐标为.存在;的周长最小值为,.时,的面积最大,最大面积为.【解析】(1)(2)由题意,得,解得,,所以抛物线的解析式为,顶点的坐标为.设抛物线的对称轴与轴交于点,(3)∵垂直平分,∴关于直线的对称点为,连结交于于一点,xyO∴这一点为所求点,使最小,即最小为.而,∴的周长最小值为.设直线的解析式为,则,解得,,所以直线的解析式为.由于,,,得,所以,,.同理可求得直线的解析式为,联立直线与的方程,解得使的周长最小的点.设,.过作轴的垂线交于,xyO则,所以,即当时,的面积最大,最大面积为,此时.【标注】【知识点】二次函数的几何问题(1)(2)(3)9.如图,已知抛物线与一直线相交于、两点,与轴相交于点,其顶点为.求抛物线及直线的函数关系式.若是抛物线上位于直线上方的一个动点,求的面积的最大值及此时点的坐标.在对称轴上是否存在一点,使的周长最小.若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.备用图【答案】(1)(2);.;.(3)在对称轴上存在一点,使的周长最小,周长的最小值为.【解析】(1)(2)(3)将,代入,得:,解得:,∴抛物线的函数关系式为;设直线的函数关系式为,将,代入,得:,解得,∴直线的函数关系式为.过点作轴交轴于点,交直线于点,过点作轴交轴于点,如图所示.图设点的坐标为,则点的坐标为,点的坐标为,∴,,,∵点的坐标为,∴点的坐标为,∴,∴,∵,∴当时,的面积取最大值,最大值为,此时点的坐标为.当时,,∴点的坐标为,∵,∴抛物线的对称轴为直线,∵点的坐标为,∴点,关于抛物线的对称轴对称,令直线与抛物线的对称轴的交点为点,如图所示.图∵点,关于抛物线的对称轴对称,∴,∴,∴此时周长取最小值,当时,,∴此时点的坐标为,∵点的坐标为,点的坐标为,点的坐标为,∴,,∴,∴在对称轴上存在一点,使的周长最小,周长的最小值为.10.如图,已知抛物线经过、两点,与轴交于点.(1)(2)(3)求抛物线的解析式.点是对称轴上的一个动点,当的周长最小时,直接写出点的坐标和周长最小值.点为抛物线上一点,若,求出此时点的坐标.【答案】(1)(2)(3).点为,周长的最小值为.点的坐标为或或.【解析】(1)(2)(3)根据题意,将、代入抛物线,可得:,解得:,所以,抛物线为:.点为,周长的最小值为.∵抛物线为:,∴抛物线的对称轴为直线,点、关于直线对称,当的周长最小时,则需要最小,根据利用轴对称且最小值的方法,可知点是与对称轴的交点,令,则,所以,点坐标为,设为直线,把,代入直线解析式,可得:,解得:,所以,直线为,将代入,可得:,∴点为,此时,,,∴周长的最小值为:.∵,,∴,∵,,∴点的纵坐标为或,令,解得:,,∴点的坐标为:或,令,解得:,∴点的坐标为:.综上所述:点的坐标为:或或.【标注】【知识点】二次函数与轴对称问题。

