c课设报告基于Dijkstra算法的最短路径问题求解精编版
C语言迪杰斯特拉实现最短路径算法
![C语言迪杰斯特拉实现最短路径算法](https://img.taocdn.com/s3/m/7211fc67cdbff121dd36a32d7375a417866fc1ab.png)
C语言迪杰斯特拉实现最短路径算法迪杰斯特拉(Dijkstra)算法是一种用于在加权图中寻找从起点到终点的最短路径的算法。
它使用贪心算法的原理,每次选择权重最小的边进行扩展,直到找到终点或者无法扩展为止。
下面是C语言中迪杰斯特拉算法的实现。
```c#include <stdio.h>#include <stdbool.h>//定义图的最大节点数#define MAX_NODES 100//定义无穷大的距离#define INFINITY 9999//自定义图的结构体typedef structint distance[MAX_NODES][MAX_NODES]; // 节点间的距离int numNodes; // 节点数} Graph;//初始化图void initGraph(Graph* graph)int i, j;//设置所有节点之间的初始距离为无穷大for (i = 0; i < MAX_NODES; i++)for (j = 0; j < MAX_NODES; j++)graph->distance[i][j] = INFINITY;}}graph->numNodes = 0;//添加边到图void addEdge(Graph* graph, int source, int destination, int weight)graph->distance[source][destination] = weight;//打印最短路径void printShortestPath(int* parent, int node)if (parent[node] == -1)printf("%d ", node);return;}printShortestPath(parent, parent[node]);printf("%d ", node);//执行迪杰斯特拉算法void dijkstra(Graph* graph, int source, int destination) int i, j;//存储起点到各个节点的最短距离int dist[MAX_NODES];//存储当前节点的父节点int parent[MAX_NODES];//存储已访问的节点bool visited[MAX_NODES];//初始化所有节点的距离和父节点for (i = 0; i < graph->numNodes; i++)dist[i] = INFINITY;parent[i] = -1;visited[i] = false;}//设置起点的距离为0dist[source] = 0;//寻找最短路径for (i = 0; i < graph->numNodes - 1; i++)int minDist = INFINITY;int minNode = -1;//选择距离最小的节点作为当前节点for (j = 0; j < graph->numNodes; j++)if (!visited[j] && dist[j] < minDist)minDist = dist[j];minNode = j;}}//标记当前节点为已访问visited[minNode] = true;//更新最短距离和父节点for (j = 0; j < graph->numNodes; j++)if (!visited[j] && (dist[minNode] + graph->distance[minNode][j]) < dist[j])dist[j] = dist[minNode] + graph->distance[minNode][j];parent[j] = minNode;}}}//打印最短路径及距离printf("Shortest Path: ");printShortestPath(parent, destination);printf("\nShortest Distance: %d\n", dist[destination]); int maiGraph graph;int numNodes, numEdges, source, destination, weight;int i;//初始化图initGraph(&graph);//输入节点数和边数printf("Enter the number of nodes: ");scanf("%d", &numNodes);printf("Enter the number of edges: ");scanf("%d", &numEdges);graph.numNodes = numNodes;//输入边的信息for (i = 0; i < numEdges; i++)printf("Enter source, destination, and weight for edge %d: ", i + 1);scanf("%d %d %d", &source, &destination, &weight);addEdge(&graph, source, destination, weight);}//输入起点和终点printf("Enter the source node: ");scanf("%d", &source);printf("Enter the destination node: ");scanf("%d", &destination);//执行迪杰斯特拉算法dijkstra(&graph, source, destination);return 0;```上述代码中,我们首先定义了一个图的结构体,里面包括节点间的距离矩阵和节点数。
最短路径的实验报告
![最短路径的实验报告](https://img.taocdn.com/s3/m/c46dccc48662caaedd3383c4bb4cf7ec4bfeb679.png)
最短路径的实验报告最短路径的实验报告引言:最短路径问题是图论中一个经典的问题,涉及到在一个带有权重的图中找到两个顶点之间的最短路径。
本实验旨在通过实际操作和算法分析,深入探讨最短路径算法的性能和应用。
实验设计:本次实验使用了Dijkstra算法和Floyd-Warshall算法来解决最短路径问题。
首先,我们使用Python编程语言实现了这两个算法,并对它们进行了性能测试。
然后,我们选择了几个不同规模的图进行实验,以比较这两种算法的时间复杂度和空间复杂度。
最后,我们还在实际应用中使用了最短路径算法,以验证其实用性。
实验过程:1. 实现Dijkstra算法Dijkstra算法是一种贪心算法,用于求解单源最短路径问题。
我们首先实现了该算法,并对其进行了性能测试。
在测试中,我们使用了一个包含1000个顶点和5000条边的图,记录了算法的运行时间。
结果显示,Dijkstra算法的时间复杂度为O(V^2),其中V表示图中的顶点数。
2. 实现Floyd-Warshall算法Floyd-Warshall算法是一种动态规划算法,用于求解所有顶点对之间的最短路径。
我们在Python中实现了该算法,并对其进行了性能测试。
在测试中,我们使用了一个包含100个顶点和5000条边的图,记录了算法的运行时间。
结果显示,Floyd-Warshall算法的时间复杂度为O(V^3),其中V表示图中的顶点数。
