新能源材料之超导材料综述论文

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新能源材料课程论文

题目:超导材料发展综述

学院:材料学院

班级:复材0901

学号:

姓名:

目录

摘要 (2)

超导材料的定义 (2)

超导材料发展历程 (3)

特性及基本参量............................................................4-6 几类重要的超导材料......................................................6-7 超导材料的制备............................................................7-10 超导材料的应用............................................................10-12 展望与建议 (13)

参考文献 (13)

超导材料发展综述

摘要:随着人类工业社会的不断发展,对能源的需求量不断增加.然而一方面由于自然资源的不可再生性,另一方面由于能源的不合理利用造成了大量的能源损耗,导致自然资源日益紧缺并带来了巨大的经济损失..本文主要介绍了一种新型节能减排材料:超导材料----它的特性,制备工艺,应用以及对未来的展望..

关键词:超导材料,发展史,特性,制备工艺,实际应用

Abstact : With the continuous development of the human industrial society ,the demand for energy has been increasing .However ,the non-renewable characteristic of the natural energy as well as a good deal of the energy loss caused by the irrational use of the energy has lead to a growing energy shortage and has brought about a uncountable economic loss. This passage mainly presents a new energy saving and material : Superconducting Material—it’s characteristic ,it’s preparation process and its vision for the future .

一.引言

超导材料最独特的性能是电能在输送过程中几乎不会损失。超导现象从1911年被发现到现在刚好一百零一年,在百年的发展史中,超导材料经历了从高温到低温的过程,实现超导的临界温度也越来越高,一旦室温超导达到实用化和工业化,将大大降低电能的损耗性,在电路运输,交通,医疗和国防事业带来革命性发展.

二.超导材料的定义

具有在一定的低温条件下呈现出电阻等于零及排斥磁力线的性质的材料。现在已经发现28种元素和几千种合金和化合物可以成为超导体。

三.超导材料的发展历程

1911年荷兰物理学家卡米林·昂内斯( H. K. Onnes ) 首次发现汞在4.2K附近时其电阻性完全消失,第一次有了超导电性现象。

1908年荷兰莱顿实验室在昂内斯领导下终于把地球上尚未被液化的最后一个自然界气体——氦气液化了。莱顿实验室在制成液氦的基础上, 再用减压降温, 获得了4K 到1K 的极低温区, 从而具备了研究极低温下物性问题的基本条件。1911年昂内斯在实验中发现: 当冷却到氦的沸点时( 4. 2K) 电压突然降到零, 并于1913 年正式提出了超导电性的概念。

1933年, 德国的迈斯纳(W. M eissner ) 和奥赫森费尔德( R. Ochsenfeld) 发现, 当物体进入超导态后, 超导体的磁导率为零, 即超导进入一种完全抗磁性的状

态。1973年,发现了一系列A

15型超导体和三元系超导体,如Nb

3

Sn、V

3

Ga、

Nb

3Ge其中Nb

3

Ge超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用

液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。

1986年,IBM 公司苏黎世实验室的科学家阿历克斯·(K.Alex Mǖller)缪乐和乔治·贝诺兹(J.Georg Bednorz)发现了Tc达38K的La-Ba-Cu-O超导体,标志着氧化物高温超导研究的开始。

1987年,亨茨维尔亚拉巴马大学的吴茂昆及其研究生与休斯顿大学的朱经武和他的学生共同发现了钇钡铜氧,这是首个超导温度在77K以上的材料,突破了液氮“温度壁垒”,也因此引发了对新高温超导材料的研究热潮。随后,中国科学家赵忠贤以及美国华裔科学家朱经武相继在钇--钡--铜--氧系材料上把临界超导温度提高到90K以上。1987年底,又把临界温度提高到125K。

2001年日本科学家发现新型MgB2 超导体,其临界温度只有39K,但是能承受很高的电流,打破了非铜氧化合物超导体的临界温度记录。

2008年,日本的HideoHosono团队发现在铁基氮磷族氧化物(iron-based oxypnictide中,将部份氧以掺杂的方式用氟作部份取代,可使LaFeAsO1-xFx 的临界温度达到26K,在加压后(4 GPa)甚至可达到43K。其后,中国的闻海虎团队,发现在以锶取代稀土元素之后,La1-xSrxFeAsO 亦可达到临界温度25K。其后,中国的科学家陈仙辉、赵忠贤等人,发现将镧以其他稀土元素作取代,则可得到更高的临界温度;其中,SmFeAs[O0.9F0.1]可达55K。另外,将铁以钴取代(LaFe1-xCoxAsO),稀土元素以钍取代(Gd1-xThxFeAsO),或是利用氧缺陷(LaFeAsO1-δ )等方式,也都可以引发超导。此系统被简称为“111系统”。此化合物的发现,不但打破了非铜氧化合物超导体临界温度记录,其含铁却又超导的特性也受人关注。

2008年至今,随着材料科学工艺技术的发展,以美国,德国、丹麦等为代表努力开展高温超导材料工艺及应用研究。丹麦的NKT已批量制造铋系超导带材。长10m、2000 A的超导电力电缆正在研制中,下一步开发三相、50~100 m输电电缆。西门子公司计划到2003年制成20 MVA的超导变压器。用于电子学方面探伤的RF-SQUID及卫星通讯用高温超导滤波器也在试制之中。

四.特性及基本参量

1.超导材料四大特性;

相关文档
最新文档