中考数学几何变换法-旋转变换解题技巧

合集下载

【中考攻略】中考数学 专题11 几何三大变换之旋转探讨

【中考攻略】中考数学 专题11 几何三大变换之旋转探讨

轴对称、平移、旋转是平面几何的三大变换。

旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。

旋转由旋转中心、旋转的方向和角度决定。

经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上; 旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。

把一个图形绕着某一定点旋转一个角度360°/n(n 为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。

特别地,中心对称也是旋转对称的一种的特别形式。

把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。

在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。

结合2011和2012年全国各地中考的实例,我们从下面九方面探讨旋转变换:(1)中心对称和中心对称图形;(2)构造旋转图形;(3)有关点的旋转;(4)有关直线(线段)的旋转;(5)有关等腰(边)三角形的旋转;(6)有关直角三角形的旋转;(7)有关平行四边形、矩形、菱形的旋转;(8)有关正方形的旋转;(9)有关其它图形的旋转。

一、中心对称和中心对称图形:典型例题:例1. (2012天津市3分)下列标志中,可以看作是中心对称图形的是【 】【答案】B 。

【考点】中心对称图形。

【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解:A 、C 、D 都不符合中心对称的定义。

中考数学有关旋转的问题

中考数学有关旋转的问题

中考数学有关旋转的问题1. 中考旋转问题解题技巧中考数学几何题解不出答案的时候可以旋转。

初三上册数学旋转不是很重要。

在考察学生1时,会以填空题或者单项选择的形式出现。

但是它的概念和技巧比较重要的。

可以用于几何图形当中,尤其是培养动手能力。

2. 中考数学旋转问题初三的几何知识中有旋转几何,以下是旋转几何解题技巧:1. 观察题目:在解决任何几何问题时,首先应该看清楚题目并理解题目所求,然后再考虑如何解决问题。

2. 明确旋转轴:确定问题中的旋转轴,这是解决旋转几何问题的关键。

旋转轴可以是线段,可以是一个点,也可以是一个平面,这取决于题目的情况。

3. 找到旋转规律:根据旋转轴,观察图形的旋转规律,判断数学性质,如旋转角度、角度大小、对称性等等,再根据这些性质设置等式或者简化题目的复杂性。

4. 运用公式:根据旋转规律、对称性、等角关系、余角关系、内角和公式等知识去解题,并选择适合题目的计算方法如比值法、勾股定理等方法来解决问题。

5. 画图辅助:画张清晰准确的图形,并标注出旋转轴、旋转角度、已知边角等信息,辅助你解决这些题目。

6. 细心检查:解决完题目后应该再仔细检查一遍是否符合题意,有无漏选或错选的情况,这样可以避免不必要的错误。

以上就是初三旋转几何解题技巧,如果你掌握这些技巧,应该能够较好地解决旋转几何的问题。

3. 中考旋转问题解题技巧和方法根据1,是:在中考数学中,旋转题的画图方法是如下的。

1.首先,将给定的图形按照要求进行旋转,旋转的角度可以通过题目给出的条件确定。

2.根据旋转后的图形,利用纸和铅笔在试卷上画出旋转后的图形。

在画图时要确保旋转后的图形与给定图形的形状和比例相同,要严格按照题目要求进行画图。

3.可以使用直尺工具和量角器等辅助工具来帮助准确画出旋转后的图形。

4.在画完图形后,根据题目要求进行进一步的分析和计算,以得出最终的解答。

总结可以说,中考数学中的旋转题在解答时需要准确画出旋转后的图形,注意形状和比例的保持,并根据题目要求进行进一步的分析和计算。

解决旋转问题的思路方法

解决旋转问题的思路方法

解决旋转问题的思路方法1.把一个平面图形F绕平面内一点O按一定方向(顺时针或逆时针)旋转一定角度α得到图形F'的变换称为旋转变换,点O叫做旋转中心,角度α叫做旋转角.特别地,旋转角为180°的旋转变换就是中心对称变换.2.旋转变换的性质:对应图形全等,对应线段相等,对应角相等,对应线段所在直线的夹角中有一个等于旋转角,对应点到旋转中心的距离相等.中心对称的性质:连结对应点的线段都经过对称中心且被对称中心平分,对应线段平行且相等,对应角相等.3.旋转变换应用时常见的有下面三种情况:(1)旋转90°角.当题目条件中有正方形或等腰直角三角形时,常将图形绕直角顶点旋转90°.(2)旋转60°角.当题目条件中有等边三角形时,常将图形绕等边三角形一顶点旋转60°.(3)旋转度数等于等腰三角形顶角度数.当题目条件中有等腰三角形时,常将图形绕等腰三角形顶角的顶点旋转顶角的度数.例1.已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径长等于CA的扇形CEF绕点C旋转,且直线CE、CF分别与直线AB交于点M、N.(1)当扇形绕点C在∠ACB的内部旋转时,如图1所示,求证:MN2=AM2+BN2.(2)当扇形CEF绕点C旋转至如图2所示的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.规律技巧:本题利用旋转变换,将结论中的分散线段通过等量代换集中到了一个三角形中,再证明该三角形为直角三角形,运用勾股定理证明.本题还体现了动态几何问题的一个共同特征:运动的图形与静止的图形的相对位置虽然发生了变化,但有些结论仍然保持不变,且证明方法也是一样的.这也正是动态几何问题的魅力所在.本题也可通过运用轴对称变换作辅助线,将△ACM沿直线CE对折,得△DCM,连结DN.再证△DCN≌△BCN.例2.如图所示,在梯形ABCD 中,BC>AD ,AD//BC ,∠D=90°,BC=CD=12,∠ABE=45°.若AE=10,则CE 的长为 .思路分析:本题已知条件多,但比较分散,而且题设和结论间的关系也不是很明显,不易沟通,此时我们是否考虑用旋转变换来铺路架桥.规律技巧:本题中条件与结论间不能直接找到关系时,我们想到了用旋转法,但旋转法解题一般用在正方形、正三角形中较多.故本题先把直角梯形补成一个正方形,然后根据正方形中特殊三角形旋转的前后关系,使问题得到解决.本题如果通过在Rt △ADE 、Rt △CEB 和△BAE 中直接求出EC几乎是不可能的.例3.如图所示,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分∠BAF 交边BC 于点E.(1)求证:AF=DF+BE.(2)设DF=x ()01x ≤≤,△ADF 与△ABE 的面积和S 是否存在最大值?若存在,求出此时x 的值及S 的最大值;若不存在,请说明理由.思路分析:求证AF=DF+BE ,观察图形可知线段AF 、DF 、BE 不在同一个三角形内,所以考虑添加辅助线帮助解题,考虑到AF 、DF 在Rt △ADF 中,又AD 是正方形ABCD 的边长,所以试着延长CB 到点G ,使BG=DF ,又AB=AD ,进一步推理,可使问题获解.规律技巧:利用旋转构造等腰三角形是证明第(1)题的关键.通常在正方形中存在共顶角图形(或等腰三角形存在共顶点图形)时,往往利用旋转的思想;第(2)题是求S 的最大值,往往结合几何图形,实际上就是要求AF 的最大值,显然,当AF 为对角线时取得最大值.由此可见,恰当的数形结合,能简洁明了地解决问题.。

中考数学复习指导:图形旋转变换方法归纳类比

中考数学复习指导:图形旋转变换方法归纳类比

图形旋转变换方法归纳类比在初中数学阶段,图形的旋转变换既是学习的重点,又是考试的难点,学生对此类问题往往感到比较困惑.其实通过类比、归纳这类图形旋转变换问题,可以帮助我们突破思维瓶颈,使问题得以解决.一、常规问题彰显方法图形的旋转是一种基本的图形变换,旋转变换前后的图形全等是旋转变换的基本性质.把一个图形绕某一点顺时针(或逆时针)旋转一定的角度构成新的图形,利用旋转变换前后图形全等的性质,得到对应边相等,对应角相等,这是解决问题的有效策略之一例1 如图1,P 是正方形ABCD 内的一点,将ABP ∆绕点B 顺时针方向旋转后能与CBQ ∆重合,若BP =3,求PQ 的长.图1分析 利用图形旋转的性质得ABP ∆≌,3,CBQ BP BQ ∆==90PBQ ABC ∠=∠=︒ .在Rt PBQ ∆中,利用勾股定理即可求出PQ = 例2 如图2,点O 是等边ABC ∆内一点,110,AOB BOC α∠=︒∠=,将BOC ∆绕点C 顺时针旋转60°得ADC ,连结OD .①试说明COD ∆是等边三角形;②当150α=︒时,试判断AOD ∆的形状,并说明理由;③探究:当α为多少度时,AOD ∆为等腰三角形.图2分析 ①因为BOC ∆旋转得ADC ∆, 所以BOC ∆≌ADC ∆,得,CO CD BCO ACD =∠=∠.又60,60BCA OCD ∠=︒∴∠=︒ ,COD ∴∆是等边三角形;②150α=︒ ,150ADC BOC ∴∠=∠=︒,又COD ∆ 是等边三角形,60,1506090C D O A D O A D C O D C ∴∠=︒∠=∠-∠=︒-︒=︒, AOD ∴∆是直角三角形;③在AOD ∆中, 36036011060AOD AOB BOC COD α∠=︒-∠-∠-∠=︒-︒--︒190α=︒-,60ADO ADC ODC α∠=∠-∠=-︒,180180(190)(60)50OAD AOD ADO αα∠=︒-∠-∠=︒-︒---︒=︒.若AO AD =,则AOD ADO ∠=∠,19060,125ααα︒-=-︒=︒;若OA OD =,则OAD ADO ∠=∠,5060,110αα︒=-︒=︒;若DA DO =,则OAD AOD ∠=∠,50190,140αα︒=︒-=︒.点评 通过图形的旋转变换构造等腰直角三角形和等边三角形这两种特殊的三角形,为利用勾股定理及等边三角形的判定方法创造了条件,使问题很快获解.二、问题探究孕育思想在图形的旋转问题中,能否掌握和灵活运用旋转变换的性质,是解题的关键.例3 如图3,点P 是等边ABC ∆内的一点,PB =2,PC =1,150BPC ∠=︒,求PA 的 长.图3分析 将PAB ∆以点B 为旋转中心顺时针旋转60°,得到DCB ∆.PAB ∆ ≌DCB ∆,,,PB BD PA CD ∴==60PBD ABC ∠=∠=︒,B D P ∴∆是等边三角形,2,60PD PB BPD ==∠=︒.又150,90,BPC DPC ∠=︒∴∠=︒在Rt DPC ∆中,2,1,PD PC ==利用勾股定理得,CD PA =∴=例4 如图4,在ABC ∆中,AB AC =, D 为ABC ∆内一点,且DBC ∆为等边三角形.①求证:直线AD 垂直平分BC ;②若以AB 为一边,在AB 的右侧画等边ABE ∆;连结DE ,试判断以DA 、DB 、DE 三条线段为三边能否构成直角三角形,并说明理由.图4分析 ①DBC ∆ 为等边三角形,DB DC =,利用全等三角形“边边边”的判定定理,可证ADC ∆≌ADB ∆,得BAD CAD ∠=∠,延长AD 交BC 于点F ,利用等腰三角形三线合一的性质知,直线AD 垂直平分BC . ②连结CE ,利用全等三角形“边角边”的判定定理,可证ABD ∆≌EBC ∆,得AD EC =,所以,以DA 、DB 、DE 三条线段的长为三边构成的三角形,即DCE ∆.由①得,DF 垂直平分BC ,30,150BDF ADB ECB ∴∠=︒∠=∠=︒.又60DCB ∠=︒ , 90,D C E D C E ∴∠=︒∆为直角三角形,即以DA 、DB 、DE 三条线段为三边能构成直角三角形.点评 以上两题都是利用图形旋转的方法,把有公共顶点的三条线段置入在同一个三角形中、通过计算、验证得到所构造的三角形为直角三角形.这种通过图形的旋转变换,把“发散式”的三条线段围成一个直角三角形,从而建立边角关系,是解决这类问题的有效途径之一.通过此类问题的探究和训练,能拓展思维,成功找到解决问题的方法.三、归纳类比提练思想利用图形的旋转变换构造全等三角形,有利于整合已知条件,把同一直线上的三条线段置入同一个三角形中,有利于找到解决问题的突破口.例5 在正方形ABCD 中,BD 为对角线,点P 从点A 出发,沿射线AB 运动,连结PD过点D 作DE PD ⊥交直线BC 于点E ,若直线PE 分别交直线BD 、CD 于点M 、N ,PM =3 , EN =4,求PD 的长.图5 分析 如图5,当点P 在AB 上时,在AD 上取一点G ,使DG DN =,连结PG.由90ADC PDE ∠=∠=︒,得GDP NDE ∠=∠,利用全等三角形“边角边”的判定定理,得GDP ∆≌NDE ∆,4,PG NE GPD NED ∴==∠=∠,同理,利用全等三角形“边角边”的判定定理,得ADP ∆≌CDE ∆,,A P D C E D A P G CE N ∴∠=∠∴∠=∠. 90,90,CEN BPE GPM ∠+∠=︒∠=︒∴在Rt PGM ∆中,利用勾股定理可求得5GM =.因为BD 是正方形ABCD 的对角线,利用全等三角形“边角边”的判定定理,得 GDM ∆≌NDM ∆,5,35412GM MN PE PM MN NE ∴==∴=++=++=.又因为PDE ∆是等腰直角三角形,利用勾股定理,可求得PD = 如图6,当点P 在AB 延长线上时,在DA 延长线上取一点G ,使DG DN =,连结,PG GM .90,ADC PDE ∠=∠=︒ 得GDP NDE ∠=∠,利用全等三角形“边角边”的判定定理,得GDP ∆≌NDE ∆,4,PG NE GPD NED ∴==∠=∠,同理,利用全等三角形“边角边”的判定定理,得ADP ∆≌CDE ∆,,APD CED APG CEN ∴∠=∠∴∠=∠.90,90CEN BPE GPE ∠+∠=︒∠=︒ ,∴在Rt PGM ∆中,得用勾股定理,可求得5GM =.因为BD 是正方形ABCD 的对角线,利用全等三角形“边角边”的判定定理,得 GDM ∆≌NDM ∆, 5,GM MN ∴==532P N M N P M ∴=-=-=,246PE PN EN =+=+=.又因为PDE ∆是等腰直角三角形,利用勾股定理,可求得PD =图6点评点P在射线AB上存在两种情况,一种情况点P在正方形边AB上,另一种情况点P在射线AB上,但在正方形外.这两种情况仅是图形发生一定的变化,而已知条件不变,因此在解决问题过程中,两题的解题思路基本不变,这是探究问题的常用方法.我们在解决此类问题时,可以从简单、直观的图形入手,然后根据简单图形解决问题的方法和思路,在复杂图形中寻找解决问题的途径,从而有的放矢地解决问题.。

