2012年大连市数学中考模拟(一) 2012大连市数学中考一模试题

合集下载

2012大连-沈阳高三联合第一次模拟考试(大连一模数学文科答案)

2012大连-沈阳高三联合第一次模拟考试(大连一模数学文科答案)

2012年大连-沈阳联合模拟考试文科数学试题参考答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题1.B ;2.D ;3.C ;4.A ;5.C ;6.B ;7.C ;8.B ;9.C ;10.A ;11.B ; 12.D . 二、填空题13.3-;14.13,(1)23.(2)n n n -=ìí·³î;15. 29p ;16.(,1)-¥. 三、解答题17.解:(Ⅰ)由频率分布表得a +0.2+0.45+b +c =1,即0.35a b c ++=. ·················· 2分因为抽取的20件轴承中,等级编号为4的恰有3件,所以30.1520b ==. 等级编号为5的恰有2件,所以20.120c ==. ·························································· 4分 从而0.350.1a b c =--=.所以0.1a =,0.15b =,0.1c =. ············································································· 6分(Ⅱ)从轴承123,,x x x ,12,y y 中任取两件,所有可能的结果为:中任取两件,所有可能的结果为: {}{}{}{}{}{}121311122321,,,,,,,,,,,,x x x x x y x y x x x y{}{}{}{}22313212,,,,,,,x y x y x y y y . ··········································································· 8分 设事件A 表示“从轴承123,,x x x ,12,y y 中任取两件,其等级编号相等”,则A 包含的基本事件为:的基本事件为:{}{}{}{}12132312,,,,,,,x x x x x x y y 共4个.个. ······························································· 10分 又基本事件的总数为10, 故所求的概率4()0.410P A ==.················································································ 12分1313 )pp)7]p p p pp)]112012年大连市高三一模文科数学试题参考答案与评分标准年大连市高三一模文科数学试题参考答案与评分标准∴b xx xbx x f ³-+Û-³ln 112)(,················································································8分 令x x x x g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+¥,2e 上递增,上递增, ····················· 10分 ∴22min 11)()(ee g x g -==,即211b e £-. ································································· 12分 21.解:(Ⅰ)∵点M 到抛物线准线的距离为=+24p 417,∴21=p ,即抛物线C 的方程为x y =2.·································································· 2分 (Ⅱ)法一:∵当AHB Ð的角平分线垂直x 轴时,点)2,4(H ,∴HE HF k k =-, 设11(,)E x y ,22(,)F x y ,∴1212H H H H y y y y x x x x --=---,∴,∴ 12222212H H H H y y y y y y y y --=---, ∴1224H y y y +=-=-. ·························································································· 5分212122212121114EF y y y y k x x y y y y --====---+.································································ 7分 法二:∵当AHB Ð的角平分线垂直x 轴时,点)2,4(H ,∴60=ÐAHB ,可得3=H Ak ,3-=H B k ,∴直线HA 的方程为2343+-=x y ,联立方程组îíì=+-=x y x y 22343,得023432=+--y y , ∵323E y +=∴363-=Ey ,33413-=E x . ··········································································· 5分 同理可得363--=F y ,33413+=F x,∴41-=EF k .···································7分11(15-15m -(所以DE CBCE AB =,所以2BC =. ············································································· 10分 23.解:.解:((Ⅰ)2cos ,2sin 2.x ya a =ìí=+î 且参数[]0,2a p Î, 所以点P 的轨迹方程为22(2)4x y +-=. ···························································· 3分(Ⅱ)因为)4sin(210p q r -=,所以2sin()104pr q -=,所以sin cos 10r q r q -=,所以直线l 的直角坐标方程为100x y -+=. ········· 6分 法一:由法一:由((Ⅰ) ) 点点P 的轨迹方程为22(2)4x y +-=,圆心为(0,2),半径为2.221012104211d ´-´+==+,所以点P 到直线l 距离的最大值422+. ············ 10分法二:222cos 2sin 21022cos()4411d a a p a --+==+++,当74p a =,max 422d =+,即点P 到直线l 距离的最大值422+. ··································· 10分 24.解:(Ⅰ)由26x a a -+£得26x a a -£-,∴626a x a a -£-£-,即33a x -££,∴32a -=-,∴1a =. ································································· 5分(Ⅱ)由(Ⅰ)知()211f x x =-+,令()()()n f n f n j =+-,则()124, 211212124, 22124, n 2n n n n n n n j ì-£-ïïï=-+++=-<£íïï+>ïî∴()n j 的最小值为4,故实数m 的取值范围是[)4,+¥. ········································· 10分。

2012年辽宁省大连市中考数学试题(含答案)

2012年辽宁省大连市中考数学试题(含答案)

大连市2012年中考数学统一试题(含答案)一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.-3的绝对值是()A.-3B.13- C.132.在平面直角坐标系中,点P(-3,1)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.下列几何体中,主视图是三角形的几何体是()4.甲、乙两班分别有10名选手参加学校健美操比赛,两班参赛选手身高的方差分别2=1.5 s甲,2=2.5s乙,则下列说法正确的是()A.甲班选手比乙班选手身高整齐B.乙班选手比甲班选手身高整齐C.甲、乙两班选手身高一样整齐D.无法确定哪班选手身高更整齐5.下列计算正确的是()A.a3+a2=a5B.a3-a2=aC.a3·a2=a6D.a3÷a2=a6.一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球除颜色不同外其他完全相同。

从袋子中随机摸出一个球,则它是黄球的概率为()A. 14B.13C.512D.127.如图1,菱形ABCD中,AC=8,BD=6,则菱形的周长为()8.如图2,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()二、填空题(本题共8小题,每小题3分,共24分)9.化简:11+aa a-=_______。

10.2x x的取值范围是________。

11.如图3,△ABC中,D、E分别是AB、AC的中点,DE=3cm,则BC=______cm。

12.如图4,△ABC是⊙O的内接三角形,若∠BCA=60°,则∠ABO=______°。

2012年辽宁省大连市沙河口区中考数学模拟试卷(4月份)

2012年辽宁省大连市沙河口区中考数学模拟试卷(4月份)