二次函数在实际生活中的应用与实际问题分类整理

二次函数在实际生活中的应用与实际问题分类整理

二次函数在实际生活中的应用【经典母题】某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x,y=(x-9)(1 360-80x)=-80x2+2 080x-12 240(10≤x≤14).-b2a=-2 0802×(-80)=13,∵10≤13≤14,∴当x=13时,y取最大值,y最大=-80×132+2 080×13-12 240=1 280(元).答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元.【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论.【中考变形】1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示.(1)图中点P所表示的实际意义是__当售价定为35元/件时,销售量为300件__;销售单价每提高1元时,销售量相应减少__20__件;(2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1+1_000__;自变量x 的取值范围为__30≤x ≤50__;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少? 解:(1)图中点P 所表示的实际意义是:当售价定为35元/件时,销售量为300件;第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35-30)=20(件).(2)设y 与x 之间的函数表达式为y =kx +b ,将点(30,400),(35,300)代入,得⎩⎨⎧400=30k +b ,300=35k +b ,解得⎩⎨⎧k =-20,b =1 000,∴y 与x 之间的函数表达式为y =-20x +1 000. 当y =0时,x =50,∴自变量x 的取值范围为30≤x ≤50. (3)设第二个月的利润为W 元,由已知得W =(x -20)y =(x -20)(-20x +1 000)=-20x 2+1 400x -20 000 =-20(x -35)2+4 500,∵-20<0,∴当x =35时,W 取最大值4 500.答:第二个月的销售单价定为35元时,可获得最大利润,最大利润是4 500元.2.[2016·宁波一模]大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a 元,市场调查发现日销售量y (件)与销售价x (元/件)之间存在一次函数关系,如下表所示:若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费用);(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?解:(1)由表可知,y 是关于x 的一次函数,设y =kx +b , 将x =110,y =50;x =115,y =45分别代入, 得⎩⎨⎧110k +b =50,115k +b =45,解得⎩⎨⎧k =-1,b =160, ∴y =-x +160(0<x ≤160);(2)由已知可得50×110=50a +3×100+200, 解得a =100.设每天的毛利润为W 元, 则W =(x -100)(-x +160)-2×100-200 =-x 2+260x -16 400 =-(x -130)2+500,∴当x =130时,W 取最大值500.答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;(3)设需t 天才能还清集资款, 则500t ≥50 000+0.000 2×50 000t , 解得t ≥102249.∵t 为整数,∴t 的最小值为103天. 答:该店最少需要103天才能还清集资款.3.[2017·青岛]青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨1.下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变,经市场调查发现,如果豪华间仍旧实行去年旺季的价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?(注:上涨价格需为25的倍数)解:(1)设淡季每间的价格为x 元,依题意得 40 000x ⎝ ⎛⎭⎪⎫1+13=24 000x +10,解得x =600, ∴酒店豪华间有40 000x ⎝ ⎛⎭⎪⎫1+13=40 000600×⎝ ⎛⎭⎪⎫1+13=50(间), 旺季每间价格为x +13x =600+13×600=800(元). 答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间的价格上涨x 元,日总收入为y 元, y =(800+x )⎝ ⎛⎭⎪⎫50-x 25=-125(x -225)2+42 025, ∴当x =225时,y 取最大值42 025.答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42 025元.4.某公司经营杨梅业务,以3万元/t 的价格向农户收购杨梅后,分拣成A ,B 两类,A 类杨梅包装后直接销售,B 类杨梅深加工再销售.A 类杨梅的包装成本为1万元/t ,根据市场调查,它的平均销售价格y (万元/t)与销售数量x (x ≥2)(t)之间的函数关系式如图Z8-2,B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位:t)之间的函数关系是s =12+3t ,平均销售价格为9万元/t.图Z8-2(1)直接写出A 类杨梅平均销售价格y 与销售量x 之间的函数关系式; (2)第一次该公司收购了20 t 杨梅,其中A 类杨梅x t ,经营这批杨梅所获得的毛利润为W 万元(毛利润=销售总收入-经营总成本). ①求W 关于x 的函数关系式;②若该公司获得了30万元毛利润,问:用于直接销售的A 类杨梅有多少吨? (3)第二次该公司准备投人132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润. 解:(1)y =⎩⎨⎧-x +14(2≤x <8),6(x ≥8);(2)∵销售A 类杨梅x t ,则销售B 类杨梅(20-x )t. ①当2≤x <8时,W =x (-x +14)+9(20-x )-3×20-x -[12+3(20-x )]=-x 2+7x +48, 当x ≥8时,W =6x +9(20-x )-3×20-x -[12+3(20-x )]=-x +48,∴函数表达式为W =⎩⎨⎧-x 2+7x +48(2≤x <8),-x +48(x ≥8);②当2≤x <8时,-x 2+7x +48=30,解得x 1=9,x 2=-2,均不合题意, 当x ≥8时,-x +48=30,解得x =18.答:当毛利润达到30万元时,直接销售的A 类杨梅有18 t ; (3)设该公司用132万元共购买m t 杨梅,其中A 类 杨梅为x t ,B 类杨梅为(m -x )t ,购买费用为3m 万元. 由题意,得3m +x +[12+3(m -x )]=132, 化简,得3m =x +60.①当2≤x <8时,W =x (-x +14)+9(m -x )-132,把3m =x +60代入,得 W =-(x -4)2+64,当x =4时,有最大毛利润64万元. 此时,m =643,m -x =523;②当x ≥8时,W =6x +9(m -x )-132,由3m =x +60,得W =48,当x ≥8时,毛利润总为48万元.答:综上所述,购买杨梅共643 t ,且其中直销A 类杨梅4 t ,B 类杨梅523 t ,公司能获得最大毛利润64万元.【中考预测】某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(元)与售价x(元/件)之间的函数关系式;(2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.解:(1)由题意可得月销售利润y与售价之间的函数关系式为y=(x-30)[600-10(x-40)]=-10x2+1 300x-30 000;(2)当x=45时,600-10(x-40)=550(件),y=-10×452+1 300×45-30 000=8 250(元);(3)令y=10 000,代入(1)中函数关系式,得10 000=-10x2+1 300x-30 000,解得x1=50,x2=80.当x=80时,600-10(80-40)=200<300(不合题意,舍去),故销售价应定为50元;(4)y=-10x2+1 300x-30 000=-10(x-65)2+12 250,∴x=65时,y取最大值12 250.答:当销售价定为65元时会获得最大利润,最大利润为12 250元.二次函数与实际问题分类整理1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(拱桥问题,求最值、最大利润、最大面积等)类型一:最大面积问题例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式?当x为多长时,花园面积最大?类型二:利润问题例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为x元,(0<x≤13.5)元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)所获利润可以表示为__________________;(4)当销售单价是________元时,可以获得最大利润,最大利润是__________变式训练2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?变式训练4.某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).y (件)(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额 总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?类型三:实际抛物线问题例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。