初中几何旋转解题技巧

初中几何旋转解题技巧

初中几何旋转解题技巧初中几何旋转解题技巧几何旋转是初中数学中的一个重要内容,也是高中数学的基础。

在初中阶段,我们需要掌握一些基本的几何旋转解题技巧。

下面将从基本概念、性质、方法和例题四个方面进行详细介绍。

一、基本概念1. 旋转轴:平面内一条直线,称为旋转轴。

2. 旋转角度:以旋转轴为轴心,将平面内的点按照一定方向绕着这条直线旋转的角度,称为旋转角度。

3. 顺时针和逆时针:以旋转轴为观察点,看待平面内的点按照顺时针或逆时针方向绕着这条直线旋转。

4. 对称轴:平面内一条直线或一个点,使得对于任意平面内点P,在对称轴上有一个与P关于该对称轴对称的点P'。

二、性质1. 对称性:几何图形经过某种变换后仍保持不变,则该变换具有对称性。

2. 不变性:几何图形在某种变换下保持不变,则该图形具有不变性。

如正方形在旋转变换下仍为正方形。

3. 对称轴上的点:对称轴上的点不动。

4. 对称轴上的线段:对称轴上的线段不动,长度不变。

5. 旋转角度:旋转角度是360度的整数倍时,几何图形保持不变。

三、方法1. 画图法:在解题过程中,我们可以通过画图来辅助理解并找到旋转中心和对称轴。

画出几何图形后,再根据题目所给条件进行旋转操作,最后求出所需答案。

2. 利用性质法:在解题过程中,我们可以利用几何图形的性质来推导出所需答案。

如利用正方形的对称性,在进行旋转操作后求出新位置的坐标。

3. 利用公式法:在解题过程中,我们可以利用几何公式来计算所需答案。

如利用勾股定理来求解坐标距离等问题。

四、例题1. 如图,在平面直角坐标系中,$A(2,1)$关于直线$x=1$逆时针旋转90度得到点B,则点B坐标为()解析:首先画出点A和直线$x=1$;然后确定该直线为旋转轴,按照逆时针方向旋转90度得到点B;由于旋转轴为直线$x=1$,因此点B的横坐标为1;根据旋转的性质可知,点A与点B关于直线$x=1$对称,因此点A和点B的纵坐标相等且相反,即点B的纵坐标为-2。

初中数学旋转问题解题技巧

初中数学旋转问题解题技巧

初中数学旋转问题解题技巧
1. 嘿,你知道吗?遇到旋转问题别慌张!比如像钟表指针的转动,那就是旋转呀!咱就拿这个例子说,看到旋转角,那就是关键线索啊,可别小瞧它!
2. 同学们,旋转问题里找对应边对应角很重要哦!就好像拼图似的,得把它们都对上才行。

比如说一个三角形旋转后,那对应的边和角不就得赶紧找到呀!
3. 哎呀呀,旋转图形里的中心对称点可得看准了!你想想看,就像游乐场的摩天轮中心一样重要呢!比如给定一个图形绕着某个点旋转,那这个点不就是核心嘛!
4. 嘿,注意旋转方向呀!顺时针还是逆时针可不能搞错啊,这就好比走路,方向错了可就到不了目的地啦。

就像那个风车旋转,得清楚是怎么转的呀!
5. 别忘了利用旋转前后图形全等这个特性哦!这多有用呀!好比原来的你和现在的你,本质上还是同一个人呀!比如知道了一个图形旋转前的情况,那旋转后的很多性质就可以利用全等知道啦!
6. 哇塞,在做旋转问题时可以动手画一画呀!亲手画的过程就像给自己搭房子,一砖一瓦都清楚。

像一个四边形旋转,动手画画不就更直观了嘛!
7. 你们有没有发现呀,有些旋转问题和生活中的现象超像的!就像风扇的转动一样。

比如说判断图形经过旋转后的样子,是不是和风扇转了一圈很类似呀!
8. 哈哈,遇到复杂的旋转问题别头疼,一步步来呀!就像爬山,一步一步总能到山顶。

比如那个多次旋转的问题,不要怕,慢慢分析总会搞清楚的!
9. 反正呀,初中数学的旋转问题没那么难,只要用心去琢磨,就像研究自己喜欢的东西一样,总能找到方法解决的!
我的观点结论:只要掌握好方法和技巧,初中数学旋转问题就能轻松搞定!。

三角形旋转解题技巧初中

三角形旋转解题技巧初中

三角形旋转解题技巧初中篇一:三角形旋转是一种重要的几何变换,可以在解题过程中发挥重要作用。

在初中数学中,三角形旋转通常用于解决角度问题和面积问题。

以下是一些初中三角形旋转的解题技巧:1. 了解三角形旋转的性质:三角形旋转后,其顶点的位置不会改变,而边的长度会发生变化。

同时,三角形的面积也可以通过旋转来变化。

2. 利用旋转角求解角度问题:在初中数学中,常常需要求解三角形中的某个角度。

可以利用三角形旋转的性质,将求解的问题转化为已知角度的问题,然后再通过旋转来解决。

3. 利用旋转来解决面积问题:在解决面积问题时,可以利用三角形旋转的性质,将原来的问题转化为面积相等的三角形,然后再通过旋转来解决。

4. 熟悉三角形旋转的基本公式:三角形旋转的基本公式为:旋转角度=原角度 - 旋转角度,旋转角度=旋转角度 + 原角度。

这些公式可以帮助更好地理解和解决三角形旋转的问题。

三角形旋转在初中数学中是一种常见的几何变换,可以帮助我们更好地理解和解决一些问题。

通过不断练习和积累,可以逐渐掌握三角形旋转的解题技巧,提高解题能力。

篇二:三角形旋转是一种重要的几何变换,可以在解题过程中发挥重要作用。

在初中阶段,三角形旋转通常作为求解几何问题的一种技巧来介绍。

下面是一些常见的三角形旋转解题技巧:1. 了解三角形旋转的基本性质:三角形旋转是一个沿固定轴旋转的变换,可以保持不变的性质有面积、周长、对称中心、对称轴等;可以改变的性质有方向、位置、形状等。

2. 利用旋转变换求解几何问题:在初中阶段,常见的利用三角形旋转求解的几何问题有:求解对称轴、对称中心、重心等;将复杂的几何问题转化为简单的代数问题,从而实现化繁为简、化难为易的目的。

3. 掌握常见的旋转变换公式:在三角形旋转中,存在一些常用的旋转公式,如旋转角度、旋转角度与旋转中心的关系、旋转前后面积的变化等。

熟悉这些公式可以更好地理解和解决旋转问题。

4. 实践三角形旋转的技巧:在初中阶段,可以通过一些简单的例子来实践三角形旋转的技巧,如求解三角形的重心、对称中心、对称轴等。

初中几何旋转解题技巧

初中几何旋转解题技巧

初中几何旋转解题技巧引言几何学作为数学的一个重要分支,是初中数学教育中不可或缺的一部分。

而在几何学中,旋转是一种常见的变换方式。

通过旋转,我们可以改变图形的位置、形状和方向,从而解决与旋转相关的问题。

本文将介绍初中几何中常见的旋转解题技巧。

什么是旋转在几何学中,旋转是指将一个图形绕着某个点或某条线进行转动,使得图形保持形状不变但位置发生改变的操作。

我们可以通过角度来描述旋转的程度,常用单位为度(°)或弧度(rad)。

旋转解题技巧1. 确定旋转中心在解决旋转问题时,首先需要确定一个旋转中心。

这个中心可以是图形内部的一个点,也可以是图形外部的一个点。

根据问题给出的条件来选择合适的旋转中心。

2. 确定旋转方向确定了旋转中心后,接下来需要确定旋转方向。

根据问题描述和图形特点来判断顺时针还是逆时针方向进行旋转。

3. 确定旋转角度旋转角度是解决旋转问题的关键。

根据问题给出的条件,确定旋转角度。

常见的旋转角度有90°、180°和360°等。

4. 应用旋转公式在确定了旋转中心、旋转方向和旋转角度后,我们可以根据几何学中的旋转公式来解题。

以下是常见的几个旋转公式:•绕原点逆时针旋转θ°:对于坐标(x, y),其逆时针旋转θ°后的新坐标为(x cosθ - y sinθ, x sinθ + y cosθ)。

•绕原点顺时针旋转θ°:对于坐标(x, y),其顺时针旋转θ°后的新坐标为(x cosθ + y sinθ, -x sinθ + y cosθ)。

•绕任意点逆时针旋转θ°:先将图形平移使得旋转中心位于原点,然后按照绕原点逆时针旋转的方式计算新坐标,最后再将图形平移回原来位置。

5. 注意坐标变换在应用上述旋转公式进行计算时,需要注意坐标变换。

通常情况下,我们使用直角坐标系进行计算,在计算过程中需要将问题中给出的坐标转换为直角坐标系下的坐标,最后再将计算得到的坐标转换回原来的坐标系。

旋转变换解题的高效技巧与策略

旋转变换解题的高效技巧与策略

旋转变换解题的高效技巧与策略在解决数学或几何问题时,旋转变换是一种常用且有效的技巧。

通过旋转图形或坐标系,我们可以简化问题,找到更加高效的解决方案。

本文将介绍使用旋转变换解题的一些技巧与策略,并通过一些实例来加深理解。

首先,让我们来了解旋转变换的基本原理。

旋转变换是将图形或坐标系绕某个中心点旋转一定角度的操作。

它可以改变图形的朝向、位置和形状,使问题更易于理解和解决。

一、利用旋转变换简化图形问题当我们面对一个复杂的图形问题时,可以尝试通过旋转变换将其简化。

以下是一个实例:问题:一个正方形ABCD,边长为2,要证明两条对角线相等。

解决方案:我们可以通过旋转变换将问题简化。

将正方形绕其中心点O逆时针旋转90度,得到正方形A'B'C'D'。

由于旋转不改变长度和角度,故正方形A'B'C'D'的边长也为2,且AB'与AD'相交于点E。

接下来,我们可以通过证明三角形ABE与三角形ADE全等来得到结论。

因为旋转变换不改变形状,所以两个相等的角旋转后仍然相等。

因此,我们可以得出结论:正方形ABCD的两条对角线相等。

通过利用旋转变换简化问题,我们可以更清晰地理解并解决问题。

二、利用旋转变换求解几何问题旋转变换还可以用于解决一些几何问题。

以下是一个实例:问题:一个等边三角形ABC,要证明角度BAC的大小。

解决方案:我们可以通过旋转变换求解。

将等边三角形ABC绕顶点A逆时针旋转60度,得到等边三角形ABA'。

由于旋转不改变角度大小,我们可以得知角BAA'的大小为60度。

又因为等边三角形ABA'的三条边长度相等,所以角BAA'、角BAC和角CAC'也相等。

通过旋转变换,我们可以得出结论:角BAC的大小为60度。

三、旋转变换在坐标系中的应用除了图形问题和几何问题,旋转变换还可以在坐标系中得到应用。

以下是一个实例:问题:平面上有一条线段AB,坐标分别为A(2, 4)和B(6, 8),要求将线段绕原点顺时针旋转45度后的坐标。

中考数学图形旋转难?用5个模型就能搞定

中考数学图形旋转难?用5个模型就能搞定

中考数学图形旋转难?用5个模型就能搞定旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换称为旋转,这个定点叫旋转中心,转动的角度叫旋转角。

旋转变换不改变图形的形状和大小通过旋转,图形上的每一点都绕旋转中心沿相同的方向转动同样大小的角度旋转变换前后的图形有下列性质:(1)对应点到旋转中心的距离相等,(2)对应点与旋转中心的连线所成的角等于旋转角;(3)对应线段相等,对应线段的夹角等于旋转角,对应线段的垂直平分线都经过旋转中心。

常见的几种模型旋转类型题目举例1、正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转60°,使得AB与AC重合。

经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP 中,此时ΔP'AP也为正三角形。

例1如图(1-1),设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.2、正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转90°,使得BA与BC重合。

经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。

例2如图(2-1),P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。

求正方形ABCD面积。

3、等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°,P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转90°,使得AC与BC重合。

经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。

例3如图,在ΔABC中,∠ACB=90°,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。

初中数学辅助线添加秘籍5、图形变换 旋转

初中数学辅助线添加秘籍5、图形变换  旋转

初中数学辅助线添加秘籍5、图形变换—旋转一:如何构造旋转图形1、遇中点,旋180°,构造中心对称图形,即倍长中线。

2、遇90°,旋90°,构造垂直—等腰直角三角形、正方形。

3、遇60°,旋60°,构造等边。

口诀:边相等,就旋转。

二:倒角(旋转后,常见图形)、如图,边长为的正方形AB=AD,由图形旋转的性质可知AD=AB′,故可得出Rt△ADE≌Rt△AB′E,由直角三角形的性质可得出DE的长,再由S阴影=S正方形ABCD-S四边形ADEB′即可得出结论.解答:解:连接AE,∵∠BAB′=30°,∴∠DAB′=60°,∵四边形ABCD是正方形,∴AB=AD,∠D=∠B=90°,∵正方形AB′C′D′是正方形ABCD旋转而成,∴AD=AB′,∠B′=90°,在Rt△ADE与Rt△AB′E中,AD=AB′,AE=AE,∴Rt△ADE≌Rt△AB′E,∴∠DAE==30°,∴DE=AD?tan∠DAE=×=1,∴S四边形ADEB′=2S△ADE=2××AD×DE=,∴S阴影=S正方形ABCD-S四边形ADEB=3-.2、如图,P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将△PA C绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为????,∠APB=????°.答案此题答案为:6;150°.解:连接PP′.∵△P′AB是△PAC绕点A旋转得到的,∴△P′AB≌△PAC.∵△P′AB≌△PAC,PA=6,PB=8,PC=10,∴P′A=PA=6,P′B=PC=10,∠PAC=∠P′AB.∵△ABC为正三角形,∴∠BAC=60°,∴∠PAC+∠BAP=60°.∵∠PAC=∠P′AB,∴∠P′AB+∠BAP=∠P′AP=60°.∵∠P′AP=60°,PA=P′A,∴△PAP′是等边三角形,∴PP′=PA=6,∴∠P′PA=60°.∵在△PBP′中PP′=6,PB=8,P′B=10,∴△PBP′是直角三角形,∴∠BPP′=90°,∴∠APB=∠P′PA+∠BPP′=60°+90°=150°.3、如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,则以PA、PB、PC为边的三角形三内角大小之比(从小到大)是().A.2:3:4B.3:4:5C.4:5:6D.以上结果都不对答案此题答案为:A.解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C-∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.4、如图,为线段上一动点(不与点、重合),在同侧分别作正和正,与交于点,与交于点,与交于点,连接。