2012年辽宁省大连市沙河口区中考数学模拟试卷(4月份)2012年辽宁省大连市沙河口区中考数学模拟试卷(4月份)一.选择题1.(3分)(2011•郴州)的绝对值是()A.B.C.﹣2 D.22.(3分)(2008•大连)在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)(2010•大连)下列运算正确的是()A.a2•a3=a6B.(﹣a)4=a4C.a 2+a3=a5D .(a2)3=a54.(3分)(2011•兰州)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.5.(3分)(2012•沙河口区模拟)据统计,去年“十一”期间某景区共接待游客人数为246000人,将246000用科学记数法表示为()A.2.46×103B.2.46×104C.2.46×105D.以上都不对6.(3分)(2011•大连)下列事件是必然事件的是()A.抛掷一次硬币,正面朝上B.任意购买一张电影票,座位号恰好是“7排8号”C.某射击运动员射击一次,命中靶心D.13名同学中,至少有两名同学出生的月份相同7.(3分)(2012•和平区三模)设a=,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.(3分)(2012•沙河口区模拟)已知点E在矩形ABCD边CD上,将矩形沿AE折叠后点D落在点D′,∠CED′=35°,则∠BAD′的大小是()A.40°B.45°C.55°D.60°二.填空题9.(3分)(2012•沙河口区模拟)如果在实数范围内有意义,那么x的取值范围是_________.10.(3分)(2013•丹东一模)如图,直线a∥b,∠1=55°,则∠2=_________.11.(3分)(2012•沙河口区模拟)不等式组的解集为_________.12.(3分)(2012•沙河口区模拟)某印刷厂一月份印书17万册,三月份印书30万册,若设二、三月份平均每月的增长率为x,那么根据题意,可列出的方程是_________.13.(3分)(2012•沙河口区模拟)同时掷两枚质地均匀的硬币,向上一面都是正面的概率是_________.14.(3分)(2012•沙河口区模拟)抛物线y=x2+2x﹣3,当y<0时,x的取值范围为_________.15.(3分)(2012•沙河口区模拟)如图,正方形剪去四个角后成为一个正八边形,如果正八边形的边长为2,则原正方形的边长为_________.16.(3分)(2012•沙河口区模拟)如图,在直角坐标系中,O为原点,点B、C的坐标分别为(2,0)、(8,0),点A为反比例函数图象上的一点,∠ACO=30°,且AC=BC.则反比例函数解析式为_________.三.解答题17.(2012•沙河口区模拟)计算:.18.(2011•清远)解方程:x2﹣4x﹣1=0.19.(2012•沙河口区模拟)如图,平行四边形ABCD中,点E、F在对角线AC上,且AF=CE,求证:∠ADF=∠EBC.20.(2012•沙河口区模拟)对某班50名同学每月所花费的零用钱情况进行了统计,绘制成下面的统计图.(1)求这50名同学每月所花费的零用钱的平均数;(2)这组数据的众数和中位数是多少?(3)该校共有学生1200名,请根据该班的每月所花费的零用钱情况,估计这个中学的同学每月所花费的零用钱总数大约是多少元?四、解答题21.(2012•沙河口区模拟)军舰在点A处接到命令,要求它向位于点B处的渔船进行营救.已知军舰在渔船的北偏西53°方向60海里处,渔船沿正西方向航行.如果军舰立即沿东南方向航行,恰好能在点C处与渔船相遇.(1)求军舰行驶的距离AC的长;(2)求渔船行驶距离BC的长;(结果精确到0.1km.参考数据:≈1.41,sin53°=0.7986,cos53°=0.6018,tan53°=1.3270)22.(2010•聊城)如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.(1)若AD=3,BD=4,求边BC的长;(2)取BC的中点E,连接ED,试证明ED与⊙O相切.23.(2012•沙河口区模拟)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图,根据图象所提供的信息,解答问题:(1)他们在进行_________米的长跑训练,在0<x<15的时间段内,速度较快的人是_________;(2)求甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式,并求当x=15时,两人相距的距离;(3)在15<x<20的时间段内,求两人速度之差.五.解答题24.(2012•沙河口区模拟)在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,作PE⊥AP,PE交射线DC于点E,射线AE交射线BC于点F,设BP=x,CE=y.(1)如图,当点P在边BC上时(点P与点B、C都不重合),求y关于x的函数解析式,并写出它的定义域;(2)当x=3时,求CF的长;(3)当tan∠PAE=时,求BP的长.25.(2012•沙河口区模拟)如图,正方形ABCD与正方形BEFG有公共顶点B,点G在边BC上,AG的延长线交CE于点H,连接BH.(1)求证:∠BAG=∠BCE;(2)若AB=2BG,求的值;(3)若AB=kBG,直接写出的值(用含k的代数式表示).26.(2012•沙河口区模拟)如图,二次函数y=ax2+bx+c的图象与x轴、y轴分别交于A(﹣1,0)、B(5,0)、C (0,4)三点,顶点为点D.(1)求二次函数的解析式,并求出顶点坐标;(2)x轴上方的抛物线是否存在异于B、C的点P,过点P作x轴的垂线,垂足为点M,使直线BC平分△PMB的面积?如果存在,请求出点P的坐标;如果不存在,请说明理由;(3)抛物线的对称轴上是否存在点Q,使AQ等于点B到直线AQ的距离?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.2012年辽宁省大连市沙河口区中考数学模拟试卷(4月份)参考答案与试题解析一.选择题1.(3分)(2011•郴州)的绝对值是()A.B.C.﹣2 D.2考点:绝对值.专题:计算题.分析:根据绝对值的定义即可求解.解答:解:|﹣|=.故选A.点评:本题主要考查了绝对值的性质,负数的绝对值是它的相反数,比较简单.2.(3分)(2008•大连)在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出点P的横纵坐标的符号,进而判断其所在的象限.解答:解:∵点P的横坐标﹣2<0,纵坐标为3>0,∴点P(﹣2,3)在第二象限.故选B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)(2010•大连)下列运算正确的是()A.a2•a3=a6B.(﹣a)4=a4C.a2+a3=a5D.(a2)3=a5考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的运算性质和合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、应为a2•a3=a5,故本选项错误;B、(﹣a)4=a4,正确;C、a2和a3不是同类项不能合并,故本选项错误;D、应为(a2)3=a2×3=a6,故本选项错误.故选B.点评:本题主要考查:合并同类项,同底数幂的乘法,幂的乘方的性质,熟练掌握法则和运算性质是解题的关键,要注意不是同类项的不能合并.4.(3分)(2011•兰州)如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.专题:作图题.分析:找到从正面看所得到的图形即可.解答:解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)(2012•沙河口区模拟)据统计,去年“十一”期间某景区共接待游客人数为246000人,将246000用科学记数法表示为()A.2.46×103B.2.46×104C.2.46×105D.以上都不对考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将246000用科学记数法表示为2.46×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3分)(2011•大连)下列事件是必然事件的是()A.抛掷一次硬币,正面朝上B.任意购买一张电影票,座位号恰好是“7排8号”C.某射击运动员射击一次,命中靶心D.13名同学中,至少有两名同学出生的月份相同考点:随机事件.专题:分类讨论.分析:必然事件就是一定发生的事件,即发生的概率是1的事件.据此判断即可解得.解答:解:A、抛掷一次硬币,正面朝上,是可能事件,故本选项错误;B、任意购买一张电影票,座位号恰好是“7排8号”,是可能事件,故本选项错误;C、某射击运动员射击一次,命中靶心,是可能事件,故本选项错误;D、13名同学中,至少有两名同学出生的月份相同,正确.故选D.点评:本题主要考查理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)(2012•和平区三模)设a=,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5考点:估算无理数的大小.专题:探究型.分析:先估算出的大小,再求出a的取值范围即可.解答:解:∵9<13<16,∴3<<4,∴2<﹣1<3,即a在2和3之间.故选B.点评:本题考查的是估算无理数的大小,根据题意估算出的大小是解答此题的关键.8.(3分)(2012•沙河口区模拟)已知点E在矩形ABCD边CD上,将矩形沿AE折叠后点D落在点D′,∠CED′=35°,则∠BAD′的大小是()A.40°B.45°C.55°D.60°考点:翻折变换(折叠问题).专题:探究型.分析:先根据图形翻折变换的性质得出∠D=∠D′=90°,再由∠CED′=35°即可求出∠DED′的度数,再由四边形内角和定理求出∠DAD′的度数,根据∠BAD′=∠DAB﹣DAD′即可得出结论.解答:解:∵△AD′E由△ADE翻折而成,∠D=∠D′=90°,∵∠CED′=35°,∴∠DED′=180°﹣∠CED′=180°﹣35°=145°,∴∠DAD′=180°﹣∠DED′=180°﹣145°=35°,∴∠BAD′=∠DAB﹣DAD′=90°﹣35°=55°.故选C.点评:本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.二.填空题9.(3分)(2012•沙河口区模拟)如果在实数范围内有意义,那么x的取值范围是x≥﹣2.考点:二次根式有意义的条件.专题:计算题.分析:二次根式的被开方数是非负数.解答:解:根据题意,得2+x≥0,解得x≥﹣2.故答案是:x≥﹣2.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(3分)(2013•丹东一模)如图,直线a∥b,∠1=55°,则∠2=125°.考点:平行线的性质.专题:探究型.分析:先根据平行线的性质求出∠3的度数,再由两角互补的性质求出∠2的度数即可.解答:解:∵直线a∥b,∠1=55°,∴∠3=∠1=55°,∵∠2+∠3=180°,∴∠3=180°﹣∠2=180°﹣55°=125°.故答案为:125°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.11.(3分)(2012•沙河口区模拟)不等式组的解集为1<x<4.考点:解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>1,由②得,x<4,故此不等式组的解集为:1<x<4.故答案为:1<x<4.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(3分)(2012•沙河口区模拟)某印刷厂一月份印书17万册,三月份印书30万册,若设二、三月份平均每月的增长率为x,那么根据题意,可列出的方程是17(1+x)2=30.考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据一般用增长后的量=增长前的量×(1+增长率),如果设平均每月增率是x,那么根据三月份印书30万册可以列出方程.解答:解:设平均每月的增长率为x,17(1+x)2=30.故答案为:17(1+x)2=30.点评:此题主要考查了由实际问题抽象出一元二次方程,求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).13.(3分)(2012•沙河口区模拟)同时掷两枚质地均匀的硬币,向上一面都是正面的概率是.考点:列表法与树状图法.分析:用列举法,可求得同时掷两枚质地均匀的硬币所出现的所有等可能的结果,又由向上一面都是正面的有1种情况,利用概率公式求解即可求得答案.解答:解:∵同时掷两枚质地均匀的硬币出现的情况有:正正,正反,反正,反反,又∵向上一面都是正面的有1种情况,∴向上一面都是正面的概率是:.故答案为:.点评:此题考查了列举法求概率的知识.此题比较简答,注意列举法需要不重不漏的列举出所有的结果,注意概率=所求情况数与总情况数之比.14.(3分)(2012•沙河口区模拟)抛物线y=x2+2x﹣3,当y<0时,x的取值范围为﹣3<x<1.考点:二次函数的性质.专题:常规题型.分析:令线y=x2+2x﹣3<0,解出x的取值范围即可.解答:解:令y=x2+2x﹣3<0,即(x+3)(x﹣1)<0,解得﹣3<x<1,故答案为﹣3<x<1.点评:本题主要考查二次函数的性质,解答本题的关键是熟练掌握二次函数的图象的特点,此题难度不大.15.(3分)(2012•沙河口区模拟)如图,正方形剪去四个角后成为一个正八边形,如果正八边形的边长为2,则原正方形的边长为2+2.考点:正多边形和圆.分析:设剪去三角形的直角边长x,利用正八边形的边长为2,根据勾股定理可得,三角形的直角边长,进而求出原正方形的边长.解答:解:∵正方形剪去四个角后成为一个正八边形,根据正八边形每个内角为135度,∴∠CAB=∠CBA=45°,设剪去△ABC边长AC=BC=x,可得:x2+x2=4,解得:x=,则EC=BC+DE+BD=2+2,故原正方形的边长为:2+2.故答案为:2+2.点评:本题考查了正方形和正八边形的性质以及勾股定理的运用,解题的关键是设出未知数用列方程的方法解决几何问题.16.(3分)(2012•沙河口区模拟)如图,在直角坐标系中,O为原点,点B、C的坐标分别为(2,0)、(8,0),点A为反比例函数图象上的一点,∠ACO=30°,且AC=BC.则反比例函数解析式为y=.考点:反比例函数综合题.专题:探究型.分析:先由B、C两点坐标求出BC的长即可得出AC的长,过点A作AD⊥x轴,在Rt△ACD中利用直角三角形的性质可求出AD及CD的长,故可得出A点坐标,设反比例函数的解析式为y=,把A点坐标代入即可求出k的值,进而得出其解析式.解答:解:∵点B、C的坐标分别为(2,0)、(8,0),∴BC=8﹣2=6,∵AC=BC,∴AC=6,过点A作AD⊥x轴,在Rt△ACD中,∵∠ACO=30°,∴AD=AC=×6=3,CD=AC•cos30°=6×=3,∴OD=OC﹣CD=8﹣3,∵点A在第一象限,∴A(8﹣3,3),设反比例函数的解析式为;y=,∵点A(8﹣3,3)在反比例函数的图象上,∴3=,解得k=24﹣9,∴反比例函数的解析式为:y=.故答案为:y=.点评:本题考查的是反比例函数综合题,根据题意作出辅助线,利用直角三角形的性质求出A点坐标是解答此题的关键.三.解答题17.(2012•沙河口区模拟)计算:.考点:分式的混合运算.分析:首先计算括号内的式子,把除法转化成乘法,然后进行约分即可求解.解答:解:原式=÷=•=a﹣1点评:本题考查了分式的混合运算,正确理解运算顺序是关键.18.(2011•清远)解方程:x2﹣4x﹣1=0.考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5,∴x=2±,∴x1=2+,x2=2﹣.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.19.(2012•沙河口区模拟)如图,平行四边形ABCD中,点E、F在对角线AC上,且AF=CE,求证:∠ADF=∠EBC.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由平行线的性质,易得∠CAD=∠ACB,由AF=CE,利用SAS即可判定△AFD≌△CEB,继而证得:∠ADF=∠EBC.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠CAD=∠ACB,在△AFD和△CEB中,,∴△AFD≌△CEB(SAS),∴∠ADF=∠EBC.点评:此题考查了平行四边形的性质、全等三角形的判定与性质以及平行线的性质.此题难度不大,注意数形结合思想的应用.20.(2012•沙河口区模拟)对某班50名同学每月所花费的零用钱情况进行了统计,绘制成下面的统计图.(1)求这50名同学每月所花费的零用钱的平均数;(2)这组数据的众数和中位数是多少?(3)该校共有学生1200名,请根据该班的每月所花费的零用钱情况,估计这个中学的同学每月所花费的零用钱总数大约是多少元?考点:条形统计图;加权平均数;中位数;众数.专题:图表型.分析:(1)根据加权平均数的计算方法列式计算即可得解;(2)根据众数的定义,找出人数最多的金额就是众数;根据中位数的定义,按照钱数从少到多排列,找出50人中的第25、26两人的零用钱数,然后求平均数就是中位数;(3)用学生人数乘以平均每人所花费的零用钱数,进行计算即可得解.解答:解:(1)(10×7+20×15+30×18+40×10)÷50,=(70+300+540+400)÷50,=1310÷50,=26.2元;(2)由图可知,30元的人数最多,是18人,所以,这组数据的众数是30元,按照钱数从少到多排列,50人中的第25人的钱数是30元,第26人的钱数是30元,(30+30)÷2=30元,所以,这组数据的中位数是30元;(3)1200×26.2=31440(元),答:这个中学的同学每月所花费的零用钱总数大约是31440元.点评:本题考查的是条形统计图的运用,条形统计图能清楚地表示出每个项目的数据,还考查了平均数、中位数、众数的认识.四、解答题21.(2012•沙河口区模拟)军舰在点A处接到命令,要求它向位于点B处的渔船进行营救.已知军舰在渔船的北偏西53°方向60海里处,渔船沿正西方向航行.如果军舰立即沿东南方向航行,恰好能在点C处与渔船相遇.(1)求军舰行驶的距离AC的长;(2)求渔船行驶距离BC的长;(结果精确到0.1km.参考数据:≈1.41,sin53°=0.7986,cos53°=0.6018,tan53°=1.3270)考点:解直角三角形的应用-方向角问题.分析:(1)作AD⊥BC,垂足点D在BC的延长线上,根据已知得出在Rt△BAD中,∠D=90°,∠BAD=53°,cos53°=,即可求出AD的长,再利用等腰直角三角形的性的性质得出AD=CD,即可求出答案;(2)利用sin53°=,求出BD的长,进而得出BC的长即可.解答:解:(1)作AD⊥BC,垂足点D在BC的延长线上,由题意得出:∵∠BAD=53°,∠ACD=45°,在Rt△BAD中,∠D=90°,∠BAD=53°,cos53°=,sin53°=,∴AD=ABcos53°=0.60×60=36,在Rt△ADC中,∠D=90°,∠ACD=45°,∴AD=CD=36,AC=AD=36≈50.8,答:军舰行驶的距离AC的长50.8海里;(2)由(1)可得:BD=sin53°•AB=0.8×60=48,故BC=BD﹣CD≈12.答:渔船行驶距离BC的长为12海里.点评:此题考查了解直角三角形的应用,关键是解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(2010•聊城)如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.(1)若AD=3,BD=4,求边BC的长;(2)取BC的中点E,连接ED,试证明ED与⊙O相切.考点:切线的判定;勾股定理;圆周角定理;相似三角形的判定与性质.专题:代数几何综合题;压轴题;数形结合.分析:(1)根据勾股定理易求AB的长;根据△ABD∽△ACB得比例线段可求BC的长.(2)连接OD,证明DE⊥OD.解答:(1)解:∵AB为直径,∴∠ADB=90°,即BD⊥AC.在RT△ADB中,∵AD=3,BD=4,∴由勾股定理得AB=5.∵∠ABC=90°,BD⊥AC,∴△ABD∽△ACB,∴=,即=,∴BC=;(2)证明:连接OD,∵OD=OB,∴∠ODB=∠OBD;又∵E是BC的中点,BD⊥AC,∴DE=BE,∴∠EDB=∠EBD.∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴DE⊥OD.∴ED与⊙O相切.点评:①直角三角形斜边上的高分得的两个三角形与原三角形相似;②证过圆上一点的直线是切线,常作的辅助线是连接圆心和该点,证直线和半径垂直.23.(2012•沙河口区模拟)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图,根据图象所提供的信息,解答问题:(1)他们在进行5000米的长跑训练,在0<x<15的时间段内,速度较快的人是甲;(2)求甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式,并求当x=15时,两人相距的距离;(3)在15<x<20的时间段内,求两人速度之差.考点:一次函数的应用.分析:(1)先根据图象信息可知,他们在进行5000米的长跑训练,再根据直线倾斜程度即可知甲的速度较快;(2)由甲运动员的图象经过(0,5000),(20,0),先运用待定系数法求出甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式,再将x=15代入,得出甲距终点的路程y,又由图象可知此时乙距终点的路程,两者相减即可;(3)先分别求出在15<x<20的时间段内,两人的速度,再将它们相减即可.解答:解:(1)根据图象信息可知,他们在进行5000米的长跑训练,在0<x<15的时间段内,直线y甲的倾斜程度大于直线y乙的倾斜程度,所以甲的速度较快.故答案为5000,甲;(2)设甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式为:y=kx+b,∵直线y=kx+b经过点(0,5000),(20,0),∴b=5000,20k+b=0,解得k=﹣250,b=5000.∴y=﹣250x+5000,∴当x=15时,甲距终点的路程y=﹣250×15+5000=1250,∵由图象可知此时乙距终点的路程为2000,∴2000﹣1250=750.即当x=15时,两人相距750米;(3)∵当15<x<20时,甲的速度为5000÷20=250,乙的速度为2000÷5=400,又∵400﹣250=150,∴在15<x<20的时间段内,两人速度之差为150米/分.点评:本题考查了一次函数的应用,难度中等.解决此类题目的关键是从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.本题的突破点是认清甲运动员的图象.五.解答题24.(2012•沙河口区模拟)在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,作PE⊥AP,PE交射线DC于点E,射线AE交射线BC于点F,设BP=x,CE=y.(1)如图,当点P在边BC上时(点P与点B、C都不重合),求y关于x的函数解析式,并写出它的定义域;(2)当x=3时,求CF的长;(3)当tan∠PAE=时,求BP的长.考点:相似三角形的判定与性质;矩形的性质;解直角三角形.分析:(1)PC在BC上运动时,要求y关于x的函数解析式,只需要用勾股定理表示PE2=PC2+EC2就可以使问题到解决,而关键是解决PE2,又在Rt△APE中由勾股定理求得,从而解决问题.(2)把x=3的值代入第一问的解析式就可以求出CE的值,再利用三角形相似就可以求出CF的值.(3)由条件可以证明△ABP∽△PCE,可以得到==2,再分情况讨论,从而求出BP的值.解答:解:(1)∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠BCD=∠D=90°,∵BP=x,CE=y,∴PC=5﹣x,DE=4﹣y,∵AP⊥PE,∴∠APE=90°,∠1+∠2=90°,∵∠1+∠3=90°,∴∠2=∠3,∴△ABP∽△PCE,∴,∴,∴y=,自变量的取值范围为:0<x<5;(2)当x=3时,y=,=,即CE=,∴DE=,∵四边形ABCD是矩形,∴AD平行于BF.∴△AED∽△FEC,∴,∴,∴CF=3;(3)根据tan∠PAE=,可得:=2易得:△ABP∽△PCE∴==2于是:==2 ①或==2 ②解得:x=3,y=1.5或x=7,y=3.5.∴BP=3或7.点评:本题考查了相似三角形的判定与性质,矩形的性质,解直角三角形以及勾股定理的运用.25.(2012•沙河口区模拟)如图,正方形ABCD与正方形BEFG有公共顶点B,点G在边BC上,AG的延长线交CE于点H,连接BH.(1)求证:∠BAG=∠BCE;(2)若AB=2BG,求的值;(3)若AB=kBG,直接写出的值(用含k的代数式表示).考点:相似形综合题.分析:(1)由四边形ABCD与BEFG是正方形,可得AB=CB,∠ABC=∠CBE=90°,GB=EB,然后由SAS即可判定△ABG≌△BCE,则可证得:∠BAG=∠BCE;(2)由(1)易得△AHE是直角三角形,△AGB∽△CGH,继而可得△BGH∽△AGC,然后由相似三角形的对应边成比例,可得BH•AG=AC•BG,又由在Rt△AHE和Rt△ABG中,cosHAE==,可得AH•AG=AB•AE,则可求得=,又由AB=2BG,即可求得的值;(3)由(2)可得=,又由AB=kBG,即可求得的值.解答:(1)证明:∵四边形ABCD与BEFG是正方形,∴AB=CB,∠ABC=∠CBE=90°,GB=EB,在△ABG和△BCE中,∵,∴△ABG≌△BCE(SAS),∴∠BAG=∠BCE;(2)连接AC,∵由(1)得:∠BAG=∠BCE,∴∠BAG+∠BEH=∠BCE+∠BEH=180°﹣∠CBE=90°,∴∠AHE=180°﹣(∠BAG+∠BEH)=90°∵∠AGB=∠CGH,∴△AGB∽△CGH,∴,∴,∵∠BGH=∠AGC,∴△BGH∽△AGC,∴,即BH•AG=AC•BG,在Rt△AHE和Rt△ABG中,∵cosHAE==,∴AH•AG=AB•AE,∴=,∴=,∵AB=2BG,∴==;(3)由(2)得:=,∵AB=kBG,∴∴==.点评:此题考查了相似三角形的判定与性质、正方形的性质、全等三角形的判定与性质以及三角函数的定义.此题难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想的应用.26.(2012•沙河口区模拟)如图,二次函数y=ax2+bx+c的图象与x轴、y轴分别交于A(﹣1,0)、B(5,0)、C (0,4)三点,顶点为点D.(1)求二次函数的解析式,并求出顶点坐标;(2)x轴上方的抛物线是否存在异于B、C的点P,过点P作x轴的垂线,垂足为点M,使直线BC平分△PMB的面积?如果存在,请求出点P的坐标;如果不存在,请说明理由;(3)抛物线的对称轴上是否存在点Q,使AQ等于点B到直线AQ的距离?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.考点:二次函数综合题.专题:计算题.分析:(1)根据待定系数法,将A(﹣1,0)、B(5,0)、C(0,4)分别代入解析式,组成三元一次方程组,解答即可;(2)设直线为BC为y=kx+b,利用待定系数法求出其解析式,设点P的坐标为(x,﹣x2+x+4),设PM交BC于G,则点G为根据BC平分△PMB的面积,得到PG=GM,进而得到方程x2﹣6x+5=0,求出x 的值即为P点横坐标,代入解析式即可求出P点纵坐标,从而求出P点坐标;(3)连接AQ、BQ,作BN⊥AQ,垂足为N,设出Q点坐标,利用勾股定理表示出AQ的长,求出AQ的函数表达式,根据点到直线的距离公式,求出BN的表达式,利用△ABQ的面积的不同求法,建立等式,求出m的值,可得Q点的坐标.解答:解:(1)∵二次函数y=ax2+bx+c的图象过A(﹣1,0),B(5,0),C(0,4)三点,∴,解得,∴y=﹣x2+x+4,∴y=﹣x2+x+4=﹣(x﹣2)2+,∴点D的坐标为(2,).(2)设直线为BC为y=kx+b,则,解得,则y=﹣x+4.设点P的坐标为(x,﹣x2+x+4),∵BC平分△PMB的面积,∴PG=GM,∴﹣x2+x+4﹣(﹣x+4)=﹣x+4,∴x2﹣6x+5=0,解得x1=1,x2=5(不合题意,舍),∴点P的坐标为(1,).(3)∵A点坐标为(﹣1,0),B点坐标为(5,0),∴函数对称轴坐标为x=2,设Q点坐标为(2,m),连接AQ、BQ,作BN⊥AQ,垂足为N.设AQ解析式为y=kx+b,将A(﹣1,0),Q(2,m)分别代入解析式得,,解得,函数解析式为y=x+,整理得mx﹣3y+m=0,根据两点间距离公式得BN=,∵AQ=,BN=,且AQ=BN,整理得,m2﹣6m+9=0,m2+6m+9=0,解得m=3或m=﹣3.故Q点坐标为(2,3)或(2,﹣3).点评:本题考查了二次函数综合题,涉及待定系数法求一次函数、二次函数解析式、点到直线的距离公式、勾股定理、三角形面积求法等知识,要注意利用图形.。