3. 比较两种算法通过对Dijkstra算法和Floyd-Warshall算法的性能测试,我们可以看到,Dijkstra算法在处理较大规模的图时性能更好,而Floyd-Warshall算法在处理较小规模的图时性能更好。
因此,在实际应用中,我们可以根据图的规模选择合适的算法。
4. 应用实例为了验证最短路径算法的实际应用性,我们选择了一个城市交通网络图进行实验。
我们使用了Dijkstra算法来计算两个城市之间的最短路径,并将结果与实际的驾车时间进行比较。
Dijkstra算法求最短路径
![Dijkstra算法求最短路径](https://img.taocdn.com/s3/m/c51de6e219e8b8f67c1cb9a0.png)
在交通网络中,常常会提出许多这样的问题:两地之间是否有路相通?在有多条通路的情况下,哪一条最近?哪一条花费最少等。
交通网络可以用带权图表示,图中顶点表示域镇,边表示两城之间的道路,边上权值可表示两城镇间的距离,交通费用或途中所需的时间等。
以上提出的问题就是带权图中求最短路径的问题,即求两个顶点间长度最短的路径。
最短路径问题的提法很多。
在这里仅讨论单源最短路径问题:即已知有向图(带权),我们希望找出从某个源点S∈V到G中其余各顶点的最短路径。
例如:下图(有向图G14),假定以v1为源点,则其它各顶点的最短路径如下表所示:图G14从有向图可看出,顶点v1到v4的路径有3条:(v1,v2,v4),(v1,v4),(v1,v3,v2,v4),其路径长度分别为:15,20和10。
因此v1到v4的最短路径为(v1,v3,v2,v4 )。
为了叙述方便,我们把路径上的开始点称为源点,路径的最后一个顶点为终点。
那么,如何求得给定有向图的单源最短路径呢?迪杰斯特拉(Dijkstra)提出按路径长度递增产生诸顶点的最短路径算法,称之为迪杰斯特拉算法。
迪杰斯特拉算法求最短路径的实现思想是:设有向图G=(V,E),其中,V={0,2,…,n-1},cost是表示G的邻接矩阵,G.arcs [i][j] .adj 表示有向边<i,j>的权。
若不存在有向边<i,j>,则G.arcs [i][j] .adj 的权为无穷大(这里取值为32767)。
设S是一个集合,其中的每个元素表示一个顶点,从源点到这些顶点的最短距离已经求出。
设顶点v0为源点,集合S的初态只包含顶点v0。
数组D记录从源点到其他各顶点当前的最短距离,其初值为D[i]= G.arcs[v0][i].adj ,i=1,…,n-1。
从S之外的顶点集合V-S 中选出一个顶点w,使D[w]的值最小。
于是从源点到达w只通过S 中的顶点,把w加入集合S中调整D中记录的从源点到V-S中每个顶点v的距离:从原来的D[v] 和D[w]+ G.arcs [w][v] .adj中选择较小的值作为新的D[v]。
基于最短路径优化问题Dijkstra算法程序的设计和实现
![基于最短路径优化问题Dijkstra算法程序的设计和实现](https://img.taocdn.com/s3/m/a8bfa07b01f69e31433294c7.png)
上式表示对某一个 j0 sn 1 , 有 Байду номын сангаас∞ < ∞ 这 ( 一 )若 , 意味着 '至 有一 条长度小于等于 3的路径且边权值之和 1 2 比长度小于等于 2的路径 的边权值之和小 , 于是我们选取边
设 c < ,> = E 是一 简单加权 图( 有向或无向图且 不合平行 边 )其 中 = , , { 。 … , , 并 约定 了所 有顶点 的一个 l , 次序 , 是起点 , 。 3 / 是终点. 用矩阵 A ( ) 将带权 图的权 = 值存放在矩 阵 A 中. 在加权 图中 , o(v, )r 0当且仅 权 J< > =>
个顶点 的最短路径权值之和; (的第 kk 0 l2…/ 从A・ ’ (= ,,, 1 , 一
收稿 日期 :0 7 1- 8 20 —0 0
作者简介 : 菊(97 )女 , 兰州人 , 岳秋 17一 , 甘肃 兰州城市学院计算机系教师 , 从事离散数学教学与研究.
引 言
求最短路径 以及最短距离 的问题在各个 领域都经 常用 到 ,九十年代公认 的求最短路径 的最好的算法是由 Ew.i . D— jsa提出的标 号算法 . kn 但是该算法采用手工求解 , 算量太 计 大, 尤其是规模较大 的问题 , 手工求解几乎是不可 能的. 随着 计算机科学技术的飞速发展 , 完全能够解决这类问题. 本文将 求解 EW.i s a . Dj t 算法的过程采用二维矩 阵存储数据 ,利用 kr
) 都不等于 0或 m,= , , , 一 . , s2 34 …n 1
其 中 a= , i r表示 至 有一条长度为 1 t 且边权值为 r 的 路 , m( = m是一个 比 r 大好 多倍 的数 , 这样就 不会影 响计算
c语言最短路径的迪杰斯特拉算法
![c语言最短路径的迪杰斯特拉算法](https://img.taocdn.com/s3/m/f619353f30b765ce0508763231126edb6f1a761e.png)
c语言最短路径的迪杰斯特拉算法Dijkstra的算法是一种用于查找图中两个节点之间最短路径的算法。
这个算法可以应用于有向图和无向图,但是它假设所有的边都有正权值,并且不包含负权值的边。
以下是一个简单的C语言实现:c复制代码#include<stdio.h>#define INF 99999#define V 5 // 顶点的数量void printSolution(int dist[]);void dijkstra(int graph[V][V], int src);int main() {int graph[V][V] = { { 0, 4, 0, 0, 0 }, { 4, 0, 8, 11, 7 },{ 0, 8, 0, 10, 4 },{ 0, 11, 10, 0, 2 },{ 0, 7, 4, 2, 0 } };dijkstra(graph, 0);return0;}void dijkstra(int graph[V][V], int src) { int dist[V];int i, j;for (i = 0; i < V; i++) {dist[i] = INF;}dist[src] = 0;for (i = 0; i < V - 1; i++) {int u = -1;for (j = 0; j < V; j++) {if (dist[j] > INF) continue;if (u == -1 || dist[j] < dist[u]) u = j;}if (u == -1) return;for (j = 0; j < V; j++) {if (graph[u][j] && dist[u] != INF && dist[u] + graph[u][j] < dist[j]) {dist[j] = dist[u] + graph[u][j];}}}printSolution(dist);}void printSolution(int dist[]) {printf("Vertex Distance from Source\n"); for (int i = 0; i < V; i++) {printf("%d \t\t %d\n", i, dist[i]);}}这个代码实现了一个基本的Dijkstra算法。
dijkstra算法 城市最短路径问题
![dijkstra算法 城市最短路径问题](https://img.taocdn.com/s3/m/57ccf04da36925c52cc58bd63186bceb19e8edf2.png)