中考旋转问题解题技巧

中考旋转问题解题技巧

中考旋转问题解题技巧
1. 哎呀呀,你知道吗,中考旋转问题里有个超重要的技巧就是找关键点呀!就像拼图一样,找到了关键点就能把整个图形拼凑起来啦!比如在这个图形里,找到那个关键的顶点,然后围绕它进行分析,疑惑是不是一下就解开啦?
2. 嘿,告诉你哦,旋转问题中要特别注意图形的对称性!这就好比是一把钥匙,能打开解题的大门呀!像这个图形,一旦发现了它的对称性,哇塞,解题思路不就一下子出来了嘛!
3. 哇哦,可别小看了观察已知条件这个步骤呀!它就像指明灯一样重要呢!比如这里给了这些条件,那我们就得像侦探一样,仔细分析,从中找到线索呀,你说是不是很有趣呢?
4. 哟呵,在解决旋转问题时,我们要大胆去尝试想象图形运动的过程呀!这就好像让图形在我们脑海里跳舞一样!像碰到这种情况,想象一下图形旋转之后的样子,好多问题就迎刃而解啦!
5. 哈哈,千万别忘了利用相似三角形这个好帮手呀!它可是解决旋转问题的得力干将!就好比是给我们配备了一件强大的武器!比如在这个例子里,通过相似三角形,一下子就能突破难关啦!
6. 哎呀呀,最后一点也很关键哦,那就是要多练习!只有不断练习,才能在考场上应对自如呀!就像运动员训练一样,练得多了自然就厉害啦!比如多做一些这样的题目,到时候就不会手忙脚乱啦!
我的观点结论就是:中考旋转问题并不可怕,只要掌握了这些技巧,多练习,遇到问题冷静分析,就一定能取得好成绩!。

2023年中考数学讲练必考重点04 几何变换之旋转问题(含答案)

2023年中考数学讲练必考重点04 几何变换之旋转问题(含答案)

[选择题]必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。

0,2,点B是x轴正半轴上的一点,将线段AB绕点A按逆时[2022·江苏苏州·中考母题]如图,点A的坐标为()m,则m的值为()针方向旋转60°得到线段AC.若点C的坐标为(),3A B C D.3[考点分析]本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.[思路分析]过C作CD⊥x轴于D ,CE⊥y轴于E ,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC ,可得△ABC是等边三角形,又A(0 ,2),C(m ,3),即得AC BC AB=,可得=,即可解得m=.BD,OB=,m<,将ABC以点A为中心逆时针旋转得到ADE,点[2022·江苏扬州·中考母题]如图,在ABC∆中,AB ACD 在BC 边上 ,DE 交AC 于点F .下列结论:①AFE DFC △△ ;②DA 平分BDE ∠ ;③CDF BAD ∠=∠ ,其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③[考点分析]本题考查了性质的性质 ,等边对等角 ,相似三角形的性质判定与性质 ,全等三角形的性质 ,掌握以上知识是解题的关键.[思路分析]根据旋转的性质可得对应角相等 ,对应边相等 ,进而逐项分析判断即可求解.[2020·江苏宿迁·中考母题]如图 ,在平面直角坐标系中 ,Q 是直线y=﹣12x+2上的一个动点 ,将Q 绕点P(1 ,0)顺时针旋转90° ,得到点Q ' ,连接OQ ' ,则OQ '的最小值为( )A B C D [考点分析]本题考查了一次函数图象上点的坐标特征 ,一次函数的性质 ,三角形全等的判定和性质 ,坐标与图形的变换-旋转 ,二次函数的性质 ,勾股定理 ,表示出点的坐标是解题的关键.[思路分析]利用等腰直角三角形构造全等三角形 ,求出旋转后Q′的坐标 ,然后根据勾股定理并利用二次函数的性质即可解决问题.1.(2022·江苏·九年级专题练习)如图将△ABC 绕点C 逆时针旋转得到△A ’B ’C ,点B 恰好落在A ’B ’上 ,若∠A =25° ,∠BCA ’=45° ,则∠A ’CA = ( )A.30°B.35°C.40°D.45°2.(2022·江苏泰州·九年级专题练习)在正方形ABCD中,AB=8 ,若点E在对角线AC上运动,将线段DE 绕点D逆时针旋转90°得到线段DF ,连接EF、CF.点P在CD上,且CP=3PD.给出以下几个结论①222=+,②EF, ③线段PF的最小值是,④△CFE的面积最大是16.其中正确的是EF AE CE()A.①②④B.②③④C.①②③D.①③④3.(2022·江苏苏州·一模)如图,直角三角形ACB中,两条直角边AC=8 ,BC=6 ,将△ACB绕着AC中点M旋转一定角度,得到△DFE ,点F正好落在AB边上,DE和AB交于点G ,则AG的长为()A.1.4 B.1.8 C.1.2 D.1.64.(2022·江苏徐州·二模)如图,△ABC中,∠ABC=45° ,BC=8 ,tan∠ACB=3 ,AD⊥BC于D ,若将△ADC 绕点D逆时针方向旋转得到△FDE ,当点E恰好落在AC上,连接AF.则AF的长为()A B C .D .45.(2022·江苏盐城·一模)如图 ,在AOB 中 ,2AO = ,3BO AB ==.将AOB 绕点O 逆时针方向旋转90° ,得到A OB ''△ ,连接AA '.则线段AA '的长为( )A .2B .3C .D .6.(2022·江苏·宜兴外国语学校一模)如图 ,在矩形ABCD 中 ,AB =3 ,BC =4 ,P 是对角线AC 上的动点 ,连接DP ,将直线DP 绕点P 顺时针旋转使∠DPE =∠DAC ,且过D 作DE ⊥PE ,连接CE ,则CE 最小值为( )A .65B .3625C .3225D .857.(2022·江苏扬州·模拟)如图 ,将矩形ABCD 绕点B 按顺时针方向旋转一定角度得到矩形A B C D ''''.此时点A 的对应点A '恰好落在对角线AC 的中点处.若AB =3 ,则点B 与点D 之间的距离为( )A.3 B.6 C.D.8.(2022·江苏·九年级专题练习)如图所示,已知ABC是等边三角形,点D是BC边上一个动点(点D不与,B C重合) ,将ADC绕点A顺时针旋转一定角度后得到AFB△,过点F作BC的平行线交AC于点E,连接②为等边三角形;③四边形BCEF为平行四边形;DF,下列四个结论中:①旋转角为60︒;ADF④.其中正确的结论有()=BF AEA.1B.2C.3D.49.(2022·江苏南京·模拟)如图,在Rt ABC中,∠ACB=90° ,BC=2 ,∠BAC=30° ,将ABC绕顶点C逆时针旋转得到△A'B'C' , M是BC的中点,P是A'B'的中点, 连接PM ,则线段PM的最大值是()A.4 B.2 C.3 D.10.(2022·江苏苏州·二模)如图,将ABC绕点A顺时针旋转角α,得到ADE,若点E恰好在CB的延长线上,则BED∠等于()A .2αB .23αC .αD .180α︒-11.(2022·江苏·阳山中学一模)如图 ,在△ABC 中 ,∠BAC =45° ,AC =8 ,动点E 从点A 出发沿射线AB 运动 ,连接CE ,将CE 绕点C 顺时针旋转45°得到CF ,连接AF ,则△AFC 的面积变化情况是( ).A .先变大再变小B .先变小再变大C .逐渐变大D .不变12.(2022·江苏·南通市启秀中学九年级阶段练习)如图 ,点E 是正方形ABCD 的边DC 上一点 ,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20 ,DE=2 ,则AE 的长为( )A .4B .C .6D .13.(2022·江苏·九年级专题练习)如图1 ,在Rt ABC 中 ,AC BC = ,90C ∠=︒ ,点D 为AB 边的中点 ,90EDF ∠=︒ ,将EDF ∠绕点D 旋转 ,它的两边分别交AC 、CB 所在直线于点E 、F ,有以下4个结论:①CE BF = ;②180DEC DFC ∠+∠=︒ ;③222EF DE = ;④如图2 ,当点E 、F 落在AC 、CB 的延长线上时 ,12DEF CEF ABC S S S -=△△△ ,在旋转的过程中上述结论一定成立的是( )A .①②B .②③C .①②③D .①③④14.(2022·江苏扬州·三模)如图 ,已知正方形ABCD 的边长为4 ,点E 是AB 边上一动点 ,连接ED ,将ED 绕点E 顺时针旋转90°到EF ,连接DF ,CF ,则DF +CF 的最小值是( )A .B .C .D .15.(2022·江苏南京·一模)在平面直角坐标系中 ,点A 的坐标是()2,3- ,将点A 绕点C 顺时针旋转90°得到点B .若点B 的坐标是()5,1- ,则点C 的坐标是( )A .()0.5, 2.5--B .()0.25,2--C .()0, 1.75-D .()0, 2.75-16.(2022·江苏南京·模拟)如图 ,在Rt ABC 中 ,AB =AC =10 ,∠BAC =90°,等腰直角三角形ADE 绕点A 旋转 ,∠DAE =90°,AD =AE =4 ,连接DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点 ,连接MP 、PN 、MN .①PMN为等腰直角三角形 ;②MN ≤;③△PMV 面积的最大值是494;④PMN 周长的最小值为6+ )A.4个B.3个C.2个D.1个17.(2022·江苏无锡·一模)如图,已知直线AB与y轴交于点(0,A,与x轴的负半轴交于点B ,且∠ABO =60° ,在x轴正半轴上有一点C ,点C坐标为()1,0,将线段AC绕点A逆时针旋转120° ,得线段AD ,连接BD.则BD的长度为()A.B.4C D.15 218.(2022·江苏·无锡市积余实验学校一模)如图1 ,在Rt△ABC中,90A∠=︒,AB AC=,点D ,E分别在边AB ,AC上,AD AE=,连接DC ,点M、P、N分别为DE、DC、BC的中点.将△ADE绕点A在平面内自由旋转(如图2),若4=AD,10AB=,则△PMN面积的最大值是()A.494B.18 C.492D.25219.(2022·江苏·无锡市天一实验学校一模)如图,扇形OAB中,90AOB∠=︒,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则ADAC的值为()A B C D 20.(2022·江苏·苏州市平江中学校二模)如图 ,在BAC 中 ,90BAC ∠=︒ ,2AB AC = ,将BAC 绕点A 顺时针旋转至DAE △ ,点D 刚好落在BC 直线上 ,则BDE 的面积为( )A .24BD B .22BC C .4BC BD ⋅ D .22AB 21.(2022·江苏·淮安市浦东实验中学九年级开学考试)如图 ,直线1y x =+与x 轴、y 轴分别相交于点A 、B ,过点B 作BC AB ⊥ ,使2BC BA =.将 ABC ∆绕点O 顺时针旋转 ,每次旋转90︒.则第2022次旋转结束时 ,点C 的对应点C '落在反比例函数k y x=的图象上 ,则k 的值为( )A .4-B .4C .6-D .622.(2022·江苏无锡·九年级期末)如图 ,在Rt △ABC 中 ,90BAC ∠=︒ ,6AB AC == ,点D 、E 分别是AB 、AC 的中点.将△ADE 绕点A 顺时针旋转60°,射线BD 与射线CE 交于点P ,在这个旋转过程中有下列结论:①△AEC ≌△ADB ;②CP 存在最大值为3+;③BP 存在最小值为3 ;④点P 运动的路径长为.其中 ,正确的( )A .①②③B .①②④C .①③④D .②③④23.(2022·江苏无锡·模拟)如图 ,在正方形ABCD 中 ,6AB = ,点H 为BC 中点 ,点E 绕着点C 旋转 ,且4CE = ,在DC 的右侧作正方形DEFG ,则线段FH 的最小值是( )A.9-B .8- C .9-D .10-24.(2022·江苏·常州市金坛区水北中学二模)如图 ,在矩形ABCD 中 ,5AB = ,BC =,点P 在线段BC 上运动(含B 、C 两点) ,连接AP ,以点A 为中心 ,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .52B .CD .325.(2022·江苏南京·模拟)如图 ,在ABC ∆中 ,5,AB AC BC === ,D 为边AC 上一动点(C 点除外) ,把线段BD 绕着点D 沿着顺时针的方向旋转90°至DE ,连接CE ,则CDE ∆面积的最大值为( )A .16B .8C .32D .10[选择题]必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。

中考复习旋转问题的解决策略课件ppt(共23张PPT)

中考复习旋转问题的解决策略课件ppt(共23张PPT)
以上方法,我们在解题时,如果遇见同类问题时,可 以考虑应用这些思想方法。
真题演练
解题思想方法提炼
1.如果题目中出现长度相等且有公共端点的两条线 段,我们采用的方法就是旋转,这个公共的端点就 是旋转中心,两条线段之间的夹角就是旋转角,旋 转时,往往是一条线段要绑定一个三角形,旋转方 向是朝着另一条线段旋转,一般情况就会将已知条 件和问题集中再特殊图形当中,然后根据图形的性 质解决;
分类探索
图形中出现有公共端点的两条相等线段
分类探索
图形中出现有公共端点的两条相等线段
分类探索
图形中出现有公共端点的两条相等线段
分类探索
图形中出现有公共端点的两条相等线段
分类探索
图形中出现有公共端点的两条相等线段
方法策略
如果题目中出现长度相等且有公共端点的两条线 段,我们采用的方法就是旋转,这个公共的端点 就是旋转中心,两条线段之间的夹角就是旋转角, 旋转时,往往是一条线段要绑定一个三角形,旋 转方向是朝着另一条线段旋转,一般情况就会将 已知条件和问题集中再特殊图形当中,然后根据 图形的性质解决。
(2)旋转后出现三点共线,将四边形转化成三角形求 解。
(3)旋转后出现动点,由动点变化规律解决问题。(4) 逆向运动思维解决问题。
(5)由主动点运动规律找从动点规律。
分类探索
图形中出现有公共端点的两条相等线段 旋转类问题当中有一类问题通过倒旋转,就会巧妙地把问题变成一个简单的点线最值或者点圆最值问题。
2.如果四边形的对角互补,且有邻边相等,那么旋转 后会出现三点共线,这时,就将四边形的问题转化成 三角形问题,然后用三角形的有关性质来解决问题。
3.旋转类问题当中有一类问题通过倒旋转,就会巧
妙地把问题变成一个简单的点线最值或者点圆最值 问题。