2012年辽宁省大连市中考数学试卷(含解析版)

2012年辽宁省大连市中考数学试卷(含解析版)

2012年辽宁省大连市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2012•大连)﹣3的绝对值是()A.﹣3 B.﹣C.D.32.(3分)在平面直角坐标系中,点P(﹣3,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)(2012•大连)下列几何体中,主视图是三角形的几何体的是()A.B.C.D.4.(3分)(2012•大连)甲、乙两班分别有10名选手参加学校健美操比赛,两班参赛选手身高的方差分别=1.5,=2.5,则下列说法正确的是()A.甲班选手比乙班选手身高整齐B.乙班选手比甲班选手身高整齐C.甲、乙两班选手身高一样整齐D.无法确定哪班选手身高更整齐5.(3分)(2007•莆田)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a6.(3分)(2012•大连)一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A.B.C.D.7.(3分)(2012•大连)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.408.(3分)(2012•大连)如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B. 2 C. 3 D.4二、填空题(本题共8小题,每小题3分,共24分)9.(3分)(2012•大连)化简:=.10.(3分)若二次根式有意义,则x的取值范围是.11.(3分)(2007•南通)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=cm.12.(3分)(2012•大连)如图,△ABC是⊙O的内接三角形,若∠BCA=60°,则∠ABO=°.13.(3分)(2012•大连)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).14.(3分)(2012•大连)如果关于x的方程x2+kx+9=0有两个相等的实数根,那么k的值为.15.(3分)(2012•大连)如图,为了测量电线杆AB的高度,小明将测量仪放在与电线杆的水平距离为9cm的D处.若测角仪CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为m.(精确到0.1m).(参考数据sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).16.(3分)(2012•大连)如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A′处,则A′C=cm.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2012•大连)计算:+()﹣1﹣(+1)(﹣1)18.(9分)(2012•大连)解方程:.19.(9分)(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF 与AC相交于点O,求证:OA=OC.20.(12分)(2012•大连)某车间有120名工人,为了了解这些工人日加工零件数的情况,随机抽出其中的30名工人进行调查.整理调查结果,绘制出不完整的条形统计图(如图).根据图中的信息,解答下列问题:(1)在被调查的工人中,日加工9个零件的人数为名;(2)在被调查的工人中,日加工12个零件的人数为名,日加工个零件的人数最多,日加工15个零件的人数占被调查人数的%;(3)依据本次调查结果,估计该车间日人均加工零件数和日加工零件的总数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2012•大连)如图,一次函数y=kx+b的图象与反比例函数y=的图象都经过点A(﹣2,6)和点(4,n).(1)求这两个函数的解析式;(2)直接写出不等式kx+b≤的解集.22.(9分)(2012•大连)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;(2)乙跑步的速度是多少?乙在途中等候甲用了多长时间?(3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?23.(10分)(2012•大连)如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O 于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.五、解答题(本题共3小题,其中23题11分,25、26题各12分,共35分)24.(11分)(2012•大连)如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动.当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l 对称的图形,得到△PQ′R.设点Q的运动时间为t(s),△PQ′R与△PAR重叠部分的面积为S(cm2).(1)t为何值时,点Q′恰好落在AB上?(2)求S与t的函数关系式,并写出t的取值范围;(3)S能否为cm2?若能,求出此时的t值;若不能,说明理由.25.(12分)(2012•大连)如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC上,且∠BEF=∠A.(1)∠BEF=(用含α的代数式表示);(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求的值(用含m,n的代数式表示)26.(12分)(2012•大连)如图,抛物线y=ax2+bx+c经过A(﹣,0)、B(3,0)、C (0,3)三点,线段BC与抛物线的对称轴相交于D.该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E.(1)求该抛物线的解析式;(2)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,说明理由;(3)将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果).2012年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2012•大连)﹣3的绝对值是()A.﹣3 B.﹣C.D.32.(3分)在平面直角坐标系中,点P(﹣3,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)(2012•大连)下列几何体中,主视图是三角形的几何体的是()A.B.C.D.4.(3分)(2012•大连)甲、乙两班分别有10名选手参加学校健美操比赛,两班参赛选手身高的方差分别=1.5,=2.5,则下列说法正确的是()A.甲班选手比乙班选手身高整齐B.乙班选手比甲班选手身高整齐C.甲、乙两班选手身高一样整齐D.无法确定哪班选手身高更整齐=1.5,=2.5<=2.55.(3分)(2007•莆田)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a6.(3分)(2012•大连)一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A.B.C.D.=.7.(3分)(2012•大连)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.40=58.(3分)(2012•大连)如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B. 2 C. 3 D.4二、填空题(本题共8小题,每小题3分,共24分)9.(3分)(2012•大连)化简:=1.==110.(3分)若二次根式有意义,则x的取值范围是x≥2.有意义,即11.(3分)(2007•南通)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=6cm.12.(3分)(2012•大连)如图,△ABC是⊙O的内接三角形,若∠BCA=60°,则∠ABO= 30°.ABO==3013.(3分)(2012•大连)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投14.(3分)(2012•大连)如果关于x的方程x2+kx+9=0有两个相等的实数根,那么k的值为±6.15.(3分)(2012•大连)如图,为了测量电线杆AB的高度,小明将测量仪放在与电线杆的水平距离为9cm的D处.若测角仪CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为8.1m.(精确到0.1m).(参考数据sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).16.(3分)(2012•大连)如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A′处,则A′C=8cm.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2012•大连)计算:+()﹣1﹣(+1)(﹣1)+)+1(18.(9分)(2012•大连)解方程:..x=≠是原分式方程的解.x=19.(9分)(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF 与AC相交于点O,求证:OA=OC.,20.(12分)(2012•大连)某车间有120名工人,为了了解这些工人日加工零件数的情况,随机抽出其中的30名工人进行调查.整理调查结果,绘制出不完整的条形统计图(如图).根据图中的信息,解答下列问题:(1)在被调查的工人中,日加工9个零件的人数为4名;(2)在被调查的工人中,日加工12个零件的人数为8名,日加工14个零件的人数最多,日加工15个零件的人数占被调查人数的20%;(3)依据本次调查结果,估计该车间日人均加工零件数和日加工零件的总数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2012•大连)如图,一次函数y=kx+b的图象与反比例函数y=的图象都经过点A(﹣2,6)和点(4,n).(1)求这两个函数的解析式;(2)直接写出不等式kx+b≤的解集.y=,得:得:﹣x+3,一次函数的解析式是﹣≤22.(9分)(2012•大连)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.(1)在跑步的全过程中,甲共跑了900米,甲的速度为 1.5米/秒;(2)乙跑步的速度是多少?乙在途中等候甲用了多长时间?(3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?23.(10分)(2012•大连)如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O 于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.则,====,即,==CE==CE=﹣=.=.五、解答题(本题共3小题,其中23题11分,25、26题各12分,共35分)24.(11分)(2012•大连)如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动.当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l 对称的图形,得到△PQ′R.设点Q的运动时间为t(s),△PQ′R与△PAR重叠部分的面积为S(cm2).(1)t为何值时,点Q′恰好落在AB上?(2)求S与t的函数关系式,并写出t的取值范围;(3)S能否为cm2?若能,求出此时的t值;若不能,说明理由.cm,得出关于S= =,即,=,即==,RP D=•t==,即DR==,即=RP=DE=,即DE=,,RP••t t+;能为cmt+=t=±=8+﹣t(t=±=4+﹣cm﹣25.(12分)(2012•大连)如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC上,且∠BEF=∠A.(1)∠BEF=180°﹣2α(用含α的代数式表示);(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求的值(用含m,n的代数式表示)根据相似三角形的对应边成比例,可得的值.ADB=(AEG===n+126.(12分)(2012•大连)如图,抛物线y=ax2+bx+c经过A(﹣,0)、B(3,0)、C (0,3)三点,线段BC与抛物线的对称轴相交于D.该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E.(1)求该抛物线的解析式;(2)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,说明理由;(3)将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果).x+)))﹣()3xx+3((﹣(﹣)的方程组,得:、;,(2(,﹣﹣x x=﹣x+4=4×(负值舍去)CM=DN=x=×=﹣,,。

2012大连市数学中考一模测试及答案-推荐下载

2012大连市数学中考一模测试及答案-推荐下载

A. 22 22 24 B. 23 23 2 C. 2 3 5 D. 2 3 6
4、袋中有 3 个红球和 4 个白球,这些球除颜色不同外其余均相同,在看不到球的条件下,随机从袋中摸出
1
个球,则摸出白球的概率是
A. 1 7
B. 3 7
C. 4 D. 3
7
4
5、在平面直角坐标系中,将点 P(-2,3)向下平移 4 个单位得到点 P′,则点 P′所在象限为 ( )
(1)本次调查共选出
名学生;
(2)在被调查的学生中,最喜欢艺术类书籍的学生占被调查学生的
(3)如果按照本次调查情况购买学生课外书,那么学校将购买多少本文学类书籍?
书书
48
42
36
30
24
18
12
6
0 书书书 书书书 书书书 书书

书书书书书书
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2012年大连地区中考数学一次函数图像信息试题模拟

2012年大连地区中考数学一次函数图像信息试题模拟

O ()y 千米 ()x 小时 274 3 300甲乙 甲 (09咸宁)在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示. (1)填空:A 、C 两港口间的距离为 km , a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.(大连11一模)甲、乙两车分别从A 、B 两地同时相向而行,匀速开往对方所在地,图14表示甲、乙两车离A 地的路程y (km )与出发时间x (h )的函数图象,图15表示甲、乙两车间的路程y (km )与出发时间x (h )的函数图象.(1)A 、B 两地的距离为______km ,65h 的实际意义是_____________________________; (2)求甲、乙两车离B 地的路程y (km )与出发时间x (h )的函数关系式及x 的取值范围,并画出图象(不用列表,图象画在备用图中);(3)丙车在乙车出发10分钟时从B 地出发,匀速行驶,且比乙车提前20分钟到达A 地,那么,丙车追上乙车多长时间后与甲车相遇?已知:甲、乙两车分别从相距300千米的A B ,两地同时出发相向而行,其中甲到B 地后立即返回,下图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象. (1)求甲车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了92小时,求乙车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.O x (h) y (km) 180 图14 y (km) x (h) O 3 65图15 O x (h) y (km ) 备用图 O y/km 90 30 a 0.5 3 P 甲 乙 x/hA B D C O 2 5 x (时) y (千米)A 、B 两码头相距150千米,甲客船顺流由A 航行到B ,乙客船逆流由B 到A ,若甲、乙两客船在静水中的速度相同,同时出发,它们航行的路程y (千米)与航行时间x (时)的关系如图所示. ⑴求客船在静水中的速度及水流速度;⑵一艘货轮由A 码头顺流航行到B 码头,货轮比客船早2小时出发,货轮在静水中的速度为10千米/时,在此坐标系中画出货轮航程y (千米)与时间x (时)的关系图象,并求货轮与客船乙相遇时距A 码头的路程.星期天,小强骑自行车到郊外与同学一起游玩.从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图是他们离家的路程y (千米)与时间x (时)的函数图象.已知小强骑车的速度为15千米/时,妈妈驾车的速度为60千米/时. (1)小强家与游玩地的距离是多少? (2)妈妈出发多长时间与小强相遇?某单位组织职工到距单位6km 的风景区旅游,一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l 1、l 2分别表示步行和骑自行车的人前往目的地所走的路程y (千米)随时间x (分钟)变化的函数图象.根据图像,回答下列问题:(1)求骑车的人用多长时间追上步行的人.(2)骑车的人到达后立刻返回,接步行的人然后同时到达,问这种情况下步行的人能省多少时间?(3)在(2)的条件下在平面直角坐标系中画出两部分人之间的距离随步行的人出发时间的图像.x (时) y (千米) (A ) B O 甲 乙 6 150 10备用图2备用图1O y/cm x/s x/s y/cm图 17图 16图 156621105x/s y/cm O 将一块a ×b ×c 的长方体铁块(如图15所示,其中a < b < c ,单位:cm)放入一长方体(如图16所示)水槽中,并以速度v (单位:cm3/s)匀速向水槽注水,直至注满为止.已知b 为8cm ,水槽的底面积为180cm 2.若将铁块b ×c 面放至水槽的底面,则注水全过程中水槽的水深y (cm)与注水时间t (s)的函数图象如图所示(水槽各面的厚度忽略不计).⑴水槽的深度为_________cm ,a = __________cm ;⑵求注水速度v 及c 的值;⑶若将铁块的a ×b 面、a ×c 面放至水槽的底面,试分别求注水全过程中水槽的水深y (cm)与注水时间t (s)的函数关系及t 的取值范围,并画出图象(不用列表).如图10,某容器由A 、B 、C 三个长方体组成,其中A 、B 、C 的底面积分别为25cm 2、10cm 2、5cm 2,C 的容积是容器容积的14(容器各面的厚度忽略不计).现以速度v (单位:cm 3/s )均匀地向容器注水,直至注满为止.图11是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象.⑴在注水过程中,注满A 所用时间为______s ,再注满B 又用了_____s ; ⑵求A 的高度h A 及注水的速度v ;⑶求注满容器所需时间及容器的高度.将一盛有水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器的内壁以速度v (单位:cm 3//s )匀速注水(如图1),直到注满大圆柱形容器为止.已知大圆柱形容器的半径为8cm.注水过程中,大容器内的水深y (cm )与注水时间t (s )之间的函数关系如图2.(π取近似值3,小水杯,大容器的厚度忽略不计)(1)大容器的深度为 cm ;小水杯的高度为 cm.(2)求注水速度v 和小水杯的半径.(3)若将小水杯与大容器的水全部倒空,再按原位置放置后开始注水.试求出注水全过程中,大容器的水深y (cm )与注水时间t (s )的函数关系及t 的取值范围,并画出图像(不用列表).图10 A B C y/cm84 36 510O t/s O t /s h /cm 10 18 12 图11。