实际问题与二次函数_详细讲解与练习(含答案)

实际问题与二次函数_详细讲解与练习(含答案)

.. .. ..初中数学专项训练:实际问题与二次函数(人教版)一、利用函数求图形面积的最值问题一、围成图形面积的最值1、 只围二边的矩形的面积最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x的函数关系式;(2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少?分析:关键是用含x 的代数式表示出矩形的长与宽。

解:(1)设矩形的长为x (米),则宽为(18- x )(米),根据题意,得:x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧- (2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值,即当9)1(2182=-⨯-=-=a b x 时,81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。

点评:在回扣问题实际时,一定注意不要遗漏了单位。

2、 只围三边的矩形的面积最值例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。

问如何围,才能使养鸡场的面积最大?分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值, 即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。

点评:如果设养鸡场的宽为x ,上述函数关系式如何变化?请读者自己完成。

实际问题与二次函数最值问题

实际问题与二次函数最值问题

实际问题与二次函数
学习目标
1.通过实际问题与二次函数关系的探究,掌握利用顶点坐标解决最大值(或最小值)问题的方法。

2.通过对生活中实际问题的研究,体会建立数学模型的思

重难点:实际问题转化为二次函数问题
一.知识再现,夯实基础.
1.求下列二次函数的最大值或最小值.
(1)二次函数y=x2+4x ,当x = 时,y有最
值为.
(2)二次函数y=-x2+2x -3,当x = 时,y有最
值为
2.图中所示二次函数图像的解析式为y=2x2+8x +1
(1)当x = 时,y有最值为
(2)若-3≤x ≤3,当x = 时,y有最小值
为; x = 时,y有最大值为
(3)又若0≤x ≤3,当x = 时,y有最小
值为; x = 时,y有最大值为
二.典例分析,讨论解疑
在美化校园的活动中,某兴趣小组想用28m长的篱笆
围成一个矩形花园
问题一,若矩形的一边长为4米,它的面积是多少?
问题二,若矩形的一边长为6米,7米,9米,它的面积分别是多少?
问题三,你能找到篱笆围成的矩形的最大面积吗?
三.展示点评,拓展提升.
1.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园面积为S
(1)求出S与x的函数关系式,
(2)求花园面积S的最大值,
(3)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值,。