2020中考数学专题15—方法技巧之乾坤大挪移

2020中考数学专题15—方法技巧之乾坤大挪移

2020中考专题15——方法技巧之“乾坤大挪移”班级姓名.【方法解读】“乾坤大挪移”即为旋转法。

旋转变换是平面几何中常见的一种转化思想,通过旋转几何图形的某一部分可将几何图形中看似无关的线段作为等量转移,使题目中的条件相对集中,从而使条件与待求结论之间的关系明朗化,有利于问题的解决。

旋转一般用于等腰三角形、正方形和正多边形中,关键条件在于有“邻边相等”。

选好旋转中心和旋转角是关键。

【例题分析】一、当条件中出现“邻边相等+对角互补+半角”例1.(1)如图,在四边形ABCD 中,90AB AD B D =∠=∠=︒,,E F 、分别是边BC CD 、上的点,且12EAF =BAD ∠∠.求证:EF BE FD =+;(2)如图在四边形ABCD 中,180AB AD B +D =∠∠=︒,,E F 、分别是边BC CD 、上的点,且12EAF BAD ∠=∠,(1)中的结论是否仍然成立?不用证明.(3)如图,在四边形ABCD 中,AB AD =,180B ADC ∠+∠=︒,E F ,分别是边BC CD ,延长线上的点,且12EAF BAD ∠=∠,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.二、当条件中出现“邻边相等+半角”.例2.在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M N D ,,为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M N ,分别爱直线AB AC ,上移动时,BM BN MN ,,之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.(1)如图①,当点M N ,在边AB AC ,上,且DM DN =时,BM NC MN ,,之间的数量关系式_________;此时Q L=__________(2)如图②,当点M N ,在边AB AC ,上,且DM DN ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;(3)如图③,当点M N ,分别在边AB CA ,的延长线上时,若AN x =,则Q =_________(用x L ,表示)三、当条件中出现“邻边相等+对角互补”.例3.如图所示,在四边形ABCD 中,AB BC =,90A C ∠=∠=︒,135B ∠=︒,K 、N 分别是AB 、BC 上的点,若BKN ∆的周长为AB 的2倍,求∠NDK 的度数.四、仅有“邻边相等”例4.如图,在等边△ABC中有一点P,PA=PB=4,PC=.(1)求∠APB的度数;(2)求△ABP的面积;(3)求△APC的面积;(4)求△ABC的面积.五、“费马点”问题例5.背景资料:在已知ABC∆所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当ABC∆内部,此时∆三个内角均小于120︒时,费马点P在ABC++的值最小.120∠=∠=∠=︒,此时,PA PB PCAPB BPC CPA解决问题:(1)如图②,等边ABC∠∆内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求APB 的度数.为了解决本题,我们可以将ABP∆绕顶点A旋转到ACP∆'≅∆,这样就可以利∆'处,此时ACP ABP用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出APB∠=;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,ABCEAF∠=︒,判断BE,EF,=,E,F为BC上的点,且45∠=︒,AB ACCAB∆中,90FC之间的数量关系并证明;能力提升:(3)如图④,在Rt ABC∠=︒,点P为Rt ABC∆的费马点,连接AC=,30ABC∆中,90C∠=︒,1AP,BP,CP,求PA PB PC++的值.【巩固训练】1.如图1,在四边形ABCD 中,∠ABC +∠ADC =180°,AB =AD ,AE ⊥BC 于点E .若AE =18,BC =10,CD =6,则四边形ABCD 的面积为.图1图2图32.如图2,已知点P 为等边△ABC 内一点,∠APB =112°,∠APC =122°,若以AP 、BP 、CP 为边长可以构成一个三角形,那么所构成三角形的各内角的度数是.3.如图3,P 为正方形ABCD 内一点,且PC =3,∠APB =135°,将△APB 绕点B 顺时针旋转90°得到△CP 'B ,连接PP '.若BP 的长为整数,则AP =.图4图5图6图74.如图4,E 是正方形ABCD 内一点,E 到点A 、D 、B 的距离EA 、ED 、EB 分别为1、,延长AE 交CD 于点F ,则四边形BCFE 的面积为.5.如图5,等边△ABC 中,点P ,Q 在边BC 上,且∠PAQ =30°.若BP =2,QC =3,则△ABC 的边长为.6.如图6,在菱形ABCD 中,∠A =60°,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED≌△DFB ;②S 四边形BCDG =32CG 2;③若AF =2DF ,则BG =6GF ;④CG 与BD 一定不垂直;⑤∠BGE 的大小为定值.其中正确的结论是.7.如图7,在⊙O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是.8.正方形ABCD 的四个顶点都在⊙O 上,E 是⊙O 上的一点.(1)如图8-1,若点E 在弧AB 上,F 是DE 上的一点,DF =BE .求证:△ADF ≌△ABE ;(2)在(1)的条件下,小明还发现线段DE 、BE 、AE 之间满足等量关系:DE -BE AE .请你说明理由;(3)如图8-2,若点E 在弧AD 上.写出线段DE 、BE 、AE 之间的等量关系.(不必证明).9.已知:2BD=,以AB为一边作等边三角形ABC.使C、D两点落在直线AB的两侧.AD=,4(1)如图,当60ADB∠=︒时,求AB及CD的长;(2)当ADB∠的大小.∠变化,且其它条件不变时,求CD的最大值,及相应ADB10.阅读下列材料:小华遇到这样一个问题,如图1,ABCAC=,在ABC∆内部有一BC=,5∆中,30ACB∠=︒,6点P,连接PA、PB、PC,求PA PB PC++的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将APC∆绕点C顺时针旋转60︒,得到EDC∆,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA PB PC++的最小值为;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,60∠=︒,在菱形ABCD内部有一点P,请在图3中画出并指明长ABC度等于PA PB PC++最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA PB PC++值最小时PB的长.2020中考专题15——方法技巧之“乾坤大挪移”参考答案例1.证明:延长EB 到G ,使BG =DF ,联结AG .∵90ABG ABC =D AB AD ∠=∠∠=︒=,,∴ABG ADF ∆∆≌.∴ 12AG AF ∠∠=,=.∴113232EAF BAD ∠+∠=∠+∠=∠=∠.∴GAE =EAF ∠∠.又AE AE =,∴AEG AEF ∆∆≌.∴EG EF =.∵EG =BE +BG .∴EF BE FD=+(2)(1)中的结论EF BE FD =+仍然成立.(3)结论EF BE FD =+不成立,应当是EF BE FD=+证明:在BE 上截取BG ,使BG =DF ,连接AG .∵180B ADC ∠+∠=︒,180ADF ADC ∠+∠=︒,∴B ADF ∠=∠.∵AB AD =,∴ABG ADF ∆∆≌.∴BAG DAF AG AF ∠=∠=,.∴12BAG +EAD DAF +EAD =EAF =BAD ∠∠∠∠∠∠=∴GAE EAF ∠=∠.∵AE AE =,∴AEG AEF ∆∆≌∴EG EF=例2.解:(1)如图1,BM 、NC 、MN 之间的数量关系BM NC MN +=.此时23Q L =..理由:DM DN = ,60MDN ∠=︒,MDN ∴∆是等边三角形,ABC ∆ 是等边三角形,60A ∴∠=︒,BD CD = ,120BDC ∠=︒,30DBC DCB ∴∠=∠=︒,90MBD NCD ∴∠=∠=︒,DM DN = ,BD CD =,Rt BDM Rt CDN∴∆≅∆,30BDM CDN ∴∠=∠=︒,BM CN =,2DM BM ∴=,2DN CN =,22MN BM CN BM CN ∴===+;AM AN ∴=,AMN ∴∆是等边三角形,AB AM BM =+ ,:2:3AM AB ∴=,∴23Q L =;(2)猜想:结论仍然成立..证明:在NC 的延长线上截取1CM BM =,连接1DM .190MBD M CD ∠=∠=︒ ,BD CD =,1DBM DCM ∴∆≅∆,1DM DM ∴=,1MBD M CD ∠=∠,1M C BM =,60MDN ∠=︒ ,120BDC ∠=︒,160M DN MDN ∴∠=∠=︒,MDN ∴∆≅△1M DN ,11MN M N M C NC BM NC ∴==+=+,AMN ∴∆的周长为:AM MN AN AM BM CN AN AB AC ++=+++=+,∴23Q L =;(3)证明:在CN 上截取1CM BM =,连接1DM .可证1DBM DCM ∆≅∆,1DM DM ∴=,可证160M DN MDN ∠=∠=︒,MDN ∴∆≅△1M DN ,1MN M N ∴=,NC BM MN ∴-=.例3.延长KA 到M,使AM=CN,在Rt△ABD 和Rt△CBD 中,AB=BC,BD=BD∴Rt△ABD≌Rt△CBD.∴AD=CD,又AM=CN∴Rt△AMD≌Rt△CND,∴∠ADK=∠CDN,DM=DN∠ADC=∠MDN∵AB=BC,△BKN 的周长为AB 的2倍∴KA+CN=NK,即KM=NK.DM=DN,DK=DK ∴△KMD≌△KND,∴∠NDK=∠MDK=21∠MDN ∵A=∠C=90°,∠B=135°∴∠ADC=∠MDN=45,∴∠NDK=22.5°例4.【解析】(1)如图,△ABC 为等边三角形,∴AB =AC ,∠BAC =60°;将△ABP 绕点A 逆时针旋转60°,到△ACQ 的位置,连接PQ ;则AQ =AP =,CQ =BP =4;∵∠PAQ =60°,∴△APQ 为等边三角形,∴PQ =PA =AQP =60°;在△PQC 中,满足PC 2=PQ 2+CQ 2,∴∠PQC =90°,∠AQC =150°,∴∠APB =∠AQC =150°,故答案为150.(2)由(1)可知∠APB =150°,如图,延长BP ,过点A 作AD ⊥BD ,交BP 延长线于点D.∴∠APD =30°,AD =12AP ,∵S △APB =12BP ⋅AD =12×42(3)可知S △ABP +S △APC =S 四边形APCQ .∵S 四边形APCQ =S △APQ S △PQC ,∴S △ABP +S △APC =S △APQ +S △PQC ,∴S △APC =⋅2+12×4×=.∴S △APC =(4)在Rt △ABD 中,AD BD =4+3=7,∴AB =2.由等边三角形面积公式可得S △ABC ×()2=例5.解:(1)ACP ABP ∆'≅∆ ,3AP AP ∴'==、4CP BP '==、AP C APB ∠'=∠,由题意知旋转角PA ∠60P '=︒,∴△AP P '为等边三角形,P 3P AP '==,A ∠60P P '=︒,易证△P P C '为直角三角形,且P ∠90P C '=︒,APB AP C A ∴∠=∠'=∠P P P '+∠6090150P C '=︒+︒=︒;故答案为:150︒;(2)222EF BE FC =+,理由如下:如图2,把ABE ∆绕点A 逆时针旋转90︒得到ACE ∆',由旋转的性质得,AE AE '=,CE BE '=,CAE BAE ∠'=∠,ACE B ∠'=∠,90EAE ∠'=︒,45EAF ∠=︒ ,904545E AF CAE CAF BAE CAF BAC EAF ∴∠'=∠'+∠=∠+∠=∠-∠=︒-︒=︒,EAF E AF ∴∠=∠',在EAF ∆和△E AF '中,AE AE EAF E AF AF AF ='⎧⎪∠=∠'⎨⎪=⎩,EAF ∴∆≅△()E AF SAS ',E F EF ∴'=,90CAB ∠=︒ ,AB AC =,45B ACB ∴∠=∠=︒,454590E CF ∴∠'=︒+︒=︒,由勾股定理得,222E F CE FC '='+,即222EF BE FC =+.(3)如图3,将APB ∆绕点B 顺时针旋转60︒至△A P B ''处,连接PP ',在Rt ABC ∆中,90C ∠=︒,1AC =,30ABC ∠=︒,2AB ∴=,223BC AB AC ∴=-=,APB ∆ 绕点B 顺时针方向旋转60︒,∴△A P B ''如图所示;60306090A BC ABC ∠'=∠+︒=︒+︒=︒,90C ∠=︒ ,1AC =,30ABC ∠=︒,22AB AC ∴==,APB ∆ 绕点B 顺时针方向旋转60︒,得到△A P B '',2A B AB ∴'==,BP BP =',A P AP ''=,BPP ∴∆'是等边三角形,BP PP ∴=',60BPP BP P ∠'=∠'=︒,120APC CPB BPA ∠=∠=∠=︒ ,12060180COP BPP BP A BP P ∴∠+∠'=∠''+∠'=︒+︒=︒,C ∴、P 、A '、P '四点共线,在Rt △A BC '中,2222/(3)27A C A B BC '=++7PA PB PC A P PP PC A C ∴++=''+'+='=【巩固训练】参考答案1.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°,∵∠ABC +∠ADC =180°,∴∠ABC =∠ADF ,易证△ABE ≌△ADF (AAS ),∴AF =AE =19,∴S 四边形ABCD =S △ABC +S △ACD =12BC •AE +12CD •AF =12×10×19+12×6×19=95+57=152.故答案为:152.2.解:如图,将△APC 绕点A 顺时针旋转60°得到△ABE ,连接PE.∵AE =AP ,∠EAP =∠BAC =60°,∴△EAP 是等边三角形,∠EAB =∠PAC ,∴∠AEP =∠APE =60°,PA =PE ,易证△EAP ≌△PAC ,∴EB =PC ,∴PA 、PB 、PC 组成的三角形就是△PEB ,∵∠APB =112°,∠APE =60°,∴∠EPB =52,∵∠AEB =∠APC =122°,∠AEP =62°,∴∠PEB =66°,∴∠EBP =180°-∠BEP -∠EPB =66°.故答案为52°、62°、66°.3.解:∵△BP 'C 是由△BPA 旋转得到,∴∠APB =∠CP 'B =135°,∠ABP =∠CBP ',BP =BP ',AP =CP ',∵∠ABP +∠PBC =90°,∴∠CBP '+∠PBC =90°,即∠PBP '=90°,∴△BPP '是等腰直角三角形,∴∠BP 'P =45°,∵∠APB =∠CP 'B =135°,∴∠PP 'C =90°,设BP =BP '=a ,AP =CP '=b ,则PP '=2a ,在Rt △PP 'C 中,∵PP '2+P 'C 2=PC 2,且PC =3,∴CP ′=22PC P P ¢-=292a -,∵BP 的长a 为整数,∴满足上式的a 为1或2,当a =1时,AP =CP '=7,当a =2时,AP =CP '=1,故答案为:7或1.4.解:如图,将△ADE 绕点A 顺时针旋转90°得到△ABM ,作DN ⊥AF 垂足为N ,∵AM =AE =1,∠MAE =90°,∴ME =22AM AE +=2211+=2,∵BM 2+ME 2=(32)2+(2)2=20,BE 2=(25)2=20,∴BM 2+ME 2=BE 2,∴∠BME =90°,∵∠AME =∠AEM =45°,∴AMB =∠AED =135°在RT △DEN 中,∵DE =32,∠DEN =45°,∴DN =EN =3,AN =4,∴AD =22AN DN +=2234 =5,∵∠DAN =∠DAF ,∠AND =∠ADF =90°,∴△ADN ∽△AFD ,∴AD AF =AN AD ,∴5AF =45,∴AF =254,NF =94,∵S △ABE +S △ADE =S △ABM +S △ABE =S △AME +S △BME =12×1×1+12×2×32=74,S △EDF =12×(3+94)×3=638,∴S 四边形BCFE =S 正方形ABCD -(S △ABE +S △AED )-S △EFD =25-72-638=1098.故答案为1098.5.将△ABP 绕点A 逆时针旋转60°,得到△ACP ',连接QP ',易证△AQP ≌△AQP ',∴∠P 'CD =60°,过P 'D 作P 'D ⊥BC ,交BC 延长线于点D ,在Rt △P 'CD 中,可得CD =1,P 'D =2,在Rt △P 'QD 中,可计算出QP '=PQ =,∴边长为56.解:①∵ABCD 为菱形,∴AB =AD ,∵AB =BD ,∴△ABD 为等边三角形,∴∠A =∠BDF =60°,又∵AE =DF ,AD =BD ,∴△AED ≌△DFB ,故本选项正确;②∵∠BGE =∠BDG +∠DBF =∠BDG +∠GDF =60°=∠BCD ,即∠BGD +∠BCD =180°,∴点B 、C 、D 、G 四点共圆,∴∠BGC =∠BDC =60°,∠DGC =∠DBC =60°,∴∠BGC =∠DGC =60°,过点C 作CM ⊥GB 于M ,CN ⊥GD 于N (如图1),则△CBM ≌△CDN (AAS ),∴S 四边形BCDG =S 四边形CMGNS 四边形CMGN =2S △CMG ,∵∠CGM =60°,∴GM =12CG ,CM =2CG ,∴S 四边形CMGN =2S △CMG =2×12×12CG ×2CG =4CG 2,故本选项错误;③过点F 作FP ∥AE 交DE 于P 点(如图2),∵AF =2FD ,∴FP :AE =DF :DA =1:3,∵AE =DF ,AB =AD ,∴BE =2AE ,∴FP :BE =FP :2AE =1:6,∵FP ∥AE ,∴PF ∥BE ,∴FG :BG =FP :BE =1:6,即BG =6GF ,故本选项正确,④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE =∠DBG =30°,∴DG =BG ,易证△GDC ≌△BGC ,∴∠DCG =∠BCG ,∴CH ⊥BD ,即CG ⊥BD ,故本选项错误;⑤∵∠BGE =∠BDG +∠DBF =∠BDG +∠GDF =60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个7.由点C 为弧BD 中点,可得BC =CD ,∠BAC =∠CAD ,即出现“邻边相等”,所以将△ABC 绕点C 旋转至BC 与CD 重合,如图可得△ACE 为等腰三角形,顶角∠ACE =∠BCD =120°,底边长AE =AD +DE =AD +AB =3+5=8,所以在底角为30°的等腰△ACE 中即可求出AC =3.8.(1)证明:在正方形ABCD 中,AB =AD ,∵∠1和∠2都对 AE ,∴∠1=∠2,易证△ADF ≌△ABE (SAS );(2)由(1)有△ADF ≌△ABE ,∴AF =AE ,∠3=∠4.在正方形ABCD 中,∠BAD =90°.∴∠BAF +∠3=90°.∴∠BAF +∠4=90°.∴∠EAF =90°.∴△EAF 是等腰直角三角形.∴EF 2=AE 2+AF 2.∴EF 2=2AE 2.∴EF AE .即DE -DF .∴DE -BE .(3)BE -DE AE .理由如下:在BE 上取点F ,使BF =DE ,连接AF .易证△ADE ≌△ABF ,∴AF =AE ,∠DAE =∠BAF .在正方形ABCD 中,∠BAD =90°.∴∠BAF +∠DAF =90°.∴∠DAE +∠DAF =90°.∴∠EAF =90°.∴△EAF 是等腰直角三角形.∴EF 2=AE 2+AF 2.∴EF 2=2AE 2.∴EF AE .即BE -BF .∴BE -DE AE .9.解:(1)作AH BD ⊥于H ,如图,在Rt ADH ∆中,60ADB ∠=︒ ,30DAH ∴∠=︒,112DH AD ∴==,AH ∴==,413BH BD DH ∴=-=-=,在Rt AHB ∆中,AB =,30ABH ∴∠=︒,ACB ∆ 为等边三角形,60ABC ∴∠=︒,BC BA ==90DBC ∴∠=︒,在Rt DBC ∆中,CD ==(2)把ADC ∆绕点A 顺时针旋转60︒得到AEB ∆,则AE AD =,BE DC =,60EAD ∠=︒,ADE ∴∆为等边三角形,2DE DA ∴==,60ADE ∠=︒,当E 点在直线BD 上时,BE 最大,最大值为246+=,CD ∴的最大值为6,此时120ADB ∠=︒.10.解:(1)如图2. 将APC ∆绕点C 顺时针旋转60︒,得到EDC ∆,APC EDC ∴∆≅∆,ACP ECD ∴∠=∠,5AC EC ==,60PCD ∠=︒,ACP PCB ECD PCB ∴∠+∠=∠+∠,30ECD PCB ACB ∴∠+∠=∠=︒,306090BCE ECD PCB PCD ∴∠=∠+∠+∠=︒+︒=︒.在Rt BCE ∆中,90BCE ∠=︒ ,6BC =,5CE =,BE ∴==PA PB PC ++;(2)①将APC ∆绕点C 顺时针旋转60︒,得到DEC ∆,连接PE 、DE ,则线段BD 等于PA PB PC ++最小值的线段;②如图31-中,当B 、P 、E 、D 四点共线时,PA PB PC ++值最小,最小值为BD . 将APC ∆绕点C 顺时针旋转60︒,得到DEC ∆,APC DEC ∴∆≅∆,CP CE ∴=,60PCE ∠=︒,PCE ∴∆是等边三角形,PE CE CP ∴==,60EPC CEP ∠=∠=︒.菱形ABCD 中,1302ABP CBP ABC ∠=∠=∠=︒,603030PCB EPC CBP ∴∠=∠-∠=︒-∠︒=︒,30PCB CBP ∴∠=∠=︒,BP CP ∴=,同理,DE CE =,BP PE ED ∴==.连接AC ,交BD 于点O ,则AC BD ⊥.在Rt BOC ∆中,90BOC ∠=︒ ,30OBC ∠=︒,4BC =,cos 42BO BC OBC ∴=∠=⨯ 2BD BO ∴==,133BP BD ∴==.即当PA PB PC ++值最小时PB 的长为3.。