2012年中考模拟考试数学试卷(含答案)

2012年中考模拟考试数学试卷(含答案)

2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是A .2的相反数B .21 的相反数 C .2-的相反数 D .21-的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105 3.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y )2=2x 4y 2D .(x +y 2)2=x 2+y44.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P7.如图,已知□ABCD ,∠A =45°,AD =4,以AD 为直径的半圆O 与BC 相切于点B ,则图中第5题ABDC阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x 中自变量x 的取值范围_______▲________.11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ’BC ’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm .第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫-- ⎪⎝⎭-0(2-18.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。

2012年大连市甘井子区一模数学答案

2012年大连市甘井子区一模数学答案

甘井子区2012年初三总复习练习卷数 学 参 考 答 案尊敬的各位初三数学老师: 您辛苦了!以下答案仅供参考.若学生还有不同做法请在备课组统一的前提下参照给分.一.选择题(本题共8小题,每小题3分,共24分)1.B . 2.B . 3.D . 4.A. 5.A. 6.C . 7.D. 8.C.二.填空题(本题共8小题,每小题3分,共24分)9.2. 10.1-=x .11.41. 12.110°.13.(3,2)或(-3,-2).14.(40-2x )(26-x)=864.15.90°.16. 1y <2y .三.解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17. 1)21(2312)2009(-+-++-π232321+-++=………………………………………………8分(每个化简2分) 35+=………………………………………………………………9分18. 221()a b a ba bb a-÷-+- []ba b b a b a b a a -⨯+--+=1))((………………………3分(因式分解2分,除变乘1分)bab b a b a ba a -⨯-++-=))((…………………………………………………5分ba +-=1…………………………………………………………………6分当22+=a ,222--=b 时,原式 222221--+-=……………………………………………7分21=………………………………………………………………8分22=………………………………………………………………9分19.证明:在菱形ABCD 中,∠BAC=∠DAC …………………………2分在△ACE 和△ACF⎪⎩⎪⎨⎧=∠=∠=AF AE FAC EAC AC AC …………………………………..5分 ∴△ACE ≌△ACF ……………………………7分 ∴CE=CF ………………………………………9分20.(1) m =20,n =8,x =0.4,y =0.16;………………6分(2) 57.6; ………………………………………………8分(3) 390500)38.04.0(=⨯+(人)……………………11分答:估计这些男生成绩等级达到优秀和良好的共约有390人.…………………12分四.解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21. ⑴ DE 与⊙O相切.…………………………………1分 证明:连接OD ,CD.∵BC 是⊙O 的直径,∴∠BDC=90°………………………………………2分∵BC=AC∴AD=BD ………………………………………3分 又∵BO=CO∴OD ∥AC∴∠DEC+∠EDO=180° ………………………4分∵DE⊥AC∴∠DEC=90° ∴∠EDO=90°∴D O⊥DE……………………………………………5分 又∵点D 在⊙O 上∴DE 与⊙O 相切.(第1步没答在此处答也可) ⑵ ∵cosB=21,∴∠B=60°……………………………………6分又∵ BC=AC∴△ABC 为等边三角形图9∴∠A=60°……………………………………7分 ∵⊙O 的直径为2∴ AB=2,AD=1……………………………………8分在Rt △ADE 中,ADDE A =sin ∠A=60°,AD=1∴DE=23答:DE 的长为23.……………………………………9分22. 解:过点D 作DF ⊥AB ,垂足为F ,得矩形BCDF ,则FB=CD=3,FD=BC ,………2分设AB=x ,则AF= x -3,………………………3分在Rt △ABE 中,∠AEB=45°,∴ BE=AB= x ………………………………………4分 在Rt △ADF 中,∠ADF=30°,FDAF =︒30tan ………………………………………5分 ∴DF=)3(3-x ………………………………………6分 ∵DF=BC∴15)3(3+=-x x ………………………………………7分 ∴6.271-33315≈+=x (米)………………8分答:塔AB 的高度约27.6米.……………………………………9分23.(1)60,100; …………………………4分(2)设线段AB 所在的直线为Q =kt +b .根据题意得:10600,20200,k b k b +=⎧⎨+=⎩………………………………5分 解得40,1000.k b =-⎧⎨=⎩所求函数解析式为Q =-40t +1000,…………6分自变量t 的取值范围为10≤t ≤20.……………………………7分BAD 45°30°F第23题备用图(3)图象如图折线DEFGH . ……………………………10分(坐标的标注错1个点扣1分)五.解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(1)415…………………………………………………………3分(2)解法一 当1504t <≤时,211222S B M B N t t t =⨯=⨯⨯=……………………4分∴当154t =时, 215225()416S ==大………………………………………5分当1544t <≤时,延长MB ′、BA 相交于点P ,过点M 作MH ⊥AD ,垂足为H ∵∠P=∠P ,∠PB ′N=∠B=90° ∴△PB ′N ∽△PBM ∴''12P B P N B N P BP MB M===∴2''22P N t P B P B t P N+=⎧⎨+=⎩解得53P N t =…………………………………………6分∴4tan tan 3P B H E M P M B M B ∠=∠== 在Rt △MHE 中,HM=6,4sin 5H E M ∠=∴152M E =………………………………………………………………7分同理, 5(6)3F N t =-……………………………………………………8分∴2''1155(2)(6)223B M N B EF S S S t t t t ∆∆⎡⎤=-=----⎢⎥⎣⎦25752032t t =-+-……………………………………………………9分∴当4t =时, 956S =大…………………………………………… 10分备用图综上所述,当4t =时, 956S =大……………………………………11分解法二 (2)当1504t <≤时,211222S B M B N t t t =⨯=⨯⨯=……………………4分∴当154t =时, 215225()416S ==大………………………………………5分当1544t <≤时,延长B ′N 、CB 相交于点K ,过点B ′作B ′H ⊥BC ,垂足为H,过点B ′作B ′Q ⊥AB 交BA 延长线于Q ,过点M 作MP ⊥B ′Q 交QB ′延长线于P 则∠B ′PM=∠NQB ′=90°,∠PB ′M=∠QNB ′=90°-∠Q B ′N ∴△PB ′M ∽△QNB ′∴'12Q B Q N B N P MP B B M'===''设QB ′=x ,则PM= 2xPR=QA=2x -6, NA=6-t ,QN=2x -6+6-t =2x -t , PB ′=4x -2t ,PQ=4x -2t + x =2t , x=45t ………………6分∵∠B ′NQ=∠KNB,∠B ′QN =∠KBN ∴△QNB ′∽△BNK ∴'Q B Q N B KB N=则2x x t B Kt-=,BK=43t ,MK=103t∵AD ∥BC∴△B ′EF ∽△B ′MK∴'B G E F B H M K =',则261023x E F x t -=,EF=102532t -………………………7分 ∴2''181025(6)()2532B M N B E F S S S t t t ∆∆=-=---…………………8分 25752032t t =-+-……………………………………………………9分 ∴当4t =时, 956S =大……………………………………………………10分综上所述,当4t =时, 956S =大……………………………………11分25. 法一:①过点D 作DE⊥AC 于点E ,DF⊥CB 于点F ……………1分 则∠EDF+∠C=180°∵∠MDN=∠CAB+∠CBA ∴∠MDN+∠C=180° ∴∠EDF =∠MDN∴∠EDM=∠FD N …………………………………2分 ∵AC=BC ,D 为AB 中点∴DE=DF …………………………………3分 又∵∠MED=∠NFD=90°∴△MDE≌△NDF………………………4分 ∴MD=ND…………………………………5分②过点D 作DE⊥AC 于点E ,DF⊥CB 于点F ……………6分则∠EDF+∠C=180° ∵∠MDN=∠CAB+∠CBA ∴∠MDN+∠C=180° ∴∠EDF =∠MDN∴∠EDM=∠FD N ……………………………7分 又∵∠MED=∠NFD=90°∴△MDE∽△NDF……………………………8分 ∴DFDE DNDM =连CD则BCD ACD S S ∆∆= 即BC DF AC DE ⋅=⋅2121……………………………9分 k DNDM FDED ACBC ===∴kND MD =…………………………………………………10分(2)k m )1(+…………………………………………………………………12分 法二:①证明:作DE=DB ,交BC 于点E ……………1分则∠DEB=∠B∵BC=AC∴∠A =∠B=∠DEB ……………………2分 ∵∠MDN=∠CAB+∠CBA∴∠MDN +∠C =180° ∴∠CMD+∠C ND=180°∴∠AMD =∠C ND ………………………3分B又∵D 为AB 中点 ∴AD=BD=DE∴△AMD ≌△END ………………………4分 ∴MD=ND …………………………………5分② 证明:作∠ADE=∠MDN, 交BC 于点E …………………6分则∠ADM=∠EDN 又∵∠AMD =∠C ND∴△AMD ∽△END ……………………………………7分 ∴EDBD EDAD NDMD ==,∠A =∠DEN …………………8分又∵∠B=∠B∴△ABC ∽△EDB …………………………9分 ∴k EDBD AC BC ==∴k NDMD=∴kND MD =…………………………………………………10分(2)k m )1(+…………………………………………………………………12分 26.(1)23y x x =-+,M 39(,)24………………………………4分(每空2分,)(2)过点P 作PD ⊥x 轴,交x 轴于点E , ∵∠PAO=45°∴PE=EA点P 在直线x y 2= 上 ∴PE=2OE 设P (,2)a a ,∵A 点的坐标为(3,0)∴23a a +=,解得1a =∴P (1,2)………………………………………………………………5分 设直线AP 的解析式为y kx b =+,将P (1,2),A (3,0)代入 得203k b k b=+⎧⎨=+⎩,解得13k b =-⎧⎨=⎩直线AP 的解析式为3y x =-+…………………………………………6分 过点M 作MH ⊥x 轴,交AP 于点H ,易知点Q 在MH 上, 则Q 点的坐标为3(,3)2,H 点的坐标为33(,)22B1()21()2A P APM APQA P x x M HS M H S Q Hx x Q H∆∆-==- …………………7分931423232-==-……………………………8分(3)设N 点的坐标为23(,3)4n n n -++,过点N 作NK ⊥x 轴,交AP 于点F ,则F 点的坐标为(,3)n n -+2113()2(33)224A P N A P S x x N F n n n ∆=⨯-⨯=⨯⨯-+++- (10)分22974(2)44n n n =-+-=--+……………………………………………… 11分∴当2n=时,APN S ∆最大,此时N 点的坐标为11(2,)4……………………… 12分。