dijkstra算法城市最短路径问题Dijkstra算法是一种经典的图算法,用于求解带有非负权重的图的单源最短路径问题。
在城市的交通规划中,Dijkstra算法也被广泛应用,可以帮助我们找到最短的路线来节省时间和成本。
一、最短路径问题的定义最短路径问题,指的是在一个带权重的有向图中,找到从起点到终点的一条路径,它的权重之和最小。
在城市的交通规划中,起点和终点可以分别是两个街区或者两个交通枢纽。
二、Dijkstra算法Dijkstra算法是基于贪心策略的一种算法,用于解决带非负权重的最短路径问题。
它采用了一种贪心的思想:每次从起点集合中选出当前距离起点最近的一个点,把其移到已知的最短路径集合中。
并以该点为中心,更新它的相邻节点的到起点的距离。
每次更新距离时,选择距离起点最近的距离。
三、Dijkstra算法实现1. 创建一个到起点的距离数组和一个布尔类型的访问数组。
2. 将起点的到起点的距离设置为0,其他的节点设置为无穷大。
3. 从距离数组中选择没有访问过且到起点距离最近的点,将它标记为“已访问”。
4. 对于它的所有邻居,如果出现路径缩短的情况,就更新它们的距离。
5. 重复步骤3和4,直到所有节点都被标记为“已访问”。
6. 最后,根据到起点的距离数组,以及每个节点的前驱节点数组,可以得到从起点到终点的最短路径。
四、Dijkstra算法的时间复杂度Dijkstra算法的时间复杂度可以通过堆优化提高,但最坏情况下时间复杂度仍达到O(ElogV)。
其中,E是边的数量,V是顶点的数量。
因此,Dijkstra算法在不考虑空间复杂度的情况下,是一种高效且实用的解决城市最短路径问题的算法。
五、结论Dijkstra算法是一个广泛应用于城市交通规划领域的算法,可以帮助我们找到最优的路线来节省时间和成本。
它基于贪心策略,每次从起点集合中选择距离起点最近的点,并对其邻居节点进行松弛操作。
Dijkstra算法的时间复杂度虽然较高,但堆优化可以提高算法性能。
最短路径——dijkstra算法代码(c语言)
![最短路径——dijkstra算法代码(c语言)](https://img.taocdn.com/s3/m/f5dfcbe5e109581b6bd97f19227916888486b9f9.png)
最短路径——dijkstra算法代码(c语⾔)最短路径问题看了王道的视频,感觉云⾥雾⾥的,所以写这个博客来加深理解。
(希望能在12点以前写完)()⼀、总体思想1.初始化三个辅助数组s[],dist[],path[]s[]:这个数组⽤来标记结点的访问与否,如果该结点被访问,则为1,如果该结点还没有访问,则为0;dist[]:这个数组⽤来记录当前从v到各个顶点的最短路径长度,算法的核⼼思想就是通过不断修改这个表实现; path[]:这个数组⽤来存放最短路径;2.遍历图,修改上⾯的各项数组,每次只找最短路径,直到遍历结束⼆、代码实现1void dijkstra(Graph G, int v)2 {3int s[G.vexnum];4int dist[G.vexnum];5int path[G.vexnum];6for(int i = 0; i < G.vexnum; i++)7 {8 s[i] = 0;9 dist[i] = G.edge[v][i];10if(G.edge[v][i] == max || G.edge[v][i] == 0)11 {12 path[i] = -1;13 }14else15 {16 path[i] = v;17 }18 s[v] = 1;19 }2021for(int i = 0; i < G.vexnum; i++)22 {23int min = max;24int u;25for(int j = 0; j < G.vexnum; j++)26 {27if(s[j] != 1 && dist[j] < min)28 {29 min = dist[j];30 u = j;31 }32 }33 s[u] = 1;34for(int j = 0; j < G.vexnum; j++)35 {36if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])37 {38 dist[j] = dist[u] + G.edge[u][j];39 path[j] = u;40 }41 }42 }43 }三、代码解释先⾃⼰定义⼀个⽆穷⼤的值max#define max infdijkstra算法传⼊的两个参为图Graph G;起点结点 int v;⾸先我们需要三个辅助数组1int s[G.vexnum];//记录结点时是否被访问过,访问过为1,没有访问过为02int dist[G.vexnum];//记录当前的从v结点开始到各个结点的最短路径长度3int path[G.vexnum];//记录最短路径,存放的是该结点的上⼀个为最短路径的前驱结点初始化三个数组1for(int i = 0; i < G.vexnum; i++)2 {3 s[i] = 0;//⽬前每个结点均未被访问过,设为04 dist[i] = G.edge[v][i];//dist[]数组记录每个从v结点开到其他i结点边的长度(权值)5if(G.edge[v][i] == max || G.edge[v][i] == 0)6 {7 path[i] = -1;8 }//如果v到i不存在路径或者i就是v结点时,将path[i]设为-1,意为⽬前v结点不存在路径到i9else10 {11 path[i] = v;12 }//反之,若v到i存在路径,则v就是i的前驱结点,将path[i] = v13 s[v] = 1;//从遍历起点v开始,即已经访问过顶点s[v]=114 }开始遍历数组并且每次修改辅助数组以记录⽬前的情况,直⾄遍历结束1for(int i = 0; i < G.vexnum; i++)2 {3int min = max;//声明⼀个min = max⽤来每次记录这次遍历找到的最短路径的长度(权值)4int u;//声明u来记录这次历找到的最短路径的结点5for(int j = 0; j < G.vexnum; j++)//开始遍历找⽬前的最短路径6 {7if(s[j] != 1 && dist[j] < min)8 {9 min = dist[j];10 u = j;11 }//找出v到结点j的最短路径,并且记录下最短路径的结点u = j12 }13 s[u] = 1;//找到结点u,即已访问过u,s[u] = 114for(int j = 0; j < G.vexnum; j++)//开始遍历修改辅助数组的值15 {16if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])17 {18 dist[j] = dist[u] + G.edge[u][j];19 path[j] = u;20 }//如果v→j的路径⽐v →u→j长,那么修改dist[j]的值为 dist[u] + G.edge[u][j],并且修改j的前驱结点为path[j] = u21 }22 }遍历结束后,数组dist[]就是存放了起点v开始到各个顶点的最短路径长度最短路径包含的结点就在path数组中例如我们得到如下的path[]数组1 path[0] = -1;//0到⾃⼰⽆前驱结点2 path[1] = 0;//1的前驱为结点0,0⽆前驱结点,即最短路径为0 →13 path[2] = 1;//2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →24 path[3] = 0;//3的前驱为结点0,0⽆前驱结点,即最短路径为0 →35 path[4] = 2;//4的前驱结为点2,2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →2 →4 dijkstra对于存在负权值的图不适⽤,明天再更新Floyd算法叭。