中考数学 考点15 旋转变换(解析版)

中考数学     考点15 旋转变换(解析版)

旋转变换通常结合全等三角形探索角的数量关系,线段与线段之间的位置关系与数量关系,经常作为作为中等偏难一点的题型出现.旋转的性质有:①旋转角是对应点与旋转中心所连线段的夹角是旋转角;②旋转前后的图形全等;③对应点到旋转中心的距离相等.如图,△ABC绕点O逆时针方向旋转∠AOA′到△A′B′C′的位置,则①旋转角是∠AOA′=∠BOB′=∠COC′;②△ABC≌△A′B′C′;③OA=OA′,OB=OB′,OC=OC′.1.注意旋转的三要素:旋转中心,旋转方向,旋转角;2.抓住旋转只是改变图形的位置,不改变图形的形状和大小,即旋转前后的图形全等;3.能够用旋转解题的图形的基本特征是有公共端点且相等的两条线段,这个公共端点往往会是旋转中心.例1.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )A. 55°B. 70°C. 125°D. 155°【答案】C例2.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B学科@网【精细解读】因为角平分线上的点到角的两边的距离相等,所以存在着隐性的有公共端点的相等线段的特征,故可考虑过点P作∠AOB的两边的垂线,再结合旋转的性质求解.如图作PE⊥OA于E,PF⊥OB于F.例3.如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接P A、PB、PC,当AC=3,AB=6时,根据此图求P A+PB+PC的最小值.【答案】(1)33(2)37∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,22CE=CD DE=369=27=33--;(2)证明:如图所示,1.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是 ( )A. 6B. 6C. 3D. 3+3【答案】A【解析】试题解析:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′=,∴BC′=3-3,在等腰Rt△OBC′中,OB=BC′=3-3,在直角三角形OBC′中,OC′=(3-3)=6-3,∴OD′=3-OC′=3-3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3-3+3-3=6.故选A.2.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF =_________cm.【答案】33.如图,菱形ABCD中,边长为2,∠B=60°,将△ACD绕点C旋转,当AC(即A′C)与AB交于一点E,CD(即CD′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值,如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.【答案】2+3(每道试题10分,总计100分)1.如图,在□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A. 130°B. 150°C. 160°D. 170°【答案】C【解析】根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选C.2.如图,中,,,将绕点顺时针旋转得到,当点、、三点共线时,旋转角为,连接,交于点.下面结论:①为等腰三角形;②;③;④中,正确的是()A. ①③④B. ①②④C. ②③④D. ①②③④【答案】B3.三角板ABC中,∠ACB=90°,∠B=30°,AC=23,三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB边的起始位置上时即停止转动,则B点转过的路径长为()A. 32πB.433πC. 2πD. 3π【答案】C4.如图,将△ABC绕点B逆时针旋转60°得到△A′C′B,且BC=2,那么CC′的长是___________.【答案】2;【解析】试题解析:∵△ABC绕点B逆时针旋转60°得到△A′C′B,∴BC=BC′=2,∠CBC′=60°,∴△BCC′为等边三角形,∴CC′=BC=BC′=2.学科@网5.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,将△ABC以点B为中心顺时针旋转,使点C 旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).【答案】36π6.在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=__________.【答案】7【解析】试题解析:∵∠ACB=90°,AC=1,BC=,∴tan∠ABC=,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴∠A′BC=∠ABC+60°=30°+60°=90°,∴A′B⊥CB,∵∠ACB=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=,∴OA+OB+OC=A′O′+OO′+OC=A′C=.7.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为____.【答案】9π8.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4,AB=7.(1)旋转中心为______;旋转角度为______;(2)DE的长度为______;(3)指出BE与DF的位置关系如何?并说明理由.【答案】(1)A,90°;(2)3;(3)BE⊥DF,理由见解析.9.如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD ⊥AE于D,CE⊥AE于E(1)试说明:BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;(3)若直线AE 绕A 点旋转到图(3)位置时(BD >CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请直接写出结果,不需说明理由.【答案】(1)证明见解析;(2)DE =BD +CE ;(3)DE =BD +CE .10.(1)探究:如图,四边形ABCD 中,已知AB AD =, 90BAD ∠=︒,点E F 、分别在边BC CD 、上, 45EAF ∠=︒;①如图1,若B ADC ∠∠、都是直角,把ABE V 绕点A 逆时针旋转90︒至ADG V ,使AB 与AD 重合,则能证得EF BE DF =+,请写出推理过程;②如图2,若B D ∠∠、不是直角,则当B D ∠∠、满足数量关系 时,仍有EF BE DF =+;(2)拓展:如图3,在ABC V 中, 90BAC ∠=︒, 22AB AC ==,点D E 、均在边BC 上,且45DAE ∠=︒,若1BD =,求DE 的长.【答案】(1)①证明见解析; ②当∠B +∠ADC =180°时,EF =BE +DF ;(2) DE =53. 【解析】试题分析: (1)①根据旋转的性质得出AE =AG ,∠BAE =∠DAG ,BE =DG ,求出∠EAF =∠GAF =45°,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案;②根据旋转的性质得出AE =AG ,∠B =∠ADG ,∠BAE =∠DAG ,求出C 、D 、G 在一条直线上,根据SAS 推出△EAF ≌△GAF ,根据全等三角形的性质得出EF =GF ,即可求出答案;(2)根据等腰直角三角形性质好勾股定理求出∠ABC =∠C =45°,BC =4,根据旋转的性质得出AF =AE ,∠FBA =∠C =45°,∠BAF =∠CAE ,求出∠F AD =∠DAE =45°,证△F AD ≌△EAD ,根据全等得出DF =DE ,设DE =x ,则DF =x ,BF =CE =3−x ,根据勾股定理得出方程,求出x 即可.②当∠B +∠ADC =180°时,EF =BE +DF ;把△ACE 旋转到ABF 的位置,连接DF ,则∠F AB =∠CAE .∵∠BAC =90°,∠DAE =45°,∴∠BAD +∠CAE =45°,又∵∠F AB =∠CAE ,∴∠F AD =∠DAE =45°,则在△ADF 和△ADE 中, AD AD FAD DAE AF AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ADE ,∴DF =DE ,∠C =∠ABF =45°,∴∠BDF =90°,∴△BDF 是直角三角形,∴222BD BF DF +=,∴222BD CE DE +=.∵∠BAC =90°,AB =AC =22,∴BC =4,∵BD =1,∴DC =3,EC =3-DE ,∴()2213DE DE +-=,解得DE =53.学科@网。

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法一、图形旋转知识与方法1、图形的变换是新课标中“空间与图形”领域的一个主要内容,体现运动变换的理念与思想,是教材中的一大亮点.初中数学所学的图形变换包括平移、轴对称、旋转、位似。

2、旋转,它是一种数学变换.生活中的旋转也是随处可见,汽车的轮子,钟表的指针,游乐园里的摩天轮,都是旋转现象.3、图形的旋转有三个要素:①旋转中心;②旋转方向;③旋转角度.三要素中只要任意改变一个,图形就会不一样.4、旋转具有以下性质:①对应点到旋转中心的距离相等,即边相等。