2012年辽宁省大连市中考数学试卷答案与解析

2012年辽宁省大连市中考数学试卷答案与解析

2012年辽宁省大连市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2012•大连)﹣3的绝对值是()C.D.3A.﹣3 B.﹣考点:绝对值.专题:计算题.分析:根据绝对值的定义直接解答即可.解答:解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.点评:本题考查了绝对值的定义,知道绝对值表示某点到原点的距离是解题的关键.2.(3分)在平面直角坐标系中,点P(﹣3,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据点的横纵坐标的符号可得所在象限.解答:解:∵﹣3<0,1>0,∴点P(﹣3,1)所在的象限是第二象限,故选B.点评:考查点的坐标的相关知识;掌握各个象限内点的符号特点是解决本题的关键.3.(3分)(2012•大连)下列几何体中,主视图是三角形的几何体的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.解答:解:A、三棱柱的主视图是长方形,中间还有一条竖线,故此选项错误;B、正方体的主视图是正方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、圆柱的主视图是长方形,故此选项错误;故选:C.点评:此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.4.(3分)(2012•大连)甲、乙两班分别有10名选手参加学校健美操比赛,两班参赛选手身高的方差分别=1.5,=2.5,则下列说法正确的是()A.甲班选手比乙班选手身高整齐B.乙班选手比甲班选手身高整齐C.甲、乙两班选手身高一样整齐D.无法确定哪班选手身高更整齐考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵=1.5,=2.5∴<=2.5则甲班选手比乙班选手身高更整齐.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(3分)(2007•莆田)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解答:解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.点评:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.6.(3分)(2012•大连)一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A.B.C.D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.解答:解:根据题意可得:袋子中有有3个白球,4个黄球和5个红球,共12个,从袋子中随机摸出一个球,它是黄色球的概率=.故选B.点评:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(3分)(2012•大连)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.40考点:菱形的性质;勾股定理.专题:数形结合.分析:据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.解答:解:∵菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为20.故选A.点评:本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.8.(3分)(2012•大连)如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1B.2C.3D.4考点:二次函数综合题.专题:动点型.分析:抛物线在平移过程中形状没有发生变化,因此函数解析式的二次项系数在平移前后不会改变.首先,当点B横坐标取最小值时,函数的顶点在C点,根据待定系数法可确定抛物线的解析式;而点A横坐标取最大值时,抛物线的顶点应移动到E点,结合前面求出的二次项系数以及E 点坐标可确定此时抛物线的解析式,进一步能求出此时点A的坐标,即点A的横坐标最大值.解答:解:由图知:当点B的横坐标为1时,抛物线顶点取(﹣1,4),设该抛物线的解析式为:y=a (x+1)2+4,代入点B坐标,得:0=a(1+1)2+4,a=﹣1,即:B点横坐标取最小值时,抛物线的解析式为:y=﹣1(x+1)2+4.当A点横坐标取最大值时,抛物线顶点应取(3,1),则此时抛物线的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4)∴A(2,0)、B(4,0).故选B.点评:考查了二次函数综合题,解答该题的关键在于读透题意,要注意的是抛物线在平移过程中形状并没有发生变化,改变的是顶点坐标.注意抛物线顶点所处的C、E两个关键位置,前者能确定函数解析式、后者能得到要求的结果.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)(2012•大连)化简:=1.考点:分式的加减法.分析:根据同分母的分式的加法法则求解即可求得答案,注意运算结果要化为最简.解答:解:===1.故答案为:1.点评:此题考查了同分母分式的加减运算法则.此题比较简单,注意运算结果要化为最简.10.(3分)若二次根式有意义,则x的取值范围是x≥2.考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.解答:解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为x≥2.点评:本题考查二次根式的意义,只需使被开方数大于或等于0即可.11.(3分)(2007•南通)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=6 cm.考点:三角形中位线定理.分析:由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.解答:解:∵△ABC中,D、E分别是AB、AC边上的中点,∴DE是三角形的中位线,∵DE=3cm,∴BC=2DE=6cm.故答案为6.点评:本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.12.(3分)(2012•大连)如图,△ABC是⊙O的内接三角形,若∠BCA=60°,则∠ABO=30°.考点:圆周角定理.分析:由∠BCA=60°,根据圆周角定理即可求得∠AOB的度数,又由等边对等角与三角形内角和定理,即可求得∠ABO的度数.解答:解:∵∠BCA=60°,∴∠AOB=2∠BCA=120°,∵OA=OB,∴∠ABO==30°.故答案为:30.点评:此题考查了圆周角定理、等腰三角形的性质以及内角和定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.13.(3分)(2012•大连)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为0.5(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50考点:利用频率估计概率.专题:图表型.分析:计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解答:解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.点评:此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.14.(3分)(2012•大连)如果关于x的方程x2+kx+9=0有两个相等的实数根,那么k的值为±6.考点:根的判别式.分析:若一元二次方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值.解答:解:∵方程有两相等的实数根,∴△=b2﹣4ac=k2﹣36=0,解得k=±6.故答案为±6.点评:本题考查了一元二次方程根的判别式的应用,不是很难,解题的关键是根据根的情况列出有关k 的方程.15.(3分)(2012•大连)如图,为了测量电线杆AB的高度,小明将测量仪放在与电线杆的水平距离为9cm的D处.若测角仪CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为8.1m.(精确到0.1m).(参考数据sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).考点:解直角三角形的应用-仰角俯角问题.分析:根据CE和tan36°可以求得AE的长度,根据AB=AE+EB即可求得AB的长度,即可解题.解答:解:如图,在Rt△ACE中,∴AE=CE•tan36°=BD•tan36°=9×tan36°≈6.57米,∴AB=AE+EB=AE+CD=6.57+1.5≈8.1(米).故答案为:8.1.点评:本题考查了三角函数在直角三角形中的运用,本题中正确计算AE的值是解题的关键.16.(3分)(2012•大连)如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A′处,则A′C=8cm.考点:翻折变换(折叠问题).分析:由题意易证得△A′BC≌△DCE(AAS),BC=AD,A′B=AB=CD=15cm,然后设A′C=xcm,在Rt△A′BC中,由勾股定理可得BC2=A′B2+A′C2,即可得方程,解方程即可求得答案.解答:解:∵四边形ABCD是矩形,∴AB=CD=15cm,∠A=∠D=90°,AD∥BC,AD=BC,∴∠DEC=∠A′CB,由折叠的性质,得:A′B=AB=15cm,∠BA′E=∠A=90°,∴A′B=CD,∠BA′C=∠D=90°,在△A′BC和△DCE中,,∴△A′BC≌△DCE(AAS),∴A′C=DE,设A′C=xcm,则BC=AD=DE+AE=x+9(cm),在Rt△A′BC中,BC2=A′B2+A′C2,即(x+9)2=x2+152,解得:x=8,∴A′C=8cm.故答案为:8.点评:此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2012•大连)计算:+()﹣1﹣(+1)(﹣1)考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用负指数公式化简,第三项利用平方差公式化简,合并后即可得到结果.解答:解:+()﹣1﹣(+1)(﹣1)=2+4﹣(5﹣1)=2+4﹣4=2.点评:此题考查了二次根式的混合运算,涉及的知识有:二次根式的化简,负指数公式,以及平方差公式的运用,熟练掌握公式是解本题的关键.18.(9分)(2012•大连)解方程:.考点:解分式方程.分析:观察可得最简公分母是3(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘3(x+1),得6x=3(x+1)﹣x,解得x=.检验:把x=代入3(x+1)=≠0,即x=是原分式方程的解.则原方程的解为:x=.点评:此题考查了分式方程的求解方法.注意转化思想的应用,注意解分式方程一定要验根.19.(9分)(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.解答:证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD﹣ED=BC﹣BF,即AE=CF,在△AEO和△CFO中,,∴△AEO≌△CFO,∴OA=OC.点评:此题考查了平行四边形的性质,根据平行四边形的性质得出ED=BF及∠AEO=∠CFO,∠FCO=∠EAO是解答本题的关键.20.(12分)(2012•大连)某车间有120名工人,为了了解这些工人日加工零件数的情况,随机抽出其中的30名工人进行调查.整理调查结果,绘制出不完整的条形统计图(如图).根据图中的信息,解答下列问题:(1)在被调查的工人中,日加工9个零件的人数为4名;(2)在被调查的工人中,日加工12个零件的人数为8名,日加工14个零件的人数最多,日加工15个零件的人数占被调查人数的20%;(3)依据本次调查结果,估计该车间日人均加工零件数和日加工零件的总数.考点:条形统计图;用样本估计总体.分析:(1)直接观察条形统计图即可求得日加工9个零件的人数;(2)用总人数减去其他小组的人数即可求得日加工零件12个的人数;观察发现日加工零件最多的是加工14个零件的人数;(3)用加权平均数计算加工零件的平均数即可;解答:解:(1)观察条形统计图即可求得日加工9个零件的工人有4人;(2)日加工零件12个的有:30﹣4﹣12﹣6=8人;日加工零件14个的有12人,最多,日加工15个零件的人数占被调查人数的百分比为:6÷30×100%=20%;(3)日加工零件的平均数为:(9×4+12×8+14×12+15×6)÷30=13个,加工零件总个数为120×13=1560个.点评:本题考查了条形统计图及用样本估计总体的知识,解题的关键是从条形统计图中得到进一步解题的相关信息.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2012•大连)如图,一次函数y=kx+b的图象与反比例函数y=的图象都经过点A(﹣2,6)和点(4,n).(1)求这两个函数的解析式;(2)直接写出不等式kx+b≤的解集.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.专题:计算题.分析:(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标,分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;(2)根据一次函数与反比例函数的图象即可得出答案.解答:解:(1)∵把A(﹣2,6)代入y=得:m=﹣12,∴y=﹣,∵把(4,n)代入y=﹣得:n=﹣3,∴B(4,﹣3),把A、B的坐标代入y=kx+b得:,解得:k=﹣,b=3,即y=﹣x+3,答:反比例函数的解析式是y=﹣,一次函数的解析式是y=﹣x+3.(2)不等式kx+b≤的解集是﹣2≤x<0或x≥4.点评:本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.22.(9分)(2012•大连)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.(1)在跑步的全过程中,甲共跑了900米,甲的速度为 1.5米/秒;(2)乙跑步的速度是多少?乙在途中等候甲用了多长时间?(3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?考点:一次函数的应用.分析:(1)终点E的纵坐标就是路程,横坐标就是时间;(2)首先求得C点对用的横坐标,即a的值,则CD段的路程可以求得,时间是560﹣500=60秒,则乙跑步的速度即可求得;B点时,所用的时间可以求得,然后求得路程是150米时,甲用的时间,就是乙出发的时刻,两者的差就是所求;(3)首先求得甲运动的函数以及AB段的函数,求出两个函数的交点坐标即可.解答:解:(1)根据图象可以得到:甲共跑了900米,用了600秒,则速度是:900÷600=1.5米/秒;(2)甲跑500秒时的路程是:500×1.5=750米,则CD段的长是900﹣750=150米,时间是:560﹣500=60秒,则速度是:150÷60=2.5米/秒;甲跑150米用的时间是:150÷1.5=100秒,则甲比乙早出发100秒.乙跑750米用的时间是:750÷2.5=300秒,则乙在途中等候甲用的时间是:500﹣300﹣100=100秒.(3)甲每秒跑1.5米,则甲的路程与时间的函数关系式是:y=1.5x,乙晚跑100秒,且每秒跑2.5米,则AB段的函数解析式是:y=2.5(x﹣100),根据题意得:1.5x=2.5(x﹣100),解得:x=250秒.乙的路程是:2.5×(250﹣100)=375(米).答:甲出发250秒和乙第一次相遇,此时乙跑了375米.点评:本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息是关键.23.(10分)(2012•大连)如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.考点:切线的判定;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)连接OD,根据∠CAB的平分线交⊙O于点D,则=,依据垂径定理可以得到:OD⊥BC,然后根据直径的定义,可以得到OD∥AE,从而证得:DE⊥OD,则DE是圆的切线;(2)首先证明△ABD∽△ADE,依据相似三角形的对应边的比相等,即可求得DE的长,然后利用切割线定理即可求得CE的长,和AC的长,再根据△ACF∽△AED,对应边的比相等即可求解.解答:解:(1)ED与⊙O的位置关系是相切.理由如下:连接OD,∵∠CAB的平分线交⊙O于点D,∴=,∴OD⊥BC,∵AB是⊙O的直径,∴∠ACB=90°,即BC⊥AC,∵DE⊥AC,∴DE∥BC,∴OD⊥DE,∴ED与⊙O的位置关系是相切;(2)连接BD.∵AB是直径,∴∠ADB=90°,在直角△ABD中,BD===,∴在直角△ABD和直角△ADE中,∠E=∠ADB=90°,∠EAD=∠DAB∴△ABD∽△ADE,∴=,即=,∴DE=,在直角△ADE中,AE===,∵DE是圆的切线,∴DE2=CE•AE,∴CE==,∴AC=AE﹣CE=﹣=.∵BC∥DE∴△ACF∽△AED,∴,∴AF===.点评:本题考查了切线的判定定理,相似三角形的判定与性质,以及切割线定理,把求AF的长的问题转化成求相似三角形的问题是关键.五、解答题(本题共3小题,其中23题11分,25、26题各12分,共35分)24.(11分)(2012•大连)如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动.当点Q到达点B时,点P、Q同时停止运动.过点P作AC 的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ′R.设点Q的运动时间为t(s),△PQ′R与△PAR重叠部分的面积为S(cm2).(1)t为何值时,点Q′恰好落在AB上?(2)求S与t的函数关系式,并写出t的取值范围;(3)S能否为cm2?若能,求出此时的t值;若不能,说明理由.考点:相似形综合题;根的判别式;勾股定理;轴对称的性质;相似三角形的判定与性质.专题:代数几何综合题;动点型.分析:(1)如图所示,连接QQ′,由题意得到三角形PQC为等腰直角三角形,可得出∠CPQ=45°,再由l与AC垂直,得到∠RPQ也为45°,进而由对称性得出PQ′=PQ,∠QPQ′=90°,QQ′=2t,且QQ′∥CA,由平行得到一对同位角相等,再由公共角相等,利用两对对应角相等的两三角形相似得到△BQQ′∽△BCA,由相似得比例,将各自的值代入列出关于t的方程,求出方程的解即可得到此时t的值;(2)由(1)求出t的值,分两种情况考虑:当0<t≤2.4时,过Q′作Q′D⊥l于D点,则Q′D=t,由RP与BC平行,利用两直线平行得到两对同位角相等,利用两对对应角相等的两三角形相似得到△RPA∽△BCA,由相似得比例表示出RP,利用三角形的面积公式表示出S关于t的关系式即可;当2.4<t≤6时,记PQ′与AB的交点为E,过E作ED⊥l于D,由对称性得到由对称可得:∠DPE=∠DEP=45°,可得出三角形DEP为等腰直角三角形,得到DE=DP,由△RDE∽△BCA,利用相似得比例,表示出DR,再由△RPA∽△BCA,由相似得比例,表示出RP,由RP=RD+DP=RD+DE,将表示出的DR及RP代入,表示出DE,利用三角形的面积公式即可表示出S与t的关系式;(3)S能为cm2,具体求法为:当0<t≤2.4时,令S=,得出关于t的一元二次方程,求出方程的解得到t的值;当2.4<t≤6时,令S=,得出关于t的一元二次方程,求出方程的解得到t的值,经检验得到满足题意t的值.解答:解:(1)连接QQ′,∵PC=QC,∠C=90°,∴∠CPQ=45°,又l⊥AC,∴∠RPQ=∠RPC﹣∠CPQ=90°﹣45°=45°,由对称可得PQ′=PQ,∠QPQ′=90°,QQ′=2t,且QQ′∥CA,∴∠BQQ′=∠BCA,又∠B=∠B,∴△BQQ′∽△BCA,∴==,即=,解得:t=2.4;(2)当0<t≤2.4时,过Q′作Q′D⊥l于D点,则Q′D=t,又∵RP∥BC,∴△RPA∽△BCA,∴=,即=,∴RP=(8﹣t)•=,∴S=RP•Q′D=••t=﹣t2+3t;当2.4<t≤6时,记PQ′与AB的交点为E,过E作ED⊥l于D,由对称可得:∠DPE=∠DEP=45°,又∵∠PDE=90°,∴△DEP为等腰直角三角形,∴DP=DE,∵△RDE∽△BCA,∴===,即DR=DE,∵△RPA∽△BCA,∴=,即=,∴RP=,∴RP=RD+DP=DR+DE=DE+DE=,即DE=,∴DE=,∴S=RP•DE=••=t2﹣t+;(3)S能为cm2,理由为:若t2﹣t+=(2.4<t≤6),整理得:t2﹣16t+57=0,解得:t==8±,∴t1=8+(舍去),t2=8﹣;若﹣t2+3t=(0<t≤2.4),整理得:t2﹣8t+3=0,解得:t==4±,∴t1=4+(舍去),t2=4﹣,综上,当S为cm2时,t的值为(8﹣)或(4﹣)秒.点评:考查了相似形综合题,此题涉及的知识有:相似三角形的判定与性质,一元二次方程的解法,轴对称的性质,勾股定理,以及根的判别式,是一道较难的相似形综合题.25.(12分)(2012•大连)如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F 在DC上,且∠BEF=∠A.(1)∠BEF=180°﹣2α(用含α的代数式表示);(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求的值(用含m,n的代数式表示)考点:相似三角形的判定与性质;梯形.分析:(1)由梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,根据平行线的性质,易求得∠A的度数,又由∠BEF=∠A,即可求得∠BEF的度数;(2)首先连接BD交EF于点O,连接BF,由AB=AD,易证得△EOB∽△DOF,根据相似三角形的对应边成比例,可得,继而可证得△EOD∽△BOF,又由相似三角形的对应角相等,易得∠EBF=∠EFB=α,即可得EB=EF;(3)首先延长AB至G,使AG=AE,连接BE,GE,易证得△DEF∽△GBE,然后由相似三角形的对应边成比例,即可求得的值.解答:(1)解:∵梯形ABCD中,AD∥BC,∴∠A+∠ABC=180°,∴∠A=180°﹣∠ABC=180°﹣2α,又∵∠BEF=∠A,∴∠BEF=∠A=180°﹣2α;故答案为:180°﹣2α;(2)EB=EF.证明:连接BD交EF于点O,连接BF.∵AD∥BC,∴∠A=180°﹣∠ABC=180°﹣2α,∠ADC=180°﹣∠C=180°﹣α.∵AB=AD,∴∠ADB=(180°﹣∠A)=α,∴∠BDC=∠ADC﹣∠ADB=180°﹣2α,由(1)得:∠BEF=180°﹣2α=∠BDC,又∵∠EOB=∠DOF,∴△EOB∽△DOF,∴,即,∵∠EOD=∠BOF,∴△EOD∽△BOF,∴∠EFB=∠EDO=α,∴∠EBF=180°﹣∠BEF﹣∠EFB=α=∠EFB,∴EB=EF;(3)解:延长AB至G,使AG=AE,连接GE,则∠G=∠AEG===α,∵AD∥BC,∴∠EDF=∠C=α,∠GBC=∠A,∠DEB=∠EBC,∴∠EDF=∠G,∵∠BEF=∠A,∴∠BEF=∠GBC,∴∠GBC+∠EBC=∠DEB+∠BEF,即∠EBG=∠FED,∴△DEF∽△GBE,∴,∵AB=mDE,AD=nDE,∴AG=AE=(n+1)DE,∴BG=AG﹣AB=(n+1)DE﹣mDE=(n+1﹣m)DE,∴==n+1﹣m.点评:此题考查了相似三角形的判定与性质、梯形的性质以及等腰三角形的判定与性质.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.26.(12分)(2012•大连)如图,抛物线y=ax2+bx+c经过A(﹣,0)、B(3,0)、C(0,3)三点,线段BC与抛物线的对称轴相交于D.该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E.(1)求该抛物线的解析式;(2)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,说明理由;(3)将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果).考点:二次函数综合题.专题:计算题;压轴题;数形结合.分析:(1)已知抛物线经过的三点坐标,直接利用待定系数法求解即可.(2)由于点Q的位置可能有四处,所以利用几何法求解较为复杂,所以可考虑直接用SSS判定两三角形全等的方法来求解.那么,首先要证明CD=DP,设出点Q的坐标后,表示出QC、QD 的长,然后由另两组对应边相等列方程来确定点Q的坐标.(3)根据B、D的坐标,容易判断出△CDE是等边三角形,然后通过证△CEM、△DEN全等来得出CM=DN,首先设出点M的坐标,表示出PM、CM的长,由PM=2DN=2CM列方程确定点M的坐标,进一步得到CM的长后,即可得出DN的长,由此求得点N的坐标.解答:解:(1)设抛物线的解析式为:y=a(x+)(x﹣3),代入点C(0,3)后,得:a(0+)(0﹣3)=3,解得a=﹣∴抛物线的解析式:y=﹣(x+)(x﹣3)=﹣x2+x+3.(2)设直线BC的解析式:y=kx+b,依题意,有:,解得∴直线BC:y=﹣x+3.由抛物线的解析式知:P(,4),将点P代入直线BC中,得:D(,2).设点Q(x,y),则有:QC2=(x﹣0)2+(y﹣3)2=x2+y2﹣6y+9、QD2=(x﹣)2+(y﹣2)2=x2+y2﹣2x﹣4y+7;而:PA2=(﹣﹣)2+(0﹣4)2=28、AD2=(﹣﹣)2+(0﹣2)2=16、CD=PD=2;△QCD和△APD中,CD=PD,若两个三角形全等,则:①QC=AP、QD=AD时,②QC=AD、QD=AP时,解①、②的方程组,得:、、、;∴点Q的坐标为(3,4)、(,﹣2)、(﹣2,1)或(0,7).(3)根据题意作图如右图;由D(,2)、B(3,0)知:DF=2,BF=2;∴∠BDF=∠ADF=∠CDE=∠DCE=60°,即△CED是等边三角形;又∵∠CEC′=∠DED′,且CE=DE∴△CEM≌△DEN,则CM=DN,PM=2CM=2DN;设点M(x,﹣x+3),则有:PM2=(﹣x)2+(4+x﹣3)2=x2﹣x+4、CM2=x2+x2=x2;已知:PM2=4CM2,则有:x2﹣x+4=4×x2,解得x=(负值舍去);∴CM=DN=×x=×=;则:FN=DF﹣DN=2﹣=,∴点N(,).点评:该题的难度较大,涉及到:函数解析式的确定、等边三角形的判定和性质、图形的旋转以及全等三角形的应用等重点知识.在解题时,一定要注意从图中找出合适的解题思路;能否将琐碎的知识运用到同一题目中进行解答,也是对基础知识掌握情况的重点考查.。