c语言课程设计最短路径
![c语言课程设计最短路径](https://img.taocdn.com/s3/m/46dbbd0d59fafab069dc5022aaea998fcd224079.png)
c语言课程设计最短路径一、教学目标本节课的教学目标是让学生掌握C语言中最短路径算法的基本概念和实现方法。
具体包括以下三个方面:1.知识目标:使学生了解最短路径问题的背景和意义,理解Dijkstra算法和A*算法的原理,学会使用C语言实现最短路径算法。
2.技能目标:培养学生运用C语言解决实际问题的能力,提高学生的编程技巧和算法思维。
3.情感态度价值观目标:激发学生对计算机科学的兴趣,培养学生的创新精神和团队合作意识。
二、教学内容本节课的教学内容主要包括以下几个部分:1.最短路径问题的定义和意义:介绍最短路径问题的背景,让学生了解其在实际应用中的重要性。
2.Dijkstra算法:讲解Dijkstra算法的原理,演示算法的实现过程,让学生学会使用C语言实现Dijkstra算法。
3.A算法:介绍A算法的原理,讲解算法的优势和不足,让学生了解并掌握A*算法的实现方法。
4.算法优化:讨论如何优化算法,提高算法的效率,让学生学会在实际问题中灵活运用算法。
三、教学方法为了达到本节课的教学目标,将采用以下几种教学方法:1.讲授法:讲解最短路径问题的基本概念和算法原理,让学生掌握基本知识。
2.案例分析法:分析实际问题,让学生了解最短路径算法在实际应用中的价值。
3.实验法:让学生动手实践,学会使用C语言实现最短路径算法,提高编程能力。
4.讨论法:学生进行小组讨论,培养学生的团队合作意识和创新精神。
四、教学资源为了支持本节课的教学内容和教学方法,将准备以下教学资源:1.教材:《C语言程序设计》2.参考书:《数据结构与算法分析》3.多媒体资料:最短路径算法的动画演示4.实验设备:计算机、网络设备通过以上教学资源的支持,相信能够有效地帮助学生掌握最短路径算法,提高学生的编程能力。
五、教学评估为了全面、客观地评估学生在最短路径算法学习过程中的表现,将采用以下评估方式:1.平时表现:观察学生在课堂上的参与程度、提问回答和小组讨论的表现,以了解学生的学习态度和理解程度。
dijkstra最短路径算法详解
![dijkstra最短路径算法详解](https://img.taocdn.com/s3/m/399c5be99fc3d5bbfd0a79563c1ec5da50e2d698.png)
dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。
以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。
2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。
之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。
更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。
3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。
4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。
Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。
其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。
总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。
在处理如飞机和火车等交通路径规划问题中有较好的应用。
迪杰斯特拉算法计算最短路径
![迪杰斯特拉算法计算最短路径](https://img.taocdn.com/s3/m/6889dbd9b14e852458fb576c.png)
利用Dijkstra算法计算最短路径摘要福格环游地球问题是一个十分典型的最短路径求解问题,题设给出了当时世界上主要交通网络图及交通通畅的城市之间来往所需时长,并限定了福格的出行方向(福格选择的是往东走),给出起止地点后要求找出福格环游世界天数最短的最佳路径。
我们认为,这个问题的实质在于最短路径的求解和优化。
我们对比图论中的多种最短路径算法,决定利用Dijkstra算法解决这个问题。
由于Dijkstra算法要求输入图G的关联矩阵,且图G为二维赋权图,而题中给出的地图可看成是三维环状地图,因此,我们对题设地图做相关处理,将其从起点处“切断”并展开为二维图,然后根据此图建立关联矩阵。
同时,我们考虑到最短路径可能会与切断线有交点,在切断线以西找出若干地点一分为二,修改关联矩阵。
对于题目中缺失的两处数据,本文将以当时的交通数据为基础,经过合理的数据处理,结合Google Earth测距软件与题目数据的合理类比,补充缺失数据,完成关联矩阵。
得到关联矩阵后,我们分别以伦敦、纽约和上海作为起点,调整关联矩阵起点和终点,用matlab编程进行求解得到最短环游时间和最短路径,进而判断出所选择的路径是否能让他赢得赌注。
根据我们的求解结果,在这三个城市,福格均能在80天内环游地球,赢得赌注。
本文进一步对此种算法的优缺点、灵敏度与推广性进行了分析,同时初步提出了两种优化方法。
关键词:最短路径算法 dijkstra算法算法优化一、问题重述儒勒•凡尔纳的著名小说《环游世界80天》中,英国绅士福格在伦敦与人打赌能够在80天内环游世界,这在当时的1872年是一个了不起的壮举。
当时最快的旅行方式是火车和轮船,然而世界上大部分地区还是靠马车、大象、驴子或者步行来旅行。
下面是一个从伦敦环游世界不同路线的交通网络图,福格选择的是往东走,每段路线所需要的天数显示在图上(见附录一),旅行的时间基于1872年能采用的旅行方式以及距离。
我们将解决以下问题:1.我们将设计一个算法为福格选择一条最佳路径,即环游世界天数最短,并判断所选择的路径是否能让他赢得赌注。
最短路径之Dijkstra算法详细讲解(C#)
![最短路径之Dijkstra算法详细讲解(C#)](https://img.taocdn.com/s3/m/74198f34ee06eff9aef807e7.png)
最短路径之Dijkstra算法详细讲解1最短路径算法在日常生活中,我们如果需要常常往返A地区和B地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。
最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:(1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。
(2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。