②对应点与旋转中心所连线段的夹角等于旋转角,即角相等③旋转前、后的图形全等。

5、旋转是近几年中考数学的热点题型,对旋转的特例“中心对称”的考查多以选择题或填空题的形式出现,题目比较简单,大多数属于送分题;利用旋转作图,是格点作图题中的重点。

利用旋转构造复杂几何图形,通常将旋转融合在综合题中,题目难度中等,在选择题、填空题、解答题中都有出现。

有旋转点的,有旋转线段的,更多的是旋转图形的。

旋转三角形,旋转平行四边形,旋转矩形,旋转正方形,其中,近两年的各地中考试题中,旋转矩形出现的最频繁,深受出题老师的青睐。

其实旋转的题目还有一个好听的名字就是“手拉手问题”,本文将对这一类问题分类汇总,以这三个性质为突破口,就能快速解决问题。

二、典例精讲典例.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC 交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE 的长.思路点拨:(1)①由等腰直角三角形的判定和性质可得:∠ABC=45°,由平行线的性质可得∠FDB=∠C=90°,进而可得由等角对等边可得DF=DB,由旋转可得:∠ADF=∠EDB,DA=DE,继而可知△ADF≌△EDB,继而即可知AF=BE;②由全等三角形的性质可知∠DAF=∠E,继而由三角形内角和定理即可求解;(2)由平行线的性质可得∠ACB=∠FDB=α,∠CAB=∠DFB,由等边对等角可得∠ABC=∠CAB,进而根据等角对等边可得DB=DF,再根据全等三角形的判定方法证得△ADF≌△EDB,进而可得求证AF=BE,∠ABE=∠FDB=α;(3)分两种情况考虑:①如图(3)中,当点D在BC上时,②如图(4)中,当点D在BC的延长线上时,由平行线分线段成比例定理可得1==4AF CDAB CB、1==2AF CDAB CB,代入数据求解即可;满分解答:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:①AF=BE,②90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴1==4 AF CDAB CB,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴1==2 AF CDAB CB,∵AB=8,∴BE=AF=4,故BE的长为2或4.名师点评:(1)本题考查等腰直角三角形的判定和性质、平行线的性质、等边对等角的性质和等角对等边的性质、旋转的性质、相似三角形的判定及其性质、三角形内角和定理、平行线分线段成比例定理,涉及到的知识点较多,解题的关键是综合运用所学知识.(2)旋转问题三步走:第一步:我们要观察图形,看看这个图形的旋转中心,找到它的旋转方向,这是我们看到一个几何图形的第一印象.第二步:看看是什么旋转?因为旋转的种类有很多,你看它是点旋转还是线旋转或者是平面图形旋转·第三步:你再观察出有哪些三角形全等,从已知中找到两个三角形全等的条件(包括隐藏的对顶角、公共角、公共边等).变式题.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2.①请你直接写出m的值和四边形AA2CC2的形状;②若AB=,请直接写出AA2的长.三、中考押题1.(1)问题感知如图1,在△ABC中,∠C=90°,且AC=BC,点P是边AC的中点,连接BP,将线段PB绕点P顺时针旋转90°到线段PD.连接AD.过点P作PE∥AB 交BC于点E,则图中与△BEP全等的三角形是,∠BAD=°;(2)问题拓展如图2,在△ABC中,AC=BC=43AB,点P是CA延长线上一点,连接BP,将线段PB绕点P顺时针旋转到线段PD,使得∠BPD=∠C,连接AD,则线段CP与AD之间存在的数量关系为CP=43AD,请给予证明;(3)问题解决如图3,在△ABC中,AC=BC=AB=2,点P在直线AC上,且∠APB =30°,将线段PB绕点P顺时针旋转60°到线段PD,连接AD,请直接写出△ADP 的周长.2.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP . (1)观察猜想 如图1,当60α︒=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BDCP的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由. (3)解决问题当90α︒=时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时ADCP的值.3.在正方形ABCD 中,AB =6,对角线AC 和BD 相交于点O ,E 是AB 所在直线上一点(不与点B 重合),将线段OE 绕点E 顺时针旋转90°得到EF .(1)如图1,当点E 和点A 重合时,连接BF ,直接写出BF 的长为 ;(2)如图2,点E在线段AB上,且AE=1,连接BF,求BF的长;(3)若DG:AG=2:1,连接CF,H是CF的中点,是否存在点E使△GEH是以EG 为直角边的直角三角形?若存在,请直接写出EB的长;若不存在,试说明理由.4.观察猜想:(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明:(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸:(3)如图③,在△ABC中,AB=AC,∠BAC=a,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=a,连接BF,则BE+BF的值是多少?请用含有n,a的式子直接写出结论.5.如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.6.在△ABC中,∠ACB=90°,BC=AC=2,将△ABC绕点A顺时针方向旋转α角(0°<α<180°)至△AB'C'的位置.问题探究:(1)如图1,当旋转角为60°时,连接C'C与AB交于点M,则C'C=,CM .(2)如图2,在(1)条件下,连接BB',延长CC'交BB'于点D,求CD的长.问题解决:(3)如图3,在旋转的过程中,连线CC'、BB',CC'所在直线交BB'于点D,那么CD 的长有没有最大值?如果有,求出CD的最大值:如果没有,请说明理由.7.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MGBE;=2(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB 于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.8.已知:如图①,将60∠=的菱形ABCD沿对角线AC剪开,将ADC沿射线DCDBCE点M为边BC上一点(点M不与点B、点C重合),将射线AM 方向平移,得到,绕点A逆时针旋转60,与EB的延长线交于点N,连接MN.()1①求证:ANB AMC∠=∠;②探究AMN的形状;()2如图②,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45,原题其他条件不变,()1中的①和②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.9.已知点P 是线段AB 上与点,A B 不重合的一点,且,AP PB AP <绕点A 逆时针旋转角()090αα︒︒<≤得到1,AP BP 绕点B 顺时针旋转角α得到2BP ,连接12.PP PP 、(1)如图1,当90α︒=时,求12PPP ∠的度数;(2)如图2,当点2P 在1AP 的延长线上时,求证: 22122PP PP P A =⋅;(3)如图3,过BP 的中点E 作1l BP ⊥,过2BP 的中点F 作22l BP ⊥, 1l 与2l 交于点Q ,连接1,PQ PO ,若6,1BP AP QE ===,求1PQ 的长度.10.在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.11.有两张完全重合的矩形纸片,将其中一张绕点A 顺时针旋转90︒后得到矩形AMEF (如图1),连接BD ,MF ,若8BD cm =,30ADB ∠=︒.(1)试探究线段BD 与线段MF 的数量关系和位置关系,并说明理由;(2)把BCD ∆与MEF ∆剪去,将ABD ∆绕点A 顺时针旋转得11AB D ∆,边1AD 交FM 于点K (如图2),设旋转角为()090ββ︒<<︒,当AFK ∆为等腰三角形时,求β的度数;(3)若将AFM ∆沿AB 方向平移得到222A F M ∆(如图3),22F M 与AD 交于点P ,22A M 与BD 交于点N ,当//NP AB 时,求平移的距离.12.问题发现:(1)如图1,在Rt △ABC 中,∠BAC=30°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC , ∠BCD 的度数是 ;线段BD ,AC 之间的数量关系是 . 类比探究:(2)在Rt △ABC 中,∠BAC=45°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC ,请问(1)中的结论还成立吗?; 拓展延伸:(3)如图3,在Rt △ABC 中,AB =2,AC =4,∠BDC =90°,若点P 满足PB =PC ,∠BPC =90°,请直接写出线段AP 的长度.13.综合与实践 问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,ABC 和DEC 是两个全等的直角三角形纸片,其中90ACB DCE ∠=∠=︒,30B E ∠=∠=︒,4AB DE ==.解决问题(1)如图①,智慧小组将DEC 绕点C 顺时针旋转,发现当点D 恰好落在AB 边上时,DE AC ,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE AD BD 、、,当DEC C 绕点C 继续旋转到如图②所示的位置时,他们提出BDCAECSS=,请你帮他们验证这一结论是否正确,并说明理由; 探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转DEC ,当B A E 、、三点共线时,求BD 的长;(4)在图①的基础上,写出一个边长比为2的三角形(可添加字母).14.探究:如图1和2,四边形ABCD 中,已知AB AD =,90BAD ∠=︒,点E ,F 分别在BC 、CD 上,45EAF ∠=︒.(1)①如图 1,若B 、ADC ∠都是直角,把ABE △绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,则能证得EF BE DF =+,请写出推理过程;②如图 2,若B 、D ∠都不是直角,则当B 与D ∠满足数量关系_______时,仍有EF BE DF =+;(2)拓展:如图3,在ABC 中,90BAC ∠=︒,AB AC ==点D 、E 均在边BC 上,且45DAE ∠=︒.若1BD =,求DE 的长.15.操作与证明:如图1,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E 、F 分别在正方形的边CB 、CD 上,连接AF .取AF 中点M ,EF 的中点N ,连接MD 、MN . (1)连接AE ,求证:△AEF 是等腰三角形; 猜想与发现:(2)在(1)的条件下,请判断MD 、MN 的数量关系和位置关系,得出结论. 结论1:DM 、MN 的数量关系是 ; 结论2:DM 、MN 的位置关系是 ; 拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.16.已知,把45°的直三角板的直角顶点E放在边长为6的正方形ABCD的一边BC 上,直三角板的一条直角边经过点D,以DE为一边作矩形DEFG,且GF过点A,得到图1.(1)求矩形DEFG的面积;(2)若把正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,把45°的直三角板的一个45°角的顶点与等腰直角三角形ABC的直角顶点B重合,直三角板夹这个45°角的两边分别交CA和CA的延长线于点H、P,得到图2.猜想:CH、PA、HP之间的数量关系,并说明理由;(3)若把边长为6的正方形ABCD沿着对角线AC剪掉一半得到等腰直角三角形ABC,点M是Rt△ABC内一个动点,连接MA、MB、MC,设MA+MB+MC=y,直接写出2y 的最小值.17.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.(发现证明)小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(类比引申)如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(探究应用)如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的=1.41=1.73)18.如图1,在矩形ABCD中,AB=6,BC=8,点E是对角线BD的中点,直角∠GEF 的两直角边EF、EG分别交CD、BC于点F、G.(1)若点F是边CD的中点,求EG的长.(2)当直角∠GEF绕直角顶点E旋转,旋转过程中与边CD、BC交于点F、G.∠EFG 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠EFG的值.(3)当直角∠GEF绕顶点E旋转,旋转过程中与边CD、BC所在的直线交于点F、G.在图2中画出图形,并判断∠EFG的大小是否发生变化?如果变化,请说明理由;如果不变,请直接写出tan∠EFG的值.(4)如图3,连接CE交FG于点H,若13HFHG,请求出CF的长.参考答案变式题.思路点拨:(1)利用等腰三角形的性质求出∠COC1即可.(2)根据对角线相等的平行四边形是矩形证明即可.(3)①求出∠COC2即可,根据矩形的判定证明即可解决问题.②解直角三角形求出A2C2,再求出AA2即可.满分解答:(1)解:如图1中,由旋转可知:△A1B1C1≌△ABC,∴∠A1=∠A=30°,∵OC=OA,OA1=OA,∴OC=OA1,∴∠OCA1=∠A1=30°,∴∠COC1=∠A1+OCA1=60°,∴n=60°.(2)证明:如图2中,∵OC=OA,OA1=OC1,∴四边形AA1CC1是平行四边形,∵OA=OA1,OC=OC1,∴AC=A1C1,∴四边形AA1CC1是矩形.(3)如图3中,①∵OA=OA2,∴∠OAA2=∠OA2A=30°,∴∠COC2=∠AOA2=180°﹣30°﹣30°=120°,∴m=120°,∵OC=OA,OA2=OC2,∴四边形AA2CC2是平行四边形,∵OA=OA2,OC=OC2,∴AC=A2C2,∴四边形AA2CC2是矩形.=6,②∵AC=A2C2=AB•cos30°=×2∴AA2=A2C2•cos30°==名师点评:本题属于四边形综合题,考查了旋转变换,平行四边形的判定和性质,矩形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.中考押题1.证明:(1)∵点P是边AC的中点,PE∥AB,∴点E是BC的中点,∴CE=BE,∵AC=BC,∴BE=AP,∵将线段PB绕点P顺时针旋转90°到线段PD.∴PB=PD,∵∠APD+∠BPC=90°,∠EBP +∠BPC=90°,∴∠EBP=∠APD,又∵PB=PD,∴△PAD≌△BEP(SAS),∴∠PAD=∠BEP,∵∠C=90°,AC=BC,∴∠BAC=∠ABC=45°,∵PE∥AB,∴∠ABC=∠PEC=45°,∴∠BEP=135°,∴∠BAD=∠PAD﹣∠BAC=135°﹣45°=90°,故答案为:△PAD,90;(2)如图,过点P作PH∥AB,交CB的延长线于点H,∴∠CBA=∠CHP,∠CAB=∠CPH,∵CB=CA,∴∠CBA=∠CAB,∴∠CHP=∠CPH,∴CH=CP,∴BH=AP,∵将线段PB绕点P顺时针旋转90°到线段PD.∴PB=PD,∵∠BPD=∠C,∴∠BPD+∠BPC =∠C+∠BPC , ∴∠PBH =∠APD , ∴△APD ≌△HBP (SAS ), ∴PH =AD , ∵PH ∥AB , ∴△CAB ∽△CPH ,∴H AC PC ABP = ∴HAC AB CPP = ∵AC =BC =43AB ,∴43CP PH =, ∴CP =43PH =43AD ;(3)当点P 在CA 的延长线上时, ∵AC =BC =AB =2, ∴△ABC 是等边三角形, ∴∠ACB =60°,∵将线段PB 绕点P 顺时针旋转60°到线段PD , ∴BP =PD ,∠BPD =60°=∠ACB , 过点P 作PE ∥AB ,交CB 的延长线于点E ,∵∠ACB =∠APB+∠ABP , ∴∠ABP =∠APB =30°, ∴AB =AP =2, ∴CP =4, ∵AB ∥PE ,∴PAB PE CAC = ∴CP =PE =4,由(2)得,PE =AD =4, ∵∠APD =∠APB+BPD =90°,∴DP =∴△ADP 的周长=AD+AP+DP =, 当点P 在AC 延长线上时,如图,同理可求△ADP 的周长=6+综上所述:△ADP 的周长为6+2.解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ︒∠=∠=,CAP BAD ∴∠=∠, CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆,PC BD ∴=,ACP ABD ∠=∠,AOC BOE ∠=∠,60BEO CAO ︒∴∠=∠=,1BDPC∴=,线BD 与直线CP 相交所成的较小角的度数是60︒, 故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ︒∠=∠=,PAC DAB ∴∠=∠,AB ADAC AP== DAB PAC ∴∆∆,PCA DBA ∴∠=∠,BD ABPC AC==, EOC AOB ∠=∠,45CEO OAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB∴∥,45EFC ABC︒∴∠=∠=,45PAO︒∠=,PAO OFH∴∠=∠,POA FOH∠=∠,H APO∴∠=∠,90APC︒∠=,EA EC=,PE EA EC∴==,EPA EAP BAH∴∠=∠=∠,H BAH∴∠=∠,BH BA∴=,45ADP BDC︒∠=∠=,90ADB︒∴∠=,BD AH∴⊥,22.5DBA DBC︒∴∠=∠=,90ADB ACB︒∠=∠=,∴A,D,C,B四点共圆,22.5DAC DBC︒∠=∠=,22.5DCA ABD︒∠=∠=,22.5DAC DCA︒∴∠=∠=,DA DC∴=,设=AD a,则DC AD a==,2PD a=,2ADCP∴==-c.如图3﹣2中,当点P在线段CD上时,同法可证:=DA DC,设=AD a,则CD AD a==,PD=,2PC a a ∴=-,22ADPC∴==+.3.