2012年大连中山区一模数学试卷

2012年大连中山区一模数学试卷

2012年中山区一模数学试卷一、选择题(本题共8小题,每小题3分,共24分) 1、2-的相反数是( )A.21B.21-C.2D.2-2、在下列几何体中,主视图、左视图和俯视图相同的可能是()3、不等式组⎩⎨⎧≤->-024112x x 的解集在数轴上表示为( )4、点)2,1(-P 关于x 轴对称的点的坐标是( )A.)2,1(- B.)2,1( C.)2,1(- C.)2,1(--5、如图1,⊙O 是ABC △的外接圆,︒=∠100BOC ,则A ∠的度数为( ) A.︒100 B.︒80 C.︒60 D.︒506、为了了解某初中学校学生完成课后作业花费时间的情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是( )A.随机抽取该校一个班级的学生 B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校随机抽取初一、初二、初三年级中各随机抽取%10的学生 7、函数x y 4-=图像所经过的象限是( )A.第一、三象限 B.第二、四象限 C.第一、二象限 D. 第三、四象限8、已知1x 、2x 是方程0132=++x x 的两实根,则13221+-x x 的值是( )A.0 B.1 C.9- D.9 二、填空题(本题共8小题,每小题3分,共24分)9、如果二次根式32-x 有意义,那么x 应该满足的条件是 .10、在ABC △中,︒=∠90C ,c b a 、、分别是C B A ∠∠∠、、的对边,若a c 3=,则=a sin * . 11、分解因式:=-1822x .12、如图2,ABC △中,AD 平分BAC ∠且与BC 相交于点D ,B ∠=︒40,BAD ∠=︒30,则C ∠的度数是 .13、在比例尺1:10 000 000的地图上,量得甲乙两个城市之间的距离是cm 8,那么甲乙两个城市之间的实际距离应为 .14、某次跳绳比赛中,统计甲乙两组学生每分钟跳绳的成绩(单位:次)如右表:那么这两班跳绳比赛成绩比较稳定的是 . 15、某种品牌的手机经过四、五月份连续两次降价,每部由3200元降价到2500元,设平均每月降价的百分率为x ,根据题意列出方程是 .16、已知抛物线c bx ax y ++=2的开口向下,对称轴为直线1=x ,若点),1(y -与),2(y B 是此抛物线上的两点,则班级 参加人数 平均次数 中位数 方差 甲班 45 135 149 180 乙班 45 135 151 130三、解答题(本题共4小题,其中17、18题各10分,19题9分,20题10分,共39分) 17、计算:(1) 222)31()6()3(27-÷-+-⨯+- (2)12131622-⎪⎭⎫⎝⎛--18、九年级的学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.19、已知:如图,点F E 、在BC 上,CF BE DC AB ==,,C B ∠=∠.求证:D A ∠=∠20、在一个布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏:甲先从袋中摸出一个球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能结果:(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏能获胜的概率.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21、如图,热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,A 处与高楼的水平距离为m 40,这栋高楼有多高?(结果保留小数点后一位,参考数据:2≈1.414,3≈1.732)22、如图,AB 为⊙O 的直径,︒=∠45ABT ,4==AT AB . (1)求证:AT 是⊙O 的切线;(2)若P 为OA 的中点,过点P 作MN AB ⊥,交⊙O 与点C M 、,交BT 于点N ,求MN 的长.23、如图1,一长方体水槽内固定一个小长方体物体,该物体的底面积是水槽底面积的41,现以速度v (单位:s cm /3)均匀地沿水槽内壁向容器注水,直至注满水槽为止,如图2所示.(1)在注水过程中,水槽中水面恰与长方体齐平用了 s ,水槽的高度为 cm ; (2)若小长方体的底面积为a )(2cm ,求注水的速度v .(用含a 的式子表示);(3)若水槽内固定的长方体为一无盖的容器(小长方体的尺寸不变,质量,体积忽略不计),开口向上,请在图3画出水槽中水面上升的高度h (cm )与注水时间)(s t 之间的函数关系图像.图1 图2 图3五、解答题(本题共3小题,其中24、25题个12分,26题11分,共35分)24、在BC△中,︒AACB,以AC为一边向外作正方形ACDE(如图1),线段BA绕点A顺时针旋转90°,得=∠90线段AP,连接CEPE、.(1)○1请补全图形;○2当BACtan=2时,探究线段CE∠PE与的关系,并加以证明;(2)当BACPE:的值.(用含有n的式子表示)tan=n时(如图2),请直接写出CE∠图1 图225、如图,在平面直角坐标系中,AOCRt△的直角边OC在y轴正半轴,且顶点O与坐标原点重合,点A的坐标为(2,4),直线b=过点A,与x轴交点B.-y+x(1)点B的坐标为 .(2)动点P从点O出发,以每秒1个单位长的速度,沿A-的路线向点A运动,同时动点M从点B出发,以相O-C同的速度沿BO的方向向O运动,过点M作xMQ⊥轴,交线段BA或线段AO于点Q,当点P到达A点时,点P和点M都停止运动.在运动过程中,设动点P运动的时间为t秒.○1设APQ△的面积为S,求S关于t的函数关系式;○2是否存在以Q、为顶点的三角形的面积与S相等?若存在,求t的值,若不存在,请说明理由.M、P备用图1 备用图226、如图,已知抛物线c bx x y ++=2与x 轴分别交于点)0,1(-A 、B ,与y 轴分别交于点)3,0(-C ,其顶点为D ,连结BC .(1)求抛物线的解析式;(2)连结BD AC 、,求证CBD ACO ∠=∠.(3)若点P 是抛物线上的动点,点M ),1(m ,是否存在数m ,使得以C B M P 、、、为顶点的四边形是平行四边形?若存在,直接写出m 的值及P 点坐标;若不存在,请说明理由.备用图。

2012大连市数学中考一模试题及答案

2012大连市数学中考一模试题及答案

2012年大连市数学中考模拟一一、选择题(本题共8小题,每小题3分,共24分。

在每小题给出的四个选项中。

只有一个选项正确) 1、23-的绝对值是 ( )A .32-B .23- C .23 D .322、图1是由四个完全相同的正方体组成的几何体,这个几何体的俯视图是 ( )3、下列计算结果正确的是 ( )A .224222+=B .33222÷=C =D =4、袋中有3个红球和4个白球,这些球除颜色不同外其余均相同,在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是 ( ) A .17B .37C .47D .345、在平面直角坐标系中,将点P (-2,3)向下平移4个单位得到点P ′,则点P ′所在象限为 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6、我市某一周的最大风力情况如下表所示:则这周最大风力的众数与中位数分别是( )A .7 ,5B .5 ,5C .5 ,1.75D .5 ,47、矩形和菱形都具有的特征是 ( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .对角线平分一组对角8、如图2,一条抛物线与x 轴相交于A 、B 两点(点A 在点B 的左侧),其顶点P 在线段MN 上移动.若点M 、 N 的坐标分别为(-1,-2)、(1,-2),点B 的横坐标的最大值为3,则点A 的横坐标的最小值为( ) A .-3 B .-1 C . 1 D . 3 二、填空题(本题共8小题,每小题3分,共24分) 9、sin30°= .10、因式分解:24a -= . 11、当x=11时,221x x -+= .12、从小刚等7名合唱队员中任选1名作为领奖者,则小刚被选中的概率是 . 13、如图3,AB ∥CD ,CE 与AB 交于点A ,BE ⊥CE ,垂足为E .若∠C=37°,则∠B= °.14、如果关于x 的方程230x x k -+=(k 为常数)有两个不相等的实数根,那么k 应满足的条件为 . 15.如图4,在平面直角坐标系中,线段OA 与线段OA ′关于直线:l y x =对称.已知点A 的坐标为(2,1),则点A′的坐标为 .16、如图5,为了测量某建筑物CD 的高度,测量人员先在地面上用测角仪AE 自A 处测得建筑物顶部C 的仰角是30°,然后在水平地面上向建筑物前进42米,此时自B 处测得建筑物顶部C 的仰角是60°.已知测角仪的高度始终是1.5米,则该建筑物CD 的高度约为米(结果保留到1米,参考数据:2 1.43 1.7≈,)三、解答题(本题共4小题。

2012年大连一模数学理科(答案)

2012年大连一模数学理科(答案)