《实际问题与二次函数》第一课时最值问题教案 教案

《实际问题与二次函数》第一课时最值问题教案 教案

人教版数学九年级上22.3.1第一课时教学设计坐标是 .当x= 时,函数有最_______ 值,是 .讲授新课二、探究新知问题1: 体育课上,同学们都在准备体育测试。

小明从地面竖直向上抛出一个小球,铅球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系是2305h t t =-(06t ≤≤)。

小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?活动1:教师提出问题,学生尝试回答。

(1)图中抛物线的顶点在哪里?(2)这个抛物线的顶点是否是小球运动的最高点? (3)小球运动至最高点的时间是什么时间?(4)通过前面的学习,你认为小球运行轨迹的顶点坐标是什么?教师追问:如何求出球的最大高度呢?小组内探究分析:画出2305h t t =-(06t ≤≤)的图象,借助函数图象解决实际问题:学生通过思考,循序渐进找到解答问题的突破口,从而学会运用二次函数解决实际问题。

学生分组分析讨论,并回答问题。

结合学生生活创设情境,引导学生思考实际问题。

通过追问为学生提供解决此类问题的思路,让学生在问题解决的过程中体会二次函数与实际问题的联系。

()230506h t t t=-≤≤从函数的图象看是一条抛物线的一部分可以看出,抛物线的顶点是这个函数的图象的点,也就是说,当t取顶点的横坐标时,这个函数有最值。

解:当= = 时,h有最大值244ac ba-= .∴小球运动的时间是时,小球运动到最大高度是.活动2:探究归纳如何求出二次函数y = ax 2 + bx + c 的最小(大)值?一般地,当a>0(a____)时,抛物线_____(a≠0)的顶点是最低____( )点,也就是说,当x=()时,y有最____()值是_____。

巩固练习:教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m)与水平距离x(m)之间的关系为y=﹣x2+x,由此可知铅球推出的距离是()A.10m B.3m C.4m D.2m或10m 让学生自主探究归纳,得出求二次函数的最小(大)值的结论。

初中数学实际问题与二次函数商品利润最大问题

初中数学实际问题与二次函数商品利润最大问题

初中数学实际问题与二次函数商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x档的产品一天的总利润为y元,则有y=[10+2(x-1)][76-4(x -1)]=-8x2+128x+640=-8(x-8)2+1152.当x=8时,y最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.。