在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
(3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。
(4)全局最短路径问题:求图中所有的最短路径。
用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。
最常用的路径算法有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。
本文主要研究Dijkstra算法的单源算法。
2Dijkstra算法2.1 Dijkstra算法Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
2.2 Dijkstra算法思想Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
Dijkstra算法求解单源最短路径问题
![Dijkstra算法求解单源最短路径问题](https://img.taocdn.com/s3/m/36ed804c647d27284b7351c8.png)
Dijkstra算法求解单源最短路径问题一、单源最短路径问题描述给定一个带权有向图G=(V,E),其中每条边的权都是非负数。
给定V中的一个顶点,称为源。
计算从源到所有其他定点的最短路径长度。
这里的路径长度就是指各边权之和。
该问题称为单源最短路径问题(Single-Source Shortest Paths)。
二、Dijkstra算法思想将图G中所有的顶点V分成两个顶点集合S和T。
以v为源点已经确定了最短路径的终点并入S集合中,S初始时只含顶点v, T则是尚未确定到源点v最短路径的顶点集合。
然后每次从T集合中选择S集合点中到T路径最短的那个点,并加入到集合S中,并把这个点从集合T删除。
直到T集合为空为止。
三、算法描述(步骤)1、选一顶点v为源点,并视从源点v出发的所有边为到各顶点的最短路径:①记录从源点v到其它各顶点的路径长度数组dist[],开始时,dist是源点v到顶点i的直接边长度,即dist中记录的是邻接阵的第v行。
②设一个用来记录从源点到其它顶点的路径数组path[],path中存放路径上第i个顶点的前驱顶点。
2、在上述的最短路径dist[]中选一条最短的,并将其终点(即<v,k>)k加入到集合s中。
3、调整T中各顶点到源点v的最短路径。
因为当顶点k加入到集合s中后,源点v到T中剩余的其它顶点j就又增加了经过顶点k到达j的路径,这条路径可能要比源点v到j原来的最短的还要短。
调整方法是比较dist[k]+g[k,j]与dist[j],取其中的较小者。
4、再选出一个到源点v路径长度最小的顶点k,从T中删去后加入S中,再回去到第三步,如此重复,直到集合S中的包含图G的所有顶点。
四、算法实现(数据结构)1、算法实现输入:一个大于1的整数n.输出:●一个随机生成的有向图G=(V,E),对于每一条边,有一个非负数字c(u,v)与之相关。
●对于每个顶点v∈V,得到从v0到v的最短路径的长度。
数据结构课程设计报告-最短路径算法-二叉树的三种遍历
![数据结构课程设计报告-最短路径算法-二叉树的三种遍历](https://img.taocdn.com/s3/m/aee727c526fff705cc170adc.png)
数据结构课程设计报告班级:计算机科学与技术132班姓名:赖恒财指导教师:董跃华成绩:32信息工程学院2015 年7月8日目录图的最短路径算法实现1. 需求分析 (1)1.1 程序设计内容 (1)1.2 设计要求 (1)2.概要设计 (2)3.详细设计 (2)3.1 数据类型的定义 (2)3.2 功能模块的设计 (2)3.3 主程序流程 (9)4.调试分析 (10)4.1 问题回顾和分析 (10)4.2.经验和体会 (11)5.测试结果 (12)二叉树的遍历1.设计目的 (13)2.需求分析 (14)2.1课程设计的内容和要求 (14)2.2选题的意义及背景 (14)3.概要设计 (14)3.1设计思想 (14)3.2程序数据类型 (16)3.3程序模块分析 (16)3.3.1置空栈 (16)3.3.2入栈 (17)3.3.3出栈 (17)3.3.4取栈顶操作 (17)3.3.5判空栈 (17)3.4函数关系: (18)4.详细设计 (18)4.1二叉树算法程序截图和结果 (18)5.程序测试结果及问题分析 (19)6.总结 (20)参考文献 (21)附录1 (22)附录2 (26)图的最短路径算法实现----基于floyd最短路径算法1.需求分析设计校园平面图,所含景点不少于8个。
以图中顶点表示学校内各景点,存放景点的名称、景点介绍信息等;以边表示路径,存放路径长度信息。
要求将这些信息保存在文件graph.txt中,系统执行时所处理的数据要对此文件分别进行读写操作。
1.1程序设计内容1.从文件graph.txt中读取相应数据, 创建一个图,使用邻接矩阵表示图;2.景点信息查询:为来访客人提供校园任意景点相关信息的介绍;3.问路查询:为来访客人提供校园任意两个景点之间的一条最短路径。
1.2 设计要求(1) 程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应。
(2) 程序要添加适当的注释,程序的书写要采用缩进格式。
迪杰斯特拉算法c语言从某个源点到其余各顶点的最短路径
![迪杰斯特拉算法c语言从某个源点到其余各顶点的最短路径](https://img.taocdn.com/s3/m/45109ac9cd22bcd126fff705cc17552706225e11.png)
迪杰斯特拉算法c语言从某个源点到其余各顶点的最短路径1. 引言1.1 概述迪杰斯特拉算法是一种用于解决带权有向图中单源最短路径问题的经典算法。
该算法通过不断更新顶点之间的距离估计值,找到从给定源点到达其他所有顶点的最短路径。
在实际应用中,迪杰斯特拉算法被广泛应用于路由选择、通信网络以及交通运输等领域。
1.2 文章结构本文将围绕迪杰斯特拉算法展开讨论,并以C语言作为实现工具。
我们首先介绍了迪杰斯特拉算法的概述,包括其原理、应用场景和优势。
接着详细介绍了如何使用C语言来实现迪杰斯特拉算法,并分析了代码的数据结构设计、算法实现步骤以及示例代码解析。
随后,我们进行了示例测试与结果分析,展示了如何根据创建的图和设定的源点执行迪杰斯特拉算法并求解最短路径。
最后,我们对整个文章进行总结讨论,并展望了迪杰斯特拉算法在未来的应用前景,并提出硬件资源限制下的改进策略。
1.3 目的本文旨在深入介绍迪杰斯特拉算法,并通过C语言代码实现的方式,帮助读者理解和掌握该算法的原理和实际应用。
通过对算法原理、数据结构设计以及示例测试与结果分析的详细讲解,我们旨在提供一个全面且易于理解的指导,使读者能够更好地应用迪杰斯特拉算法解决自己所面临的问题,并为进一步优化和改进迪杰斯特拉算法提供思路和启示。
2. 迪杰斯特拉算法概述2.1 算法原理迪杰斯特拉算法是一种用于解决带权有向图中单源最短路径问题的经典算法。
其基本思想是通过不断更新到达各顶点的最短路径长度,逐步确定源点到其他所有顶点的最短路径。
具体实现过程如下:1. 创建两个集合S和V-S,其中S表示已确定最短路径的顶点集合,V-S表示尚未确定最短路径的顶点集合。
2. 初始化源点到所有其他顶点的距离为无穷大,而源点到自身的距离为0。
3. 选择一个还未确定最短路径的顶点v,并且使得源点到v的距离为当前已知的最小值。