解:(1)如图1,由旋转得:90OEF ∠=︒,OE EF =, 四边形ABCD 是正方形,且边长为6, 62ACBD,45OAB ∠=︒,904545FEBOAB ,AB AB ,()AOBAFB SAS ,113222BFOBBDAC ,故答案为:(2)如图2,过O 作OG AB ⊥于G ,过F 作FHAB⊥于H ,四边形ABCD 是正方形,45OAB OBA ∴∠=∠=︒,90OGAOGB,AOG ∴∆和OGB 是等腰直角三角形,3AGBGOG,1AE =,2EG,90OEF , 90OEG FEH,90FEHEFH,OEGEFH ,OE EF ,90OGEEHF,()OEG EFH AAS ,3OG EH,2EG FH ==,6132BHAB AE EH ,Rt FHB 中,由勾股定理得:22222222BFBH FH ;(3)存在GEH ∆是以EG 为直角边的直角三角形;6AD =,且:2:1DG AG , 2AG ∴=,4DG =,分三种情况:①当90EGH ∠=︒时,E 在A 的左侧时,如图3,过F 作FM BC ⊥,交CB 的延长线于M ,过H 作HNFM 于N ,交AB 于P ,过H 作HQ AD ⊥于Q ,过O 作OKAB ⊥于K ,过F 作FL AB 于L ,设AE x =, 同理得()OEK EFL AAS ,3OKEL,3EK FL x ,H 是CF 的中点,//HN CM ,113(63)222xFN MN BL x ,1639222x xHN CM ,93(3)22xxHPHNPN x ,Rt EGH 中,222EG GH EH ,∴22222233332(2)(6)(6)()2222x x x x x x,2720x x -+=,17412x ,27412x , 当17412x 时,7411941622BE (如图6所示), 当27412x 时,7411941622BE;②当90GEH ∠=︒时,如图4,过F 作FM BC ⊥,交CB 的延长线于M ,过H 作HN FM于N ,交AB 于P ,过O 作OK AB ⊥于K ,过F 作FLAB 于L ,设BE x =,则6AE x , 同理得:3OK EL,3BLFMx ,3(6)3FL EKx x ,1322xHNCM ,3322x x EPBEPBx,39(3)22xxHP HN PNx,90GEH AEG PEH,90AEG AGE ∠+∠=︒,AGEPEH ,90EAG EPH ,GAE EPH ∽, ∴AG AEEPPH,即263922x x x ,250x x -=,解得:0x =(舍)或5, 即5BE =;③如图5,当E 与B 重合时,90GEH∠=︒,此种情况不符合题意;综上,BE 的长是5. 4.【详解】 (1)如图①中,∵∠EAF =∠BAC =90°, ∴∠BAF =∠CAE , ∵AF =AE ,AB =AC , ∴△BAF ≌△CAE , ∴∠ABF =∠C,BF =CE , ∵AB =AC ,∠BAC =90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为BF⊥BE,BC;(2)如图②中,作DH∥AC交BC于H,∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=,∴BF+BE=BH=;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M,∵AC∥DH,∴∠ACH=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH=∠H,∴DB=DH,∵∠EDF=∠BDH=α,∴∠BDF=∠HDE,∵DF =DE ,DB =DH , ∴△BDF ≌△HDE , ∴BF =EH ,∴BF +BE =EH +BE =BH , ∵DB =DH ,DM ⊥BH , ∴BM =MH ,∠BDM =∠HDM , ∴BM =MH =BD •sin2α.∴BF +BE =BH =2n •sin 2α. 5.解:(1)如图,过点C′作C′H ⊥OF 于H .∵△A′B′C′是由△ABC 绕点O 逆时针旋转得到, ∴C′O=CO=4, 在Rt △HC′中, ∵∠HC′O =α=30°,∴C′H =C′O•cos30°=,∴点C′到直线OF 的距离为(2)①如图,当C′P ∥OF 时,过点C′作C′M ⊥OF 于M .∵△A′B′C′为等腰直角三角形,P为A′B′的中点,∴∠A′C′P=45°,∵∠A′B′O=90°,∴∠OC′P=135°.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,=∴C′M=C′O•cos45°=4×2∴点C′到直线DE的距离为如图,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴C′N=∵GD=2,∴点C′到直线DE的距离为2.②设d为所求的距离.第一种情形:如图,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OC=4,AC=2,∠ACO=90°,=∴=OA=∵OM=2,∠OMA′=90°,∴A′M4,又∵OG=2,∴DM=2,∴A′D=A′M-DM=4-2=2,即d=2,如图,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.∵P为A′B′的中点,∠A′C′B′=90°,∴PQ∥A′C′,∴12 B P CQ PQB A BC A C'=== ''''''∵B′C′=2∴PQ=1,CQ=1,∴Q点为B′C′的中点,也是旋转前BC的中点,∴OQ=OC+CQ=5∴OP,∴PM=∴PD=2PM DM-=-,∴d2,∴2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2,即d=2,如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ 交OB′于R,连接OP.由上可知OP OF=5,∴FP1,∵OF=OT,PF=PT,∠F=∠PTO=90°,∴Rt△OPF≌Rt△OPT(HL),∴∠FOP=∠TOP,∵PQ∥OQ,∴∠OPR=∠POF,∴∠OPR=∠POR,∴OR=PR,∵PT2+TR2=PR2,22215PR PR∴+(﹣)=∴PR=2.6,RT=2.4,∵△B′PR∽△B′QO,∴B ROB''=PRQO,∴3.46=2.6OQ,∴OQ=78 17,∴QG=OQ﹣OG=4417,即d=4417∴2≤d<44 17,第三种情形:当A′P经过点F时,如图,此时FG=3,即d=3.综上所述,﹣2或d =3.6.解:(1)如图1中,作MH AC ⊥于H .当旋转角为60︒时,60CAC ,AC AC =', ACC 是等边三角形,2CC AC ,60MCH ,设CH x =,则3MH AH x ,2x ∴=,1x ∴=,2232CM CH .故答案为2,2.(2)如图2中,作BH CD ⊥于H .AB AB =',60BAB ,ABB 是等边三角形,60DBM ACM , DMB AMC ,45BDC BAC ∴∠=∠=︒, 30BCH BCA ACC ,1BH DH BC,CH=12CD CH DH.13(3)CD的长有最大值.理由:如图3中,B AC BAC,45B ABC AC,=',AB AB'=,AC AC∴AB AB,AC AC∴△B AB∽△C AC,DBM ACM,DMB AMC,45BDM MAC,取AB的中点H,以H为圆心,HB为半径作H,连接CH.=,90CA CB∠=︒,ACB∴⊥,CH BH AH,CH ABBHC,901BDC BHC,2∴=时,CD的值最大,此时CD=.点D的运动轨迹是H,当CD AB7.【详解】(1)解:在正方形ABCD中,AB=4,∴AO=CO=OB=,∵BE ,∴OE ,∵AC ⊥BD ,∴∠COE =90°,∴CE ==,由旋转得:CE =CF ,∠ECF =90°,∴△CEF 的面积=211522CE ==; (2)证明:如图2,过E 作EN ⊥AB 于N ,作EP ⊥BC 于P ,∵EP ⊥BC ,FM ⊥CD ,∴∠EPC =∠FMC =90°,∵∠BCD =∠ECF =90°,∴∠PCE =∠MCF ,∵CE =CF ,∴△CPE ≌△CMF (AAS ),∴EP =FM ,∵EP ⊥BC ,EN ⊥AB ,BE 平分∠ABC ,∴EP =EN ,∴EN =FM ,∵FM ⊥CD ,∴∠FMG =∠ENH =90°,∵AB ∥CD ,∴∠NHE =∠MGF ,∴△NHE ≌△MGF (AAS ),∴NH=MG,∴BH+MG=BH+NH=BN,∵△BEN是等腰直角三角形,BE,∴BN=2BE;∴BH+MG=2BE,理由是:(3)解:BH﹣MG=2如图3,过E作EN⊥AB于N,交CG于P,∵EP⊥BC,FM⊥CD,AB∥CD,∴EP⊥CD,∴∠EPC=∠FMC=90°,∵∠M=∠ECF=90°,∴∠ECP+∠FCM=∠FCM+∠CFM=90°,∴∠ECP=∠CFM,∵CE=CF,∴△CPE≌△FMC(AAS),∴PC=FM,∵△DPE是等腰直角三角形,∴PE=PD,∴EN=BN=PN+PE=BC+PE=CD+PD=PC=FM,∵AB ∥CD ,∴∠H =∠FGM ,∵∠ENH =∠M =90°,∴△HNE ≌△GMF (AAS ),∴NH =MG ,∴BH ﹣MG =BH ﹣NH =BN ,∵△BEN 是等腰直角三角形,∴BN =2BE ,∴BH ﹣MG =2BE . 8.【详解】(1)如图1,①∵四边形ABCD 是菱形,∴AB BC CD AD ===,∵∠D =60°,∴△ADC 和△ABC 是等边三角形,∴AB AC =,∠BAC =60°,∵∠NAM =60°,∴∠NAB =∠CAM ,由△ADC 沿射线DC 方向平移得到△BCE ,可知∠CBE =60°, ∵∠ABC =60°,∴∠ABN =60°,∴∠ABN =∠ACB =60°∴△ANB ≌△AMC ,∴∠ANB =∠AMC ; ②如图1,△AMN 是等边三角形,理由是:由△ANB≌△AMC,∴AM=AN,∵∠NAM=60°,∴△AMN是等边三角形;(2)①如图2,∠ANB=∠AMC成立,理由是:在正方形ABCD中,∴∠BAC=∠DAC=∠BCA=45°,∵∠NAM=45°,∴∠ANB=∠AMC,由平移得:∠EBC=∠CAD=45°,∵∠ABC=90°,∴∠ABN=180°-90°−45°=45°,∴∠ABN=∠ACM=45°,∴△ANB∽△AMC,∴∠ANB=∠AMC;②如图2,不成立,△AMN是等腰直角三角形,理由是:∵△ANB∽△AMC,∴AN AB AM AC=,∴AN AM AB AC=,∵∠NAM=∠BAC=45°,∴△NAM∽△BAC,∴∠ANM =∠ABC =90°, ∴△AMN 是等腰直角三角形. 9.【详解】(1)解:由旋转的性质得:AP=AP 1,BP=BP 2. ∵α=90°,∴△PAP 1和△PBP 2均为等腰直角三角形, ∴∠APP 1=∠BPP 2=45°,∴∠P 1PP 2=180°-∠APP 1-∠BPP 2=90°; (2)证明:由旋转的性质可知△PAP 1和△PBP 2均为顶角为α的等腰三角形, ∴∠APP 1=∠BPP 2=90°2α-, ∴∠P 1PP 2=180°-(∠APP 1+∠BPP 2)=180°-2(90°2α-)=α, 在△P 2P 1P 和△P 2PA 中,∠P 1PP 2=∠PAP 2=α, 又∵∠PP 2P 1=∠AP 2P ,∴△P 2P 1P ∽△P 2PA , ∴12222PP P P P P P A=, ∴22122PP PP P A =⋅;(3)证明:如图,连接QB ,并过A 作1AM PP ⊥,垂足为M ,则12PAM α∠=,112PM PP =, ∵l 1,l 2分别为PB ,P 2B 的中垂线,2BP BP =,∴QP=QB ,PE=BE=BF=12BP = 又∵BQ=BQ ,90QEB QFB ∠=∠=︒,∴()Rt QEB Rt QFB HL ∆∆≌, ∴21122QPE QBE QBF P BP α∠=∠=∠=∠=, ∴12111909090222APP QPE PAM P BP αα∠+∠=︒-∠+∠=︒-∠+∠=︒, ∴190PPQ ∠=︒, ∵12QPE PAM α∠=∠=∠,90AMP PEQ ∠=∠=︒, ∴AMP PEQ ∆∆, ∴AP PM PQ QE=, 在Rt PEQ ∆中,4PQ ===,且AP=6,QE=1, ∴32AP QE AP QE PM PQ PQ ⋅⋅===,123PP PM ==, ∴1Rt PPQ ∆中,15PQ ===. 10.解:(1)∵由旋转的性质可得:∠A 1C 1B=∠ACB=45°,BC=BC 1,∴∠CC 1B=∠C 1CB=45°.∴∠CC 1A 1=∠CC 1B+∠A 1C 1B=45°+45°=90°.(2)∵由旋转的性质可得:△ABC ≌△A 1BC 1,∴BA=BA 1,BC=BC 1,∠ABC=∠A 1BC 1. ∴11BA BA BC BC =,∠ABC+∠ABC 1=∠A 1BC 1+∠ABC 1 ∴∠ABA 1=∠CBC 1.∴△ABA 1∽△CBC 1∴1122ABA CBC S AB 416S CB 525∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. ∵S △ABA1=4,∴S △CBC1=254. (3)过点B 作BD ⊥AC ,D 为垂足,∵△ABC 为锐角三角形,∴点D 在线段AC 上.在Rt △BCD 中,BD=BC×sin45°①如图1,当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小.最小值为:EP 1=BP 1﹣BE=BD ﹣2.②如图2,当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大.最大值为:EP 1=BC+BE=5+2=7.11.【详解】(1)解:BD MF =,BD MF ⊥.延长FM 交BD 于点N ,根据旋转的性质得:AB=AM ,AD=AF ,∠BAD=∠MAF=90°∴BAD MAF ∆∆≌.∴BD MF =,ADB AFM ∠=∠.又∵DMN AMF ∠=∠,∴90ADB DMN AFM AMF ∠+∠=∠+∠=︒,∴90DNM ∠=︒,∴BD MF ⊥(2)解:如图2,①当AK FK =时,30KAF F ∠=∠=︒,则111180*********BAB B AD KAF ︒︒︒︒︒∠=-∠-∠=--=,即60β=︒;②当AF FK =时,75FAK ∠=︒,∴19015BAB FAK ∠=︒-∠=︒,即15β=︒;∴β的度数为60︒或15︒(3)如图3,由题意得矩形2PNA A .设2A A x =,则PN x =,在222Rt A M F ∆中,∵228F M FM ==,∴224A M =,22A F =∴2AF x =.∵290PAF ∠=︒,230PF A ∠=︒,∴2tan 3043AP AF x ︒=⋅=-.∴43PD AD AP x =-=+. ∵//NP AB ,∴DNP B ∠=∠.∵D D ∠=∠,∴DPN DAB ∆∆∽. ∴PN DP AB DA=.∴44x x =,解得6x =-26A A =-答:平移的距离是(6cm -.12.【详解】解:(1)如图3,过点D 作DE ⊥BC ,垂足为E ,设BC=m .在Rt △ABC 中,∠BAC=30°,由BC=AB ·tan30°,BC=AC ·sin30°,得AC=2m ,, ∵AC=AD ,∠CAD=2×30°=60°,∴△ACD 为等边三角形,∴∠ACD=60°,CD=AC=2m ,∴∠BCD=60°×2=120°,在Rt △DEC 中,∠DCE=180°-120°=60°,DC=2m ,∴CE=CD·cos60°=m ,DE=CE ·tan60°,∴在Rt △BED 中,,∴BD AC ,故AC .故答案为:120°;AC . (2)不成立,理由如下:设BC=n ,在Rt △ABC 中,∠BAC=45°,∠ABC=90°,∴BC=AB=m ,n ,∵AC=AD ,∠CAD=90°,∴△CAD 为等腰直角三角形,∴∠ACD=45°,AC= 2n ,∴∠BCD=2×45°=90°,在Rt △BCD 中,,∴BD AC ,故AC .答案为:90°;.故结论不成立.(3)AP 或;解答如下:∵PB=PC ,∴点P 在线段BC 的垂直平分线上,∵∠BAC=∠BCP=90°,故A 、B 、C 、P 四点共圆,以线段BC 的中点为圆心构造⊙O ,如图4,图5,分类讨论如下:①当点P 在直线BC 上方时,如图4,作PM ⊥AC ,垂足为M ,设PM=x .∵PB=PC ,∠BPC=90°,∴△PBC 为等腰直角三角形,∴∠PBC=45°,∵∠PAC=∠PBC=45°,∴△AMP 为等腰直角三角形,∴AM=PM=x ,x ,在Rt △ABC 中,AB=2,AC=4,∴PC=BC·sin45°,在Rt △PMC 中,∵∠PMC=90°,PM=x ,PC=,CM=4-x ,∴()2224x x +-=,解得:11x =,23x =(舍),∴;②当点P 在直线BC 的下方时,如图5,作PN ⊥AB 的延长线,垂足为N ,设PN=y .同上可得△PAN 为等腰三角形,∴AN=PN=y ,∴BN=y-2,在Rt △PNB 中,∵∠PNB=90°,PN=y ,BN=y-2,,∴()2222y y +-=,解得:13y =,21y =-(舍),∴=AP 或 13.【详解】(1)如图①中,∵△DEC 绕点C 旋转点D 恰好落在AB 边上,∴AC=CD ,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD 是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE ,∴DE ∥AC ;(2)如图②中,作DM ⊥BC 于M ,AN ⊥EC 交EC 的延长线于N .∵△DEC 是由△ABC 绕点C 旋转得到∴BC=CE ,AC=CD ,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM ,在△ACN 和△DCM 中,90ACN DCM CMD N AC CD ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ACN ≌△DCM (AAS ),∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S △BDC =S △AEC .(3)如图③中,作CH ⊥AD 于H .∵,∵B ,A ,E 共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A ,E ,D ,C 四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD ,CH ⊥AD ,AC=CD=12AB=2∴∴,∴BD ===(4)如图①中,设DE 交BC 于T .因为含有30°的直角三角形的三边之比为12,由(1)可知△BDT ,△DCT ,△ECT 都是含有30°的直角三角形,∴△BDT ,△DCT ,△ECT 符合条件.14.【详解】(1)①如图1,∵把ABE △绕点A 逆时针旋转90︒至ADG ,使AB 与AD 重合,∴AE AG =,BAE DAG ∠=∠,BE DG =∵90BAD ∠=︒,45EAF ∠=︒,∴45BAE DAF ∠+∠=︒,∴45DAG DAF ∠+∠=︒,即45EAF GAF ∠=∠=︒,在EAF △和GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴()EAF GAF SAS ≌,∴EF GF =,∵BE DG =,∴EF GF BE DF ==+;②180B D ∠+∠=︒,理由是:把ABE △绕A 点旋转到ADG ,使AB 和AD 重合,则AE AG =,B ADG ∠=∠,BAE DAG ∠=∠,∵180B ADC ︒∠+∠=,∴180ADC ADG ∠+∠=︒,∴C ,D ,G 在一条直线上,和①知求法类似,45EAF GAF ∠=∠=︒,在EAF △和GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴()EAF GAF SAS △≌△,∴EF GF =,∵BE DG =,∴EF GF BE DF ==+;故答案为:180B D ∠+∠=︒(2)∵ABC中,AB AC ==90BAC ∠=∴45ABC C ∠=∠=︒,由勾股定理得:4BC === ,把AEC 绕A 点旋转到AFB △,使AB 和AC 重合,连接DF .则AF AE =,45FBA C ∠=∠=︒,BAF CAE ∠=∠,∵45DAE ∠=︒,∴904545FAD FAB BAD CAE BAD BAC DAE ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒, ∴45FAD DAE ∠=∠=︒,在FAD △和EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴FAD EAD △≌△,∴DF DE =,设DE x =,则DF x =,∵1BC =,∴413BF CE x x ==--=-,∵45FBA ∠=︒,45ABC ∠=︒,∴90FBD ∠=︒,由勾股定理得:222DF BF BD =+,。