初中数学几何模型与最值问题11专题-二次函数在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题11专题-二次函数在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题专题11 二次函数在实际应用中的最值问题1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中数据,用所学过一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)3、怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份;(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少.4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数:y=﹣4x+220(10≤x≤50,且x是整数),设影城每天的利润为w(元)(利润=票房收入﹣运营成本).(1)试求w与x之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t .(1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围.6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.①分别求出当和时,与的函数关系式;①设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)7、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m.设饲养室为长为x(m),占地面积为.(1)如图,问饲养室为长x为多少时,占地面积y最大?(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.8、铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.9、2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?①求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?10、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?11、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?12、某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.13、我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?专题11 二次函数在实际应用中的最值问题 答案1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元? 【解析】(1)设该种水果每次降价的百分率是x ,10(1﹣x )2=8.1,x =10%或x =190%(舍去). 答:该种水果每次降价的百分率是10%;(2)当1≤x <9时,第1次降价后的价格:10×(1﹣10%)=9,①y =(9﹣4.1)(80﹣3x )﹣(40+3x )=﹣17.7x +352,①﹣17.7<0,①y 随x 的增大而减小,①当x =1时,y 有最大值,y 大=﹣17.7×1+352=334.3(元); 当9≤x <15时,第2次降价后的价格:8.1元,①y =(8.1﹣4.1)(120﹣x )﹣(3x 2﹣64x +400)=﹣3x 2+60x +80=﹣3(x ﹣10)2+380,①﹣3<0,①当9≤x ≤10时,y 随x 的增大而增大,当10<x <15时,y 随x 的增大而减小,①当x =10时,y 有最大值,y 大=380(元).综上所述,y 与x (1≤x <15)之间的函数关系式为: 217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)设第15天在第14天的价格基础上最多可降a 元,由题意得:380﹣127.5≤(4﹣a )(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a )﹣115,a ≤0.5. 答:第15天在第14天的价格基础上最多可降0.5元.2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中数据,用所学过一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式 (2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.(日获利=日销售利润﹣日支出费用) 【解析】(1)假设P 与x 的一次函数关系,设函数关系式p kx b =+,则3060040300k b k b +=⎧⎨+=⎩,解得301500k b =-⎧⎨=⎩,①301500p x =-+,检验:当35,450x P ==,当45,150,x P ==当50,0x P ==,均符合一次函数解析式 ①所求的函数关系式301500p x =-+,(2)设日销售利润()()()3030150030w P x x x =-=-+-,即()223024004500030403000w x x x =-+-=--+,当40x =时,w 有最大值为3000元, 故这批农产口的销售价格定为40元,才能使日销售利润最大, (3)日获利()()()3030150030w p x a x x a =--=-+--, 即()()230240030150045000w x a x a =-++-+,对称轴这()2400301402302a x a +=-=+⨯-,若10a >,则当45x =时,w 有最大值,即22501502430w a =-<(不合题意), 若10a <,则当1402x a =+时,w 有最大值, 把1402x a =+代入,可得2130101004w a a ⎛⎫=-+ ⎪⎝⎭, 当2430w =时,21243030101004a a ⎛⎫=-+ ⎪⎝⎭,解得12a =,238a =(舍去), 综上所述,a 的值为2.3、怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份;(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少. 【解析】(1)、设该店每天卖出A 、B 两种菜品分别为x 、y 份,根据题意得:()()2018112020141814280x y x y +=⎧⎪⎨-+-=⎪⎩,解得:2040x y =⎧⎨=⎩,答:该店每天卖出这两种菜品共60份;(2)、设A 种菜品售价降0.5a 元,即每天卖(20+a )份,总利润为w 元,因为两种菜品每天销售总份数不变,所以B 种菜品卖(40﹣a )份,每份售价提高0.5a 元. 则w=(20﹣14﹣0.5a )(20+a )+(18﹣14+0.5a )(40﹣a )=(6﹣0.5a )(20+a )+(4+0.5a )(40﹣a )=(﹣0.5a 2﹣4a +120)+(﹣0.5a 2+16a +160) =﹣a 2+12a +280=﹣(a ﹣6)2+316, 当a =6,w 最大,w=316答:这两种菜品每天的总利润最多是316元.4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数:y =﹣4x +220(10≤x ≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本). (1)试求w 与x 之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元? 【解析】(1)根据题意,得:w =(﹣4x +220)x ﹣1000=﹣4x 2+220x ﹣1000;(2)①w =﹣4x 2+220x ﹣1000=﹣4(x ﹣27.5)2+2025,①当x =27或28时,w 取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t .(1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围.【解析】(1)221:23(1)4C y ax ax a a x a =--=--顶点(1,4)a -围绕点(,0)P m 旋转180180°的对称点为(21,4)m a -,2:(21)24C y a x m a =--++,函数的对称轴为:21x m =-,21t m =-,(2)1a =-时,21:(1)4C y x =--,①当112t ≤<时,12x =时,有最小值2154y =,x t =时,有最大值21(1)4y t =--+, 则21215(1)414y y t -=--+-=,无解; ①312t ≤≤时,1x =时,有最大值14y =,12x =时,有最小值22(1)4y t =--+,12114y y -=≠(舍去);①当32t >时,1x =时,有最大值14y =,x t =时,有最小值22(1)4y t =--+,212(1)1y y t -=-=,解得:0t =或2(舍去0),故222:(2)44C y x x x =--=-;(3)0m =,22:(1)4C y a x a =-++,点'',,,,A B D A D 的坐标分别为(1,0),(3,0),(0,3),(0,1),(3,0)a a --,当0a >时,a 越大,则OD 越大,则点'D 越靠左,当2C 过点'A 时,2(01)41y a a =-++=,解得:13a =, 当2C 过点'D 时,同理可得:1a =, 故:103a <≤或1a ≥; 当0a <时,当2C 过点'D 时,31a -=,解得:13a =-, 故:13a ≤-; 综上,故:103a <≤或1a ≥或13a ≤-.6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值; (2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示. ①分别求出当和时,与的函数关系式;①设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)【解析】(1)由题意得,解得答:a的值为0.04,b的值为30.(2)①当0≤t≤50时,设y与t的函数关系式为y=k1t+n1把点(0,15)和(50,25)的坐标分别代入y=k1t+n1,得解得①y与t的函数关系式为y=t+15当50<t≤100时,设y与t的函数关系式为y=k2t+n2把点(50,25)和(100,20)的坐标分别代入y=k2t+n2,得解得①y与t的函数关系式为y=t+30①由题意得,当0≤t≤50时,W=20000×(t+15)-(400t+300000)=3600t①3600>0,①当t=50时,W最大值=180000(元)当50<t≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250①-10<0,①当t=55时,W最大值=180250综上所述,当t为55天时,W最大,最大值为180250元.7、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m.