2012年大连-沈阳联合模拟考试理科数学试题参考答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题1.B ; 2.D ;3.C ;4.A ;5.D ;6.C ;7.D ;8.C ;9.A ;10.B ;11.B ; 12.D . 二、填空题13. 1±;14.13,(1)23.(2)n n n -=⎧⎨∙≥⎩;15.29π ;16.(0,)e .三、解答题17.解:(I )法一:333555p n n =⇒=⇒=,所以5个球中有2个白球 白球的个数ξ可取0,1,2. ························································································· 1分3211233232333555133(0),(1),(2)10510C C C C C p p p C C C ξξξ=========.························ 4分 1336012105105E ξ=⨯+⨯+⨯=. ·················································································· 6分 法二:白球个数ξ服从参数为5,2,3N M n ===的超几何分布,则236()55nM E N ξ⨯=== ……………………6分 (II )由题设知,22248(1)27C p p ->, ··········································································· 8分因为(1)0p p ->所以不等式可化为2(1)9p p ->,解不等式得,1233p <<,即264p <<. ································································ 10分又因为6p N ∈,所以63p =,即12p =, 所以12p =,所以312n =,所以6n =. ···································································· 12分 18.解:(Ⅰ)由题设及正弦定理知,2b a c =+,即2a cb +=.由余弦定理知,2222222cos 22a c a c a c b B ac ac+⎛⎫+- ⎪+-⎝⎭==········································ 2分 223()23(2)21882a c ac ac ac ac ac +--=≥=. ··································································· 4分因为cos y x =在(0,)π上单调递减,所以B 的最大值为03B π=. ····························· 6分 (Ⅱ)解:设cos cos A C x -=, ······················· ① ············································································································································· 8分由(Ⅰ)及题设知sin sin A C += ···················· ② 由①2+②2得,222cos()2A C x -+=+. ····································································· 10分又因为4A CB πππ+=-=-,所以x =cos cos A C -= ···································································· 12分 19.解法一:(Ⅰ)证明:∵点O 、E 分别是11C A 、1AA 的中点, ∴1//AC OE ,又∵⊄EO 平面11C AB ,⊂1AC 平面11C AB ,∴//OE 平面11C AB . ········································································································· 4分 (Ⅱ)∵⊥AO 平面111C B A ,∴11C B AO ⊥,又∵1111C B C A ⊥,且O AO C A = 11,∴⊥11C B 平面11AC CA ,∴111C B C A ⊥. ······································································ 6分 又∵AC AA =1, ∴四边形11AC CA 为菱形,∴11AC C A ⊥,且1111B C AC C = ∴⊥C A 1平面11C AB ,∴C A AB 11⊥,即异面直线1AB 与C A 1所成的角为90. ········································ 8分 (Ⅲ) 设点1C 到平面11B AA 的距离为d ,∵111111B AA C C B A A V V --=, 即⋅=⋅⋅⋅⋅3121311111AO C B C A S △11B AA d ⋅. ······························································ 10分又∵在△11B AA 中,22111==AB B A ,∴S △11BAA 7=.∴7212=d ,∴11C A 与平面11B AA 所成角的正弦值21. ····································· 12分 解法二:如图建系xyz O -,A ,11(0,1,0),(0,,)22A E --,1(0,1,0)C ,1(2,1,0)B , (0,3)C . ·················································································································· 2分 (Ⅰ)∵=OE )23,21,0(-,)3,1,0(1-=AC ,∴112OE AC =- ,即1//AC OE ,又∵⊄EO 平面11C AB ,⊂1AC 平面11C AB ,∴//OE 平面11C AB . ·························· 6分 (Ⅱ)∵)3,1,2(1-=AB ,)3,3,0(1=C A ,∴⋅1AB 01=C A ,即∴C A AB 11⊥, ∴异面直线1AB 与C A 1所成的角为90. ········································································ 8分 (Ⅲ)设11C A 与平面11B AA 所成角为θ,∵)0,2,0(11=C A ,111(2,2,0),(0,1A B A A ==设平面11B AA 的一个法向量是(,,)x y z =nA 1则1110,0,A B A A ⎧∙=⎪⎨∙=⎪⎩n n即220,0.x y y +=⎧⎪⎨+=⎪⎩不妨令1x =,可得(1,1,)3=-n , ··········································································· 10分∴11sin cos ,AC θ=<>==n∴11C A 与平面11B AA 所成角的正弦值721.····························································· 12分 20.解:(Ⅰ)∵点M 到抛物线准线的距离为=+24p 417, ∴21=p ,即抛物线C 的方程为x y =2.·································································· 2分 (Ⅱ)法一:∵当AHB ∠的角平分线垂直x 轴时,点)2,4(H ,∴HE HF k k =-,设11(,)E x y ,22(,)F x y , ∴1212H H H H y y y y x x x x --=---,∴ 12222212H H H H y y y y y y y y --=---, ∴1224H y y y +=-=-. ·························································································· 5分212122212121114EF y y y y k x x y y y y --====---+. ·································································· 7分 法二:∵当AHB ∠的角平分线垂直x 轴时,点)2,4(H ,∴60=∠AHB ,可得3=H A k ,3-=H B k ,∴直线HA 的方程为2343+-=x y ,联立方程组⎩⎨⎧=+-=x y x y 22343,得023432=+--y y ,∵2E y +=∴363-=E y ,33413-=E x . ··········································································· 5分 同理可得363--=F y ,33413+=F x ,∴41-=EF k .··································· 7分(Ⅲ)法一:设),(),,(2211y x B y x A ,∵411-=x y k MA ,∴114y x k HA -=, 可得,直线HA 的方程为0154)4(111=-+--x y y x x , 同理,直线HB 的方程为0154)4(222=-+--x y y x x , ∴0154)4(101201=-+--x y y y x ,0154)4(202202=-+--x y y y x , ······································································· 9分 ∴直线AB 的方程为02200(4)4150y x y y y --+-=, 令0=x ,可得)1(154000≥-=y y y t , ∵t 关于0y 的函数在[1,)+∞单调递增,∴11min -=t . ·········································································································· 12分法二:设点2(,)(1)H m m m ≥,242716HM m m =-+,242715HA m m =-+.以H 为圆心,HA 为半径的圆方程为22242()()715x m y m m m -+-=-+, ·· ① ⊙M 方程:1)4(22=+-y x . ······················ ② ①-②得:直线AB 的方程为2242(24)(4)(2)714x m m y m m m m -----=-+. ················ 9分 当0x =时,直线AB 在y 轴上的截距154t m m=-(1)m ≥, ∵t 关于m 的函数在[1,)+∞单调递增,∴11min -=t ················································································································· 12分 21.解:(Ⅰ)xax x a x f 11)(-=-=',当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞单调递减,∴)(x f 在),0(+∞上没有极值点; 当0>a 时,()0f x '<得10x a <<,()0f x '>得1x a>, ∴)(x f 在(10,)a 上递减,在(1),a+∞上递增,即)(x f 在ax 1=处有极小值. ∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时,)(x f 在),0(+∞上有一个极值点. ······························································ 3分 (Ⅱ)∵函数)(x f 在1=x 处取得极值,∴1=a , ∴b xxx bx x f ≥-+⇔-≥ln 112)(,················································································ 5分 令xxx x g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增, ∴22min 11)()(e e g x g -==,即211b e ≤-. ···································································· 7分 (Ⅲ)证明:)1ln()1ln()1ln()1ln(+>+⇔++>-y e x e y x eyx yx , ··········································· 8分 令)1ln()(+=x e x g x,则只要证明)(x g 在),1(+∞-e 上单调递增,又∵)1(ln 11)1ln()(2+⎥⎦⎤⎢⎣⎡+-+='x x x e x g x ,显然函数11)1ln()(+-+=x x x h 在),1(+∞-e 上单调递增. ··································· 10分 ∴011)(>->ex h ,即0)(>'x g , ∴)(x g 在),1(+∞-e 上单调递增,即)1ln()1ln(+>+y e x e yx , ∴当1->>e y x 时,有)1ln()1ln(++>-y x eyx . ······························································ 12分22.解:(Ⅰ)连结AC ,因为OA OC =,所以OAC OCA ∠=∠, 2分 因为CD 为半圆的切线,所以OC CD ⊥,又因为AD CD ⊥,所以OC ∥AD ,所以OCA CAD ∠=∠,OAC CAD ∠=∠,所以AC 平分BAD ∠. ····················· 4分 (Ⅱ)由(Ⅰ)知BC CE =, ······················································································ 6分 连结CE ,因为ABCE 四点共圆,B CED ∠=∠,所以cos cos B CED =∠, ····· 8分所以DE CBCE AB=,所以2BC =. ·············································································· 10分 23.解:(Ⅰ)2cos ,2sin 2.x y αα=⎧⎨=+⎩ 且参数[]0,2απ∈,所以点P 的轨迹方程为22(2)4x y +-=. ···························································· 3分 (Ⅱ)因为)4sin(210πθρ-=,所以)104πθ-=,所以sin cos 10ρθρθ-=,所以直线l 的直角坐标方程为100x y -+=. ········· 6分法一:由(Ⅰ) 点P 的轨迹方程为22(2)4x y +-=,圆心为(0,2),半径为2.d ==,所以点P到直线l 距离的最大值2. ············ 10分 法二:)44d πα==++,当74πα=,max 2d =,即点P 到直线l 距离的最大值2. ··································· 10分 24.解:(Ⅰ)由26x a a -+≤得26x a a -≤-,∴626a x a a -≤-≤-,即33a x -≤≤,∴32a -=-,∴1a =. ····································································· 5分 (Ⅱ)由(Ⅰ)知()211f x x =-+,令()()()n f n f n ϕ=+-,则()124, 211212124, 22124, n 2n n n n n n n ϕ⎧-≤-⎪⎪⎪=-+++=-<≤⎨⎪⎪+>⎪⎩∴()n ϕ的最小值为4,故实数m 的取值范围是[)4,+∞. ··········································· 10分。

大连市2012年初中毕业升学第一次模拟考试

大连市2012年初中毕业升学第一次模拟考试

大连市2012年初中毕业升学第一次模拟考试一、选择题(本题共14小题,每小题2分,共28分)注意:第1~11题中,每题只有一个选项正确。

1.我们通过听声音就判断出是谁在说话,主要是依据声音的A.音调B.音色C. 响度D.频率2.关于物质的微观结构,下列说法正确的是A.原子是由原子核和电子组成的B.原子是由原子核和中子组成的C.原子核是由电子和质子组成的D.原子核是由电子和中子组成的3.下列自然现象中,可以用“分子不停地运动”解释的是A,花香四溢 B.浓雾弥漫 C.雪花纷飞 D.细雨绵绵4.下列光现象中,是由于光的反射形成的是A.路灯下人的“影子”B.用放大镜看到的“放大的字”C.湖边的树在湖水中的“倒影”D.插入水中的筷子看起来变“弯了”5.下列设各中,利用电磁感应原理工作的是A.发电机 B,电动机 C.电磁铁 D.电磁继电器6.竖直的铁制黑板上吸附着一个小磁块,小磁块静止。

则下列说法正确的是A.竖直方向,小磁块受重力和磁力的作用B.水平方向,小磁块受磁力和重力的作用C.水平方向,小磁块受磁力和静摩擦力的作用D.竖直方向,小磁块受重力和静摩擦力的作用7.要用电流表测量通过灯L2的电流,设计的电路如图所示,正确的是8.水平路面上的一辆车,其光滑表面足够长,甲球的质量小于乙球的质量,两个小球和小车都以速度v向右做匀速直线运动,如图1所示。

当小车突然静止时,两个小球继续向右运动,则A.甲、乙两球的速度都越来越小B.甲、乙两球的距离越来越大C.甲、乙两球的距离越来越小D.甲、乙两球的速度都不变9.在探究“小孔成像时像的高度与像距是否有关”实验中,所用的实验装置如图AB和小孔的位置固定,多次改变屏的位置,记录的像距和像的高度如下表。

可得出“像的高度与像距有关”,则从表中提取的信息是A.像的高度与像距成反比B.像的高度与像距成正比C.像距变化,像的高度变化D.每组数据,像距都是像的高度的2倍10.水平地面上有一根铁棒,在其一端施加力F的作用,以另一端O为支点将其缓慢竖起,力F的作用点不变,其方向始终与铁棒垂直,如图3所示。

2012年中考数学第一次模拟试卷以及参考答案

2012年中考数学第一次模拟试卷以及参考答案

新世纪教育网精选资料版权全部@新世纪教育网专题 17:二次函数 ( 二)一:【课前预习】(一):【知识梳理】1.二次函数与一元二次方程的关系:(1)一元二次方程 ax2+bx+c=0 就是二次函数 y=ax2+bx+c 当函数 y 的值为 0 时的状况.( 2)二次函数 y=ax2+bx+c 的图象与x 轴的交点有三种状况:有两个交点、有一个交点、没有交点;当二次函数2y=ax +bx+c 的图象与 x 轴有交点时,交点的横坐标就是当 y=0 时自变量 x 的值,即一元二次方程ax2+ bx+ c=0 的根.2.二次函数的应用:(1)二次函数常用来解决最优化问题,这种问题实质上就是求函数的最大(小)值;(2)二次函数的应用包含以下方面:分析和表示不一样背景下实质问题中变量之间的二次函数关系;运用二次函数的知识解决实质问题中的最大(小)值.3.解决实质问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;( 3)用函数表达式表示出它们之间的关系;(4)利用二次函数的相关性质进行求解;(5)查验结果的合理性,对问题加以拓展等.(二):【课前练习】1. 直线 y=3x — 3 与抛物线y=x2-x+1 的交点的个数是()A.0 B.1C.2D.不可以确立2.函数y ax2bx c 的图象如下图,那么对于x的方程ax2bx c0 的根的情况是()A .有两个不相等的实数根;B .有两个异号实数根C .有两个相等实数根;D.无实数根3.无论m为什么实数,抛物线y=x2-mx+ m-2()A.在x轴上方;B.与x轴只有一个交点C.与 x 轴有两个交点; D .在 x 轴下方4.已知二次函数 y =x 2-x—6·(1)求二次函数图象与坐标轴的交点坐标及极点坐标;(2)画出函数图象;( 3)察看图象,指出方程x2- x— 6=0 的解;( 4)求二次函数图象与坐标轴交点所组成的三角形的面积.二:【经典考题分析】与 x 轴、y轴分别交于点5. 如下图,直线 y=-2x+2A、 B,以线段 AB为直角边在第一象限内作等腰直角△oABC,∠ BAC=90,过 C 作 CD⊥x轴,垂足为 D( 1)求点 A、 B 的坐标和 AD的长BC ( 2)求过 B 、 A、 D三点的抛物线的分析式O A D新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。

2012年中考一模数学试题及答案(1)

2012年中考一模数学试题及答案(1)

2012年中考一模试题数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.sin30°的值为( ) A .21 B .23 C .33 D .222. △ABC 中,∠A =50°,∠B =60°,则∠C =( )A .50°B .60°C .70°D .80°3.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A .一处. B .两处 C .三处. D .四处. 4.点P (-2,1)关于x 轴对称的点的坐标是( )A .(-2,-1)B .(2,-1)C .(1,-2)D .(2,1)5. 若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为 ( )A .1B . 2C .3D .4 6.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明 掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A.118 B.112 C.19 D.167.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )A .B .C .D .2 138.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。

在此案中能肯定的作案对象是( )A .嫌疑犯AB .嫌疑犯BC .嫌疑犯CD .嫌疑犯A 和C二、填空题(每小题3分,共24分)9.据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为______千克.10.用一个半径为6㎝的半圆围成一个圆锥的侧面,则这个圆锥的侧面积为 ㎝2.(结果保留π)11.△ABC 中,AB =6,AC =4,∠A =45°,则△ABC 的面积为 .12.若一次函数的图象经过反比例函数4y x=-图象上的两点(1,m )和(n ,2),则这个一次函数的解析式是 .13. 某品牌的牛奶由于质量问题,在市场上受到严重冲击,该乳业公司为了挽回市场,加大了产品质量的管理力度,并采取了“买二赠一”的促销手段,一袋鲜奶售价1.4元,一箱牛奶18袋,如果要买一箱牛奶,应该付款 元.14.通过平移把点A(2,-3)移到点A ’(4,-2),按同样的平移方式,点B(3,1)移到点B′, 则点B′的坐标是 ________15.如图,在甲、乙两地之间修一条笔直的公路, 从甲地测得公路的走向是北偏东48°。