九年级数学旋转变换知识点

九年级数学旋转变换知识点

九年级数学旋转变换知识点在数学考试的过程中要仔细认真,做到不该丢的不能丢,分分计较,做到颗粒归仓。

因为解题时即使思路正确,不留意详情与计算也能丢分。

下面是我整理的九年级数学旋转变换学问点,仅供参考希望能够关怀到大家。

九年级数学旋转变换学问点1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:(1)图形的旋转是由旋转中心和旋转的角度所确定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不转变图形的大小和样子.2.性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.数学有理数学问点复习1.1正数和负数①把0以外的数分为正数和负数。

0是正数与负数的分界。

②负数:比0小的数正数:比0大的数0既不是正数,也不是负数1.2有理数1.2.1有理数①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

②全部正整数组成正整数集合,全部负整数组成负整数集合。

正整数,0,负整数统称整数。

1.2.2数轴①具有原点,正方向,单位长度的直线叫数轴。

1.2.3相反数①只有符号不同的数叫相反数。

②0的相反数是0 正数的相反数是负数负数的相反数是正数1.2.4确定值①确定值|a|②性质:正数的确定值是它的本身负数的确定值的它的相反数0的确定值的01.2.5数的大小比较①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

三角形旋转解题技巧初中

三角形旋转解题技巧初中

三角形旋转解题技巧初中引言三角形是初中数学中重要的几何图形之一,而旋转是一种常见的几何变换。

本文将介绍如何运用旋转解决与三角形相关的问题。

我们将从基本概念开始,逐步深入探讨旋转解题技巧,并通过实例演示其应用。

1. 旋转的基本概念1.1 什么是旋转?旋转是指以某个固定点为中心,按照一定的角度和方向,将图形或物体绕着该点进行移动的操作。

在数学中,我们通常以坐标平面上的原点为中心进行旋转操作。

1.2 旋转角度在二维平面上,我们使用弧度或度数来表示旋转角度。

一个完整的圆周对应360°或2π弧度。

在初中数学中,我们通常使用度数来表示旋转角度。

1.3 顺时针和逆时针顺时针方向是指按照钟表走时方向进行旋转;逆时针方向则是相反方向。

在解题过程中,需要根据具体情况确定顺时针或逆时针方向。

2. 三角形的旋转性质2.1 三角形的旋转不改变其形状和大小在二维平面上,三角形绕着一个点进行旋转后,仍然是一个三角形,并且其形状和大小保持不变。

这一性质是我们运用旋转解决三角形问题的基础。

2.2 顶点旋转当我们将一个三角形绕着顶点进行旋转时,可以通过观察发现以下性质:•旋转前后的两条边长度不变;•旋转前后的两条边夹角度数不变。

这些性质对于解题非常有用,可以帮助我们确定未知边长或夹角度数。

2.3 边中点旋转当我们将一个三角形绕着边的中点进行旋转时,可以通过观察发现以下性质:•旋转前后的两条边长度不变;•旋转前后的两条边夹角度数相等;•边中点连线在旋转前后保持不变。

这些性质同样对于解题非常有用,可以帮助我们确定未知边长或夹角度数,并且可以构造出一些特殊图形来简化问题。

3. 旋转解题技巧3.1 求未知边长当我们已知一个三角形的两条边和它们的夹角度数,需要求解第三条边长时,旋转可以帮助我们简化问题。

以顶点旋转为例,假设三角形ABC中,已知边AB和AC的长度分别为a和b,夹角BAC的度数为θ°。

我们需要求解BC的长度。

中考数学复习指导:旋转变换在解题中的妙用

中考数学复习指导:旋转变换在解题中的妙用

旋转变换在解题中的妙用初中数学中蕴含着许多数学思想和方法,灵活运用好这些思想与方法,才能帮助我们解决问题.本文以旋转变换为例,与大家一起感受将图形旋转的思想方法是如何帮助我们聚集条件,搭建桥梁,从而顺利解题的.一、利用旋转变换,把分散的条件集中到一个三角形中例1 如图1,在△ABC中,CD为AB边上的中线,且AC=3,BC=4,CD=,试判断△ABC的形状.分析本题给出的条件CD与AC.BC间并不在同一三角形中,条件显得分散.但如果把△BCD绕D点旋转180°后,已知的三条线段就都能集中到△ACM中,从而通过旋转集中了条件.例2 如图2,在正方形ABCD中,P为其内部一点,且AP=1,BP=,PC=,求∠APB度数.分析显然已知P点到顶点A,B,C的距离,三个条件也是过于分散,但如果把△ABP 绕B点顺时旋转90°,到△BMC处,则三个条件就可转化到△PMC中,从而由直角三角形性质可求出∠PMC,∠BMP的度数.二、利用旋转变换,把分散的线段集中到一条直线上例3 如图3,在正方形ABCD中,∠EAF=45°,E,F分别在BC与CD上,求证:EF=BE+DF.分析将△ADF旋转到△ABM的位置即可求解.例4 D是正△ABC外一点,且∠BDC=120°,∠EDF=60°,E,F在AB,AC上.求证:EF=BE+CF.分析通过旋转可把BE与CF集中到同一直线AC上,然后由△MDF≌△FDE可得所求结论.三、利用旋转变换,把不规则的图形变成规则的图形例5 在△ABC中,∠C=90°,O为AB中点,将△ABC绕O点逆时针旋转90°,得△DEF,若AC=6,求重叠部分面积.分析两直角重叠部分为不规则四边形,若用常规方法,则要先求△BPQ面积,再求△BO R面积,然后相减得出重叠部分面积,显然比较麻烦,若用旋转则可达到意想不到的简化效果,作OM⊥PQ,ON⊥BC,把△POM旋转到△R ON位置,则不规则的重叠部分变成了正方形MONQ,由OM为中位线,得ON=AC=3,从而S阴=9.例6 在Rt△ABC中,D,E,F分别在AB.AC.BC上,且DECF为正方形,AD=6,BD=8,求S阴.分析本题若从常规角度思考则感觉条件似乎不充分,无从下手,但若把△AED绕D 点顺时旋转90°,则可得阴影部分面积就是△A'BD的面积,且A'D=AD=6,∠A'DB=90,从而有,S阴=6·8·=24.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学十大解题思路之几何变换法在数学问题的研究中,常常需要运用到变换法。

几何变换就是几何图形在平面上满足某种条件的运动。

运用几何变换可以把分散的点、线段、角等已知图形转移到恰当的位置,从而使分散的条件都集中在某个基本图形中,建立起新的联系,从而使问题得以转化解决。

●平移变换(示例详见《2013中考数学十大解题思路之几何变换法-平行变换》)
●对称变换(示例详见《2013中考数学十大解题思路之几何变换法-对称变换》)
●旋转变换

第一节平移变换
所谓“平移变换”是指在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移变换,简称平移。

图形平移的主要因素是平移方向和平移距离。

平移变换后的图形与原图形是全等形,对应线段相等,对应角相等。

平移变换法通常用于等腰梯形、正方形、矩形中平行线的辅助线作法及简单图形的平移以及函数图象的平移等有关知识巾,特别是进行图案设计及日常生活问题的解决中。

第二节对称变换
对称变换就是将某一图形变到关于直线对称的另一图形的过程,称为该图形关于直线的对称变换。

变换后的图形与原图形是全等形,对应线段相等,对应角相等,对称图形上每一对对称点的连线被对称轴垂直平分。

对称变换经常用于等腰三角形、等边三角形、特殊平行四边形、梯形及圆等图形中。

第三节旋转变换
在平面内,某一图形绕一个中心旋转若干角度后得到另一个图形,这种变换称为旋转变换。

旋转后的图形与原图形是全等形,对应线段相等,对应角相等,旋转变换的对应点到旋转中心的距离相等,任意两条对应线段的夹角等于旋转角。

旋转变换法主要用途是把分散元素通过旋转集中起来,从而为解题创造条件,旋转变换法经常用于等腰三角形、等边三角形及正方形等图形中。

例题1
例题2
例题3
例题4
例题5
例题6
例题7
例题8。

相关文档
最新文档