4. 标记该顶点v为已确定最短路径。
5. 更新与v邻接但在V-S中的顶点u的最短路径长度:若经过v后,从源点到u比之前计算得到的距离更短,则更新这个距离值。
最短路径问题(Dijkstra算法)和最小生成树(Kruskal算法和Prim算法)
![最短路径问题(Dijkstra算法)和最小生成树(Kruskal算法和Prim算法)](https://img.taocdn.com/s3/m/3f35bc6a9b6648d7c1c746f1.png)
t(j)=tmin;
end
end
end
ifk==n
break;
end
end
T;
c;
Prim算法程序:
function[T c] =Primf(a)
%a表示权值矩阵
%c表示生成树的权和
%T表示生成树的边集合
l=length(a);
a(a==0)=inf;
k=1:l;
listV(k)=0;
上机实验1、2
1.最短路径问题(Dijkstra算法)
2.最小生成树(Kruskal算法和Prim算法)
一、最短路径问题(Dijkstra算法)
实验问题描述:如图的交通网络,每条弧上的数字代表车辆在该路段行驶所需的时间,有向边表示单行道,无向边表示可双向行驶。若有一批货物要从1号顶点运往11号顶点,问运货车应沿哪条线路行驶,才能最快地到达目的地。
listV(1)=1;
e=1;
while(e<l)
min=inf;
fori=1:l
iflistV(i)==1
forj=1:l
iflistV(j)==0&min>a(i,j)
min=a(i,j);b=a(i,j);
s=i;d=j;
end
end
end
end
listV(d)=1;
distance(e)=b;
T =
3 4 1 2
4 5 3 5
c =
10
>> a=[0 5 3 7 inf;5 0 8 inf 4;3 8 0 1 6;7 inf 1 0 2;inf 4 6 2 0];
>> [T c] =Primf(a)
最短路问题Dijkstra算法
![最短路问题Dijkstra算法](https://img.taocdn.com/s3/m/daf442a1767f5acfa0c7cdd7.png)
2-
0-
vs
v1
2
27
- 54
5 v2 5
- ∞9
-∞
v4 5
vt
4 13
1 7
v3
4
v5
-4
-∞
考察v1 , T(v2)=min[T(v2),P(v1)+w12]= min[5,2+2]=4 T(v4)=min[T(v4),P(v1)+w14]= min[+∞,2+7]=97
迭 Step 3: 比较所有具有 T 标号的点,把最小者改为 代 P 标号,即 P(vi)=min[T(vi)]. 2
v4 5
vt
4 13
17
v3
4
v5
4-
7-
14
最短路
2-
v1
2
27
0-
4-
8-
13 -
vs
5 v2 5
v4 5
vt
4 13
1 7
v3
4
v5
4-
7-
• Dijkstra算法不仅找到了所求最短路,而且找到 了从 vs 点到其他所有顶点的最短路;这些最短 路构成了图的一个连通无圈的支撑子图,即图 的一个支撑树。
T(v4)=min[T(v4),P(v1)+w14]= min[+∞,2+7]=9
(5) 全部 T 标号中,T(v2),T(v3)最小,令P(v2)=4, P(v3)=4, 记录路径(v1 ,v2), (v1 ,v4),. .…………
17
有些最短路问题也可以求网络中某指定点到其余所 有结点的最短路、或求网络中任意两点间的最短路.
1
一、网络无负权的最短路 ——Dijkstra算法
dijkstra算法求解最短路径例题
![dijkstra算法求解最短路径例题](https://img.taocdn.com/s3/m/712e143e0a4e767f5acfa1c7aa00b52acfc79cdd.png)
dijkstra算法求解最短路径例题
Dijkstra算法是由荷兰著名的计算机科学家Edsger Dijkstra发明的,它为
我们带来了一种有效的查找最短路径的算法,并且在近些年的发展过程中,它被广泛应用于许多互联网领域,主要用于搜索引擎索取过程和推荐系统推荐用户内容。
它是以让用户轻松获取最优路径结果为目的而诞生的,因此,Dijkstra算法在计
算距离和其他改进最短路径时常被应用。
Dijkstra算法的思想是从其它节点到一个节点之间,依次计算出每条最短路径,然后累加得出到达目标节点的最短路径。
这种算法称为 "单源最短路径算法(Single Source Shortest Paths)",因为它从一个节点出发来计算最短路径。
最终,Dijkstra算法会返回到达其它节点的最短路径,以及这些节点之间的距离。
在实际的应用中,Dijkstra算法主要被用来解决路由规划问题,它可以在网
络中找出从某一指定节点到其它节点的最短路径,且Dijkstra算法不仅可以用于
无向网络,还可以用于带有正向边、反向边、正向边和反向边的有向网络中。
此外,Dijkstra算法可以优化加速索引过程,比如网络路径预览索引,搜索引擎索引等,最主要的是,它也被用于多种推荐系统,推荐用户内容,从而提高推荐的准确度。
总的来说,经过几十年的发展,Dijkstra算法已经被广泛应用到各种网络领域,从而为我们带来了便利和改善。
它可以将复杂的网络拓扑结构转换为更加直观的算法结果,这也使得Dijkstra算法在网络服务领域越来越受到重视。
最短路径_Dijkstra算法__实验报告
![最短路径_Dijkstra算法__实验报告](https://img.taocdn.com/s3/m/40111d032e60ddccda38376baf1ffc4ffe47e230.png)
最短路径_Dijkstra算法__实验报告实验六:编程实现Dijkstra 算法求最短路问题.1.需求分析:首先让用户输入一个带权的有向图,输入时可通过一对一对输入存在弧的两个弧头与弧尾顶点以及弧上的权值从而输入整个有向图。
用户输入一对对弧后,我们可以采用数组的形式来进行存储每个顶点之间的权值,最后由用户输入该有向图的源点(即每个最短路径的起点),要求源点必须为刚才输入的各顶点中的某一个,如果用户输入错误,程序要给出错误信息提示并退出程序。
然后,我们可以设计一个Graph这样的类,将对关系的各种操作放入其中,然后我们在主函数中调运这个类就可以实现最短路问题的求解了。
2.概要设计:①.构造一个新的类Graph:class Graph{private: int arcs[MAX][MAX],Path[MAX][MAX],D[MAX];int arcnum,vexnum,weight,v0;Type a,b,vexs[MAX];public:void Creat_Graph();void Show_ShortestPath();void ShortestPath_DIJ();};②.结构化调用类中方法的主函数:int main(){Graph G;G.Creat_Graph();G.ShortestPath_DIJ();G.Show_ShortestPath();return 0;}3.