设饲养室为长为x(m),占地面积为.(1)如图,问饲养室为长x为多少时,占地面积y最大?(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【解析】(1)①=,①当x=25时,占地面积y最大;(2)=,①当x=26时,占地面积y最大.即当饲养室长为26m时,占地面积最大.①26-25=1≠2,①小敏的说法不正确.8、铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x 天(1≤x ≤15且x 为整数)时每盒成本为p 元,已知p 与x 之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y 盒,y 与x 之间的关系如下表所示:(1)求p 与x 的函数关系式;(2)若每天的销售利润为w 元,求w 与x 的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果. 【解析】(1)设p =kx +b (k ≠0),①第3天时,每盒成本为21元;第7天时,每盒成本为25元,①321725k b k b +=⎧⎨+=⎩,解得:118k b =⎧⎨=⎩,所以p =x +18;(2)1≤x ≤6时,w =10[50﹣(x +18)]=﹣10x +320,6<x ≤15时,w =[50﹣(x +18)](x +6)=﹣x 2+26x +192,所以,w 与x 的函数关系式为210320(16)26192(615)x x w x x x -+≤≤⎧=⎨-++<≤⎩, 当1≤x ≤6时,①﹣10<0,①w 随x 的增大而减小,①当x =1时,w 最大为﹣10+320=310,6<x ≤15时,w =﹣x 2+26x +192=﹣(x ﹣13)2+361,①当x =13时,w 最大为361, 综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w =325时,﹣x 2+26x +192=325,x 2﹣26x +133=0,解得x 1=7,x 2=19,所以,7≤x ≤13时,即第7、8、9、10、11、12、13天共7天销售利润不低于325元.9、2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?①求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【解析】(1)根据题意得:2120{32205a ba b+=+=,解得:a=35,b=50;(2)①由题意得:y=(x﹣40)[100﹣5(x﹣50)]①y=﹣5x2+550x﹣14000;①①y=﹣5x2+550x﹣14000=﹣5(x﹣55)2+1125,①当x=55时,y最大=1125,①销售单价为55元时,B商品每天的销售利润最大,最大利润是1125元.10、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【解析】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,①-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.11、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【解析】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,①-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.12、某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【解析】(1)当6≤x ≤10时,由题意设y =kx +b (k =0),它的图象经过点(6,1000)与点(10,200), ①1000620010k b k b =+⎧⎨=+⎩ ,解得2002200k b =-⎧⎨=⎩, ①当6≤x ≤10时, y =-200x +2200,当10<x ≤12时,y =200,综上,y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩ (2)设利润为w 元,当6≤x ≤10时,y =-200x +2200,w =(x -6)y =(x -6)(-200x +200)=-2002172x -()+1250, ①-200<0,6①x ≤10,当x =172时,w 有最大值,此时w=1250; 当10<x ≤12时,y =200,w =(x -6)y =200(x -6)=200x -1200,①200>0,①w =200x -1200随x 增大而增大,又①10<x ≤12,①当x =12时,w 最大,此时w=1200,1250>1200,①w 的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.13、我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y (千克)与销售单价x (元)符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?【解析】(1)设一次函数关系式为(0)y kx b k =+≠由图象可得,当30x =时,140y =;50x =时,100y =①1403010050k b k b =+⎧⎨=+⎩,解得k 2b 200=-⎧⎨=⎩ ①y 与x 之间的关系式为2200(3060)y x x =-+≤≤.(2)设该公司日获利为W 元,由题意得2(30)(2200)4502(65)2000W x x x =--+-=--+①20a =-<;①抛物线开口向下;①对称轴65x =;①当65x <时,W 随着x 的增大而增大;①3060x ≤≤,①60x =时,W 有最大值;22(6065)200015=90W -⨯-+=最大值.即,销售单价为每千克60元时,日获利最大,最大获利为1950元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.3二次函数与实际问题
第1课时实际问题的最大值问题
学习目标:
1.懂得商品经济等问题中的相等关系的寻找方法;
2.利用二次函数求图形面积的最值问题;
3.会应用二次函数的性质解决问题.
重点:使学生理解二次函数的最大(小)值,并利用它解决实际问题;
难点:根据实际问题建立函数模型.
探究案
探究点:商品利润的最大问题
探究一:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:
问题1:设每件涨价x元,设商品的利润为y元.则每星期少卖_______件,实际卖出_____件,销售额是元,买进商品需要元.因此,所得利润是(写出函数式):
问题2:x的取值范围如何确定?是什么?
问题3:根据上面的分析,写出完整的解答过程,注意书写规范
思考题:
如果每降价1元,每星期可多卖出20件,商品的进价为每件40元,如何定价才能使利润最大?(根据探究一写出完整的过程)
及时练习:
1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?
2.数菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月份)与市场售价P(元/千克)的关系如下表:
这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).
(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;
(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;
(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?
(收益=市场售价-种植成本)
探究点:图形面积的最大问题
如图26-3-15所示,有长为24m的篱笆,一面利用墙(•墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为xm,面积为Sm.
(1)求S与x的函数关系式;
(2)如果要围成面积为45m2的花圃,AB的长是多少?
(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
问题1:矩形的面积如何表示?在本题中S与x之间的关系是什么?
问题2:x的取值范围如何确定?是什么?
问题3:根据上面的分析,写出完整的解答过程,注意书写规范
及时练习:课本26页习题26.3的4、6题,注意书写规范
4.
6.
训练案
1.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空间.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x元,求:
(1)房间每天入住量y(间)关于x(元)的函数关系式;
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?
2.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.
(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?
最大销售利润为多少?
3.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.
(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;
(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).
根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润为多少万元?
4.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.
(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;
(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?
5.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动.
(1)运动第t秒时,△PBQ的面积y(cm²)是多少?
(2)此时五边形APQCD的面积是S(cm²),写出S与t的函数关系式,并指出自变量的取值范围.(3)t为何值时S最小,最小值时多少?
6.小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?
7.如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG 。

(1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;
(2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,
写出x 的取值范围,并求出y 的最大值.
A D E F
G
C
(备用图(1)) A C B (备用图(2))
A
C
8. 某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请
你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?
9.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点
C ,顶点为
D .
E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于
F 、
G . (1)求抛物线的函数解析式,并写出顶点D 的坐标;
(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;
(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?
并求出最大面积.
21. (本小题满分12分)
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.
()
写出图二表示的种植成本与时间的函数关系式Q =()t g ;
(Ⅱ) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?
(注:市场售价和种植成本的单位:元/210kg ,时间单位:天)
(21)本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分.
解:(Ⅰ)由图一可得市场售价与时间的函数关系为 f (t )=⎩⎨
⎧≤<-≤≤-;
300200,3002,2000300t t t t ,
——2分
由图二可得种植成本与时间的函数关系为 g (t )=
200
1
(t -150)2+100,0≤t ≤300. ——4分 (Ⅱ)设t 时刻的纯收益为h (t ),则由题意得 h (t )=f (t )-g (t )
即h (t )=⎪⎪⎩
⎪⎪⎨⎧≤<-+-≤≤++-3002002102527200120002
175********t t t t t t ,, ——6分
当0≤t ≤200时,配方整理得 h (t )=-
200
1
(t -50)2+100, 所以,当t =50时,h (t )取得区间[0,200]上的最大值100; 当200<t ≤300时,配方整理得 h (t )=-
200
1
(t -350)2+100 所以,当t =300时,h (t )取得区间[200,300]上的最大值87.5. ——10分 综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日
开始的第50天时,上市的西红柿纯收益最大.——12分。

相关文档
最新文档