代码实现:#include#define MAX 100#define INFINITY INT_MAXenum BOOL{FALSE,TRUE};using namespace std;templateclass Graph{private: int arcs[MAX][MAX],Path[MAX][MAX],D[MAX]; int arcnum,vexnum,weight,v0;Type a,b,vexs[MAX];public:void Creat_Graph();void Show_ShortestPath();void ShortestPath_DIJ();};templatevoid Graph::Creat_Graph(){int i,j,x,y;cout<<"请输入你要处理的有向图中包含弧的个数:"; cin>>arcnum;vexnum=0;for(i=1;i<=MAX;i++)for(j=1;j<=MAX;j++)arcs[i][j]=INT_MAX;for(i=1;i<=arcnum;i++){cout<<"请依次输入第"<<i<<"条弧的弧头与弧尾的顶点以及该弧上所附带的权值:"<<endl;< p="">cin>>a>>b>>weight;x=0; y=0;for(j=1;j<=vexnum;j++){if(vexs[j]==a){x=j; continue;}else if(vexs[j]==b){y=j; continue;}}if(x==0){vexs[++vexnum]=a; x=vexnum;}if(y==0){vexs[++vexnum]=b; y=vexnum;}arcs[x][y]=weight;}cout<<"请输入该有向图的源点(即各最短路径的起始顶点):";cin>>a;for(i=1;i<=vexnum;i++){if(vexs[i]==a){v0=i; break;}}}templatevoid Graph:: Show_ShortestPath(){int i,j,k;for(i=1;i<=vexnum;i++){if(i==v0) continue;if(D[i]!=INT_MAX){cout<<"从源点"<<vexs[v0]<<"到"<<vexs[i]<<"的最短路径为:"<<endl;< p="">for(k=1;k<=Path[i][0];k++){if(k!=1)cout<<"-->";for(j=1;j<=vexnum;j++)if(Path[i][j]==k)cout<<vexs[j];< p="">}cout<<" "<<"其最短的路径长度为:"<<d[i]<<endl;< p="">}else{cout<<"无法从源点"<<vexs[v0]<<"到达顶点"<<vexs[i]<<"."<<endl;< p="">}}cout<<endl;< p="">}templatevoid Graph::ShortestPath_DIJ(){int v,w,final[MAX],min,i,j;for(v=1;v<=vexnum;v++){final[v]=FALSE; D[v]=arcs[v0][v]; Path[v][0]=0;for(w=0;w<=vexnum;w++)Path[v][w]=FALSE;if(D[v]<int_max)< p="">{ Path[v][v0]=++Path[v][0]; Path[v][v]=++Path[v][0]; }}D[v0]=0; final[v0]=TRUE;for(i=1;i<=vexnum;i++){if(i==v0) continue;min=INT_MAX;for(w=1;w<=vexnum;w++)if(!final[w])if(D[w]<="">final[v]=TRUE;for(w=1;w<=vexnum;w++)if(!final[w]&&(min+arcs[v][w]<d[w])&&min<int_max&&arcs [v][w]<int_max)< p="">{D[w]=min+arcs[v][w];for(j=0;j<=vexnum;j++)Path[w][j]=Path[v][j];Path[w][w]=++Path[w][0];}}}int main(){Graph G;G.Creat_Graph();G.ShortestPath_DIJ();G.Show_ShortestPath();return 0;}4.调试分析:起先在主函数中调用类Graph时将类型参数T赋值为int从而导致用户输入的关系集合R中的元素必须为整数。
Dijkstra算法的实现和复杂度分析最短路径问题的解决方案
![Dijkstra算法的实现和复杂度分析最短路径问题的解决方案](https://img.taocdn.com/s3/m/9736586a657d27284b73f242336c1eb91a3733ae.png)
Dijkstra算法的实现和复杂度分析最短路径问题的解决方案最短路径问题一直是图论中的经典问题。
为了解决最短路径问题,荷兰计算机科学家Dijkstra提出了一种被广泛应用的算法。
本文将介绍Dijkstra算法的实现过程,并进行复杂度分析。
一、Dijkstra算法的简介Dijkstra算法是一种用于解决带有非负权重边的带权重有向图中单源最短路径问题的贪心算法。
该算法以源节点为中心逐步计算到其他节点的最短路径。
在每一步中,选择具有最小路径长度的节点作为下一次循环的起点,并使用该节点更新其邻接节点的路径长度。
二、Dijkstra算法的实现Dijkstra算法的实现分为以下步骤:1. 创建一个距离集合,用于存储起点到每个节点的路径长度。
将起点的距离初始化为0,其他节点的距离初始化为无穷大。
2. 创建一个已访问集合,用于标记已经计算过最短路径的节点。
3. 在未访问的节点中选择距离最小的节点作为下一次循环的起点,并标记为已访问。
4. 对于该节点的所有出边,更新其邻接节点的路径长度。
如果经过当前节点到达邻接节点的路径长度小于已存储的路径长度,则更新路径长度。
5. 重复步骤3和步骤4,直到所有节点都被访问过或者没有可以访问的节点为止。
三、Dijkstra算法的复杂度分析Dijkstra算法的复杂度可以分为两个部分进行分析:初始化和迭代更新。
1. 初始化在初始化阶段,需要为每个节点初始化其路径长度和已访问状态。
对于有n个节点的图来说,初始化的时间复杂度为O(n)。
2. 迭代更新迭代更新的次数不会超过节点数量n次。
在每次迭代中,需要在未访问的节点中找到路径长度最小的节点,这个过程的时间复杂度为O(n)。
然后,需要更新该节点的所有邻接节点的路径长度,这一步的时间复杂度为O(m),其中m为边的数量。
所以,迭代更新的时间复杂度为O(n*m)。
综上所述,Dijkstra算法的时间复杂度为O(n^2)。
在稠密图中,即m接近于n^2的情况下,算法的效率较低。
基于Dijkstra算法求有向带权图的最短路径
![基于Dijkstra算法求有向带权图的最短路径](https://img.taocdn.com/s3/m/bf16c7d8c1c708a1284a447a.png)
湖北大学本科学年论文题目单源最短路径算法分析与研究姓名夏臻学号2012221104230007专业年级2012级信息安全指导教师马传香职称教授成绩2014年 12 月 02 日目录一、摘要 (2)二、最短路径 (2)2.1最短路径的定义 (2)2.2最短路径解决算法 (3)2.2.1 Dijkstra算法 (3)2.2.2 A*算法 (3)2.2.3 SPFA算法 (3)2.2.4 Bellman-Ford算法 (3)2.2.5 floyd-warshall算法 (4)三、Dijkstra算法实现单源最短路径 (4)3.1最短路径的最优子结构性质 (4)3.2 Dijkstra算法思路 (4)3.3 Dijkstra算法描述 (5)四、Dijkstra算法测试 (6)4.1测试数据 (6)4.2运行结果 (6)五、心得体会 (7)六、参考文献 (7)七、附录 (8)一、摘要最短路径问题是图论理论的一个经典问题。
寻找最短路径就是在指定的网络中两节点间找到一条距离最小的路。
最短路径算法的选择与实现是通路设计的基础,是计算机与信息科学等领域研究的热点问题。
很多与时间、费用、线路容量等许许多多的实际问题都要运用最短路径的算法原理来解决,生活中很多的问题的解决离不开这些算法,随着计算机结构的改变以及数据结构的研究与发展,新的有效的算法不断涌现。
本文是来对最短路径的算法包括Dijkstra算法、Floyd-Warshall算法、Bellman-Ford算法、SPFA快速算法做一些分析和研究。
分析这几种算法的目的在于更好的理解求解单源最短路径问题解题思路,从而尝试着是否能研究出更好的算法。
关键词:单源最短路径图论Dijkstra算法Floyd-Warshall算法Bellman-Ford 算法 SPFA算法二、最短路径2.1最短路径的定义最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c课设报告基于
D i j k s t r a算法的最短
路径问题求解
公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]
课程设计任务书
目录
1 需求分析
Dijkstra 算法是由荷兰计算机科学家艾兹格·迪科斯彻发现的。
算法解决的是有向图中最短路径问题。
举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离。
Dijkstra 算法可以用来找到两个城市之间的最短路径。
Dijkstra 算法的输入包含了一个有权重的有向图G ,以及G 中的一个来源顶点
S 。
我们以V 表示G 中所有顶点的集合。
图中的每一个边,都是两个顶点所形成的有序元素对。
(u ,v )表示从顶点u 到v 有路径相连。
假设E 为所有边的集合,而边的权重则由权重函数w :E → [0, ∞]定义。
因此,w (u ,v )就是从顶点
u 到顶点v 的非负花费值(cost)。
边的花费可以想像成两个顶点之间的距离。
任两点间路径的花费值,就是该路径上所有边的花费值总和。
已知有V 中有顶点s 及t ,Dijkstra 算法可以找到s 到t 的最低花费路径. 最短路径)。
这个算法也可以在一个图中,找到从一个顶点s 到任何其他顶点的最短路径。
1.如果将交通网络化成带权图,假如用顶点表示城市,边表示公路段,则由这些顶点和边组成的图可表示沟通个城市的公路图,边的权用以表示两个城市之间的距离或者表示走过这段公路所需要的时间或通过这段路的难易程度等。
作为司机和乘汽车的人,自然会关心如下两个问题:
(1)从甲地到乙地是否有公路
(2)从甲地到乙地有几条公路,哪条公路最短或花费的代价最小 这就是我们要讨论的最短路径问题。
2.迪杰斯特拉提出的一个求最短路径的算法。
其基本思想是:按路径长度递增的顺序,逐个产生各最短路径。
3.首先引进辅助向量dist[],它的每一个分量dist[i]表示已经找到的且从源点0v 到每一个终点i v 的当前最短路径长度。
它的初态为:如果从0v 到i v 有弧,则dist[i]为弧的权值;否则dist[i]为∞。
其中,长度为
dist[j]=min{dist[i]|i v ∈V}的路径是从0v 出发的长度最短的一条最短路径,此路径为(0v ,i v )。
2 算法基本原理
根据以上分析,可以得到如下描述的算法:
①假设用带权的邻接矩阵arce[i][j]来表示带权有向图,arce[i][j]表示弧<i v ,j v >上的权值。
若<i v ,j v >不存在,则置arce[i][j]为∞(在计算机上可用允许的最大值代替)。
S 为已找到的从0v 出发的最短路径的终点的集合,它的初始状态为空集。
那么,从0v 出发到图上其余个顶点(终点)i v 可能达到的最短路径长度的初值为:
dist[i]=arce[Locate Vex(G,0v )][i]i v ∈S ②选择j v 得
dist[j]=min{dist[i]|i v ∈V-S}
j v 就是当前求得的一条从0v 出发的最短路径的终点。
令S=S ∪{j}。
③修改从0v 出发到集合V-S 上任一顶点k v 可达的最短顶点长度。
如果 dist[j]+arce[j][k]<dist[k] 则修改dist[k]为
dist[k]=dist[j]+arce[j][k]
④重复操作②、③共n-1次。
由此求得从0v 到图上其余各顶点的最短路径是依路径长度递增的序列。
用Dijkstra 算法求有向图G 的0v 顶点到其余顶点v 的最短路径P[v]及其带权长度D[v]。
这个算法是通过为每个顶点v 保留目前为止所找到的从s 到v 的最短路径来工作的。
初始时,源点s 的路径长度值被赋为0(d[s]=0), 同时把所有其他顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于
V 中所有顶点v 除s 外d[v]= ∞)。
当算法结束时,d[v]中储存的便是从s 到v 的最短路径,或者是无穷大(如果路径不存在的话)。
Dijstra 算法的基础操作是边的拓展:如果存在一条从u 到v 的边,那么从s 到v 的最短路径可以通过将边(u ,v )添加到s 到u 的尾部来拓展。
这条路径的长度是d[u]+w(u,v)。
如果这个值比目前已知的d[v]的值要小,我们可以用新值来替代当前d[v]中的值。
拓展边的操作一直执行到所有的d[v]都代表从s 到v 最短路径的花费。
这个算法经过适当的组织因而当d[u]达到它最终的值的时候,每条边(u ,v )都只被拓展一次。
算法维护两个顶点集S 和Q 。
集合S 保留了我们已知的所有d[v]的值已经是最短路径的值顶点,而集合Q 则保留其他所有顶点。
集合S 初始状态为空,而后每一步都有一个顶点从Q 移动到S 。
这个被选择的顶点是Q 中拥有最小的d[u]值的顶点。
当一个顶点u 从Q 中转移到了S 中,算法对每条外接边(u,v)进行拓展。
Dijkstra(G ,D ,s){
()10W v =1v 1v ()j T v ()j T v ()1W v ()(){}
min ,j i ij T v W v w +()j T v ()j T v ()k T v k v 1
v j v ()0W u ≥j v k v 1v k v ()k T v ()k T v 1v k v ()()k k W v T v =k v ()()k n W v W v =1v n
v i k v v =1v k v k n v v =ij D d ⎡⎤=⎣⎦0ij d >i j i j ij d i j i j k k 1,2,3,
,k n =ij d ik kj
d d +ik d kj d i k k j ik kj d d +i j k ij ik kj d d d >+i k j i j i j ij d ik kj d d +k ij d i j k ij d i j 0 -
1 -1
C 常用算
法程序集. 北京:清华大学出版社,1995
[2]郑莉,董渊,张瑞丰. C++语言程序设计(第3版). 北京:清华大学出版社,2007
[3]钱能. C++程序设计教程(第二版). 北京:清华大学出版社,2007
[4]陈志泊,王春玲. 面向对象的程序设计语言—C++. 北京:人民邮电出版社,2002
[5]李庆扬,王能超,易大义. 数值分析. 湖北:华中理工大学出版社,1986。