2012初中毕业招生考试中考数学一模试题及答案

2012初中毕业招生考试中考数学一模试题及答案

2012年中考数学一模试卷及试卷解析一、选择题(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内,每小题3分,共24分)1.数轴上点A到原点的距离为2.5,则点A所表示的数是()A.2.5 B.﹣2.5 C.2.5或﹣2.5 D.02.(2009•大连)下列各式运算正确的是()A.x3+x2=x5B.x3﹣x2=x C.x3•x2=x6D.x3÷x2=x3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2010•枣庄)如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.5.(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°6.(2009•云南)反比例函数y=﹣的图象位于()A.第一、三象限B.第二、四象限C.第一、四象限D.第二、三象限7.(2006•双柏县)一个扇形的圆心角是120°,它的面积为3πcm2,那么这个扇形的半径是()A.cm B.3cm C.6cm D.9cm8.已知:直线(n为正整数)与两坐标轴围成的三角形面积为S n,则S1+S2+S3+…+S2011=()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分,请把答案填在题中横线上)9.(2009•铁岭)因式分解:a3﹣4a= _________ .10.全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是_________ .11.(2010•常德)函数中,自变量x的取值范围是_________ .12.不等式组:的解集是_________ .13.小明左边口袋中放有三张卡片,上面分别写着1、2、3,他右边口袋中也放有三张卡片,上面分别写着4、5、6,他任意地从两个口袋中各取出一张卡片,则所得两张卡片上写的数之和为偶数的概率是_________ .14.(2009•滨州)数据:1,5,6,5,6,5,6,6的众数是_________ ,中位数是_________ ,方差是_________ .15.如图,AB与CD相交于点O,AD∥BC,AD:BC=1:3,AB=10,则AO的长是_________ .16.如图,AB为⊙O的直径,CD为⊙O的弦,∠BCD=34°,则∠ABD=_________ .三、解答题:(本大题共9个题,满分102分,解答时应写出文字说明或演算步骤)17.计算:(1)+(﹣1)2011+(π﹣2)0;(2)请你先化简,再从﹣2,2,中选择一个合适的数代入求值.18.在一堂数学课中,数学老师给出了如下问题“已知:如图1,在四边形ABCD中,AB=AD,∠B=∠D.求证:CB=CD”.文文和彬彬都想到了利用辅助线把四边形的问题转化为三角形来解决.(1)文文同学证明过程如下:连接AC(如图2)∵∠B=∠D,AB=AD,AC=AC∴△ABC≌△ADC,∴CB=CD你认为文文的证法是_________ 的.(在横线上填写“正确”或“错误”)(2)彬彬同学的辅助线作法是“连接BD”(如图3),请完成彬彬同学的证明过程.19.日本在地震后,核电站出现严重的核泄漏事故,为了防止民众受到更多的核辐射,我国某医疗公司主动承担了为日本福田地区生产2万套防辐射衣服的任务,计划10天完成,在生产2天后,日本的核辐射危机加重了,所以需公司提前完成任务,于是公司从其他部门抽调了50名工人参加生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产防辐射衣服?20.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你根据图表中的信息回答下列问题:(1)求选择长跑训练的人数占全班人数的百分比及该班学生的总人数;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.请求出参加训练之前的人均进球数.21.如图,梯形ABCD中,AD∥BC,BC=2AD,F、G分别为边BC、CD的中点,连接AF,FG,过D作DE∥GF交AF于点E.(1)证明△AED≌△CGF;(2)若梯形ABCD为直角梯形,判断四边形DEFG是什么特殊四边形?并证明你的结论.22.2011年3月10日,云南盈江县发生里氏5.8级地震.萧山金利浦地震救援队接到上级命令后立即赶赴震区进行救援.救援队利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:)23.如图,面积为8的矩形ABOC的边OB、OC分别在x轴、y轴的正半轴上,点A在双曲线的图象上,且AC=2.(1)求k值;(2)将矩形ABOC以B旋转中心,顺时针旋转90°后得到矩形FBDE,双曲线交DE于M点,交EF于N点,求△MEN的面积.24.(1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太阳光去测量旗杆的高度.参考示意图1,他的测量方案如下:第一步,测量数据.测出CD=1.6米,CF=1.2米,AE=9米.第二步,计算.请你依据小明的测量方案计算出旗杆的高度.(2)如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案,以求出旗杆顶端到地面的距离.要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N对完成测量任务的影响,不需计算)你选择出的必须工具是_________ ;需要测量的数据是_________ .25.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(每小题给出的四个选项中,只有一个正确选项,请将正确选项的标号填入题后的括号内,每小题3分,共24分)1.数轴上点A到原点的距离为2.5,则点A所表示的数是()A.2.5 B.﹣2.5 C.2.5或﹣2.5 D.0考点:数轴。

大连市2012年初中毕业升学考试试测(一)含参考答案和评分标准

大连市2012年初中毕业升学考试试测(一)含参考答案和评分标准

AD EP CBF**试题不收回,请同学们妥善保管,以备讲题使用**大庆市第三十六中学初四学年第七次月考数 学 试 题命题教师:李 莉 考生注意:1.考试时间120分钟.2.全卷共三道大题,总分120分.一、单项选择题(将正确答案的代号填在题后括号内,每小题3分,满分30分) 1. 下列运算中,正确的是 ( )A . 39±=B . ()a a 236=C . a a a 623=⋅D . 362-=-2. 与如图所示的三视图对应的几何体是( )3.如果()222=-+x x ,那么x 的取值范围是( )(A )x ≤2 (B )x <2 (C )x ≥2 (D )x >24.为迎接上海世博会,有十五位同学参加世博知识竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛 ( )(A )平均数 (B )众数 (C )最高分数 (D )中位数5. 某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为( )A .11元/千克B .11.5元/千克C .12元/千克D .12.5元/千克 6.如图,已知Rt ΔABC 中,∠ACB =90°,AC = 4,BC =3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( ). A .π5168 B .π24 C .π584D .π127.如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( ) A .35° B .45° C .50° D .55°DC BE AH第6题 第7题 第10题8. 在Rt △ABC 中∠C=90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,a ,b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .29.如图,点P 是定线段OA 上的动点,点P 从O 点出发,沿线段OA 运动至点A 后,再立即按原路返回至点O 停止,点P 在运动过程中速度大小不变,以点O 为圆心,线段OP 长为半径作圆,则该圆的周长l 与点P 的运动时间t 之间的函数图象大致为( )10. 在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ACE △≌△; ②CDE △为等边三角形; ③2EH BE =; ④.HCAHS S EHC BEC =∆∆ 其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④二.填空题(每小题3分,满分24分)11. 当地时间2010年1月12日16时53分(北京时间13日5时53分),海地发生7.0级强烈地震.据外电报道,联合国2月23日称,海地大地震造成的死亡人数已经上升至222500人.222500用四舍五入法取近似值保留两个有效数字为 . 12. 已知函数y=kx 的图象经过点(2,-6),则函数y=kx的解析式可确定为___ ___. 13.如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数. 例如,6 的不包括自身的所有因数为1、2、3,而且6=1+2+3,所以6是完全数. 大约2200多年前,欧几里德提出:如果2n -1是质数,那么2n -1·(2n -1)是一个完全数. 请你根据这个结论写出6之后的下一个完全数是 .14. 如图所示,甲、乙、丙、丁四个矩形拼成矩形ABCD ,中间阴影是边长为2 cm 的正方形.若矩形ABCD 的面积是16cm 2,则四边形EFGH 的面积是 cm 215. 在平面直角坐标系中,有()()3242A B -,,,两点,现另取一点()1C n ,,当n = 时AC BC +的值最小.H EF GA B D C 甲 乙 丙丁16已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .17. 在半径为4的⊙O 中,弦AB =42,点C 在⊙O 上,且∠CBA =15°,则弦BC = . 18. 一块含30°角的直角三角板(如图),它的斜边AB=8cm ,里面空心△DEF 的各边与△ ABC 的对应边平行,且各对应边的距离都是1 cm ,那么△DEF 的周长是 .第14题 第18题19.(本题满分5分)2211()22x y x y x x y x+--++ 其中23x y ==,.20. (本题满分6分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点),求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围. (3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?21. (本题满分6分)“村村通路工程”加快了河南省建设社会主义新农A B村的步伐.如图,C 村村民们欲修建一条水泥公路将C 村与县级公路(第20题图)6080 100 120 140 160 180 次数4 25 7 1319频数OEBFCDA 相连.在公路A 处测得C 村在北偏东60°方向,前进500米,在B 处测得C 村在北偏东30°方向. (1)为节约资源,要求所修公路长度最短.试求符合条件的公路长度.(结果保留整数)(2)经预算,修建1000米这样的水泥公路约需人民币20万元.按国家的相关政策,政府对修建该条水泥公路拨款人民币5万元,其余部分由村民自发筹集.试求修建该条水泥公路 村民需自筹资金多少万元.(参考数据2 1.4≈,3 1.7≈)22. (本题满分9分)如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC ;(2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状,并证明你的结论;(3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值。

大连市2012年一模数学答案

大连市2012年一模数学答案

大连市2012年初中毕业升学考试试测(一)数学参考答案与评分标准一、选择题1.C ; 2.A ; 3.D ; 4.C ; 5.C ; 6.B ; 7.B ; 8.A .二、填空题 9.21; 10.)2)(2(-+a a ; 11.100; 12.71; 13.53; 14.k <49;15.(1,2); 16.37.三、解答题17.解:原式=()2413+--………………………………………………………………8分 0=…………………………………………………………………………9分18.解:⎪⎩⎪⎨⎧<-≥+.24,532x x x解不等式①得:1≥x .………………………………………………………………3分解不等式②得:4->x .……………………………………………………………6分 ∴不等式组的解集为1≥x .…………………………………………………………9分 19.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC, AD =BC . ……………………………………2分 ∴∠ADE =∠FCE , ∠DAE =∠CFE . ……………………4分又∵E 是CD 的中点,∴CE DE =. ……………………………………………5分 ∴△AED ≌△FEC . ……………………………………7分 ∴AD =CF . ………………………………………………8分 ∴BC =CF . ………………………………………………9分 20.解:(1)120.…………………………………………………………………………3分(2)10.………………………………………………………………………………6分 (3)在被调查的学生中,喜欢文学类书籍的人数为:120-12-36-24=48.…9分∴100120485000⨯⨯%=2000.………………………………………………………11分 答:学校将购买2000本文学类书籍. ……………………………………………12分① ②四、解答题21.解:(1)由题意知,2,12==k k即.……………………………………………1分 ∴双曲线的解析式为xy 2=.………………………………………………………3分∴21,24-==-m m 即.……………………………………………………………4分∴⎪⎩⎪⎨⎧+-=-+=.214,2b a b a 即⎩⎨⎧-==.2,4b a ……………………………………………………6分 ∴直线的解析式为24-=x y .……………………………………………………7分 (2)不等式的解集为1>x 或21-<x <0.………………………………………9分 22.解:(1) 9. …………………………………………………………………………2分(2)设小水管的注水速度为x 米3∕分,则t xVx V =+92121.………………………4分∴xt V V 189=+.∴tV x 95=.……………………………………………………………………………6分∵t V 、都是正数,∴059≠=tVx . ∴tV x 95=是原分式方程的解.………………………………………………………7分∴大水管的注水速度为tV5.…………………………………………………………8分答:大、小水管的注水速度分别为t V 5米3∕分、tV95米3∕分.……………………9分23.解:(1) 90,直径所对的圆周角是直角. …………………2分(2)△EAD 是以AD 、AE 为腰的等腰三角形. ……………3分 证明:∵AE 是⊙O 的切线,∴∠EAB=90°=∠AEB+∠ABE . ……………………………4分由(1)知,∠ACB=90°=∠CBD+∠CDB . ∵BE 平分∠ABC ,即∠ABE=∠CBD , ∴∠AEB=∠CDB=∠ADE ∴AD =AE ,即△EAD 是以AD 、AE 为腰的等腰三角形.…………………………5分(3)设BE 与⊙O 相交于点F ,连接AF .FA B C D EO·∵AB 是⊙O 的直径, ∴∠EF A=90°=∠EAB .………………………………………………………………6分 而∠AEF=∠BEA ∴△EAF ∽△EBA .……………………………………………………………………7分 ∴,6866,22EF EA EF EB EA =+=即∴518=EF .………………………………………8分 ∵AD =AE ,∴5362==EF ED . ………………………………………………………9分 ∴51453610=-=-=ED EB BD .…………………………………………………10分 五、解答题24.解:(1) ⎪⎩⎪⎨⎧+-==.32034,4x y x y∴⎪⎩⎪⎨⎧==.5,45y x 即点A 的坐标为(45,5). ………1分 (2)作AE ⊥x 轴,DF ⊥OC ,垂足分别为E 、F . 由32034:2+-=x y l 知,点B 的坐标为(5,0).………………………………2分 由点A (45,5)知,点D 的坐标为(0,5).……………………………………3分 ∵,2121OC AB AE OB S AOB ⋅=⋅=∆ ∴454555522=+⎪⎭⎫ ⎝⎛-⨯=OC ……………………………………………………………4分∵∠ODF =90°-∠DOF =∠BOC ,OD=OB ,∠DFO =∠OCB ,∴△DOF ≌△OBC .…………………………………………………………………5分 ∴DF=OC=4,OF =BC=3.……………………………………………………………6分 在Rt △DFP 中256)3(4222222+-=-+=+==t t t FP DF DP S .即)40(2562≤≤+-=t t t S .…………………………………………………………8分(3)令(),242=S 则256322+-=t t ,………………………………………9分解得7,121=-=t t .………………………………………………………………10分 ∵40≤≤t , ∴21,t t 均不符合题意.∴在点P 的运动过程中,DP 不能为24.………………………………………11分 25.(1)猜想:AE=AF .…………………………………………………………………1分 证明:在EB 上取一点G ,使GB=AB ,连接AG (如图1),则∠AGB =∠GAB 21=∠ABC =α.∴∠EGA =180°-α=180°-∠ADC =∠ADF .∵EB=AB+AD , ∴EG=AD , …………………………4分 又∵∠AEB =∠F AD , ∴△AEG ≌△F AD . ∴ AE=AF .………………………………… 5分(2)在EB 上取一点G ,使GB=AB ,连接AG (如图2). 同理可证∠EGA =∠ADF .………………… 6分 又∵∠AEG =∠F AD , ∴△AEG ∽△F AD . ……………………… 7分 ∴ADEG DFAG =,…………………………………8分 ∵EB=AB+kAD ∴EG = kAD ,……………………………………………………………………………9分 ∴AG =kDF . ………………………………………………………………………… 10分 作BH ⊥AG ,垂足为H ,则AH=AB αcos ⋅.…………………………………… 11分 即a AB kDF cos 2⋅=.∴k a AB DF cos 2=.…………………………………………………………………… 12分 26.解:(1)由题意可设抛物线的解析式为k x a y +-=2)1(,则图1图2⎩⎨⎧+=+=.43,90k a k a 即,.52753⎪⎪⎩⎪⎪⎨⎧=-=k a ∴5245653527)1(5322++-=+--=x x x y .……………………………………2分 (2)CF 能经过抛物线的顶点.……………………………………………………3分 设此时点E 的坐标为(m ,0),过点C 、F 的直线为b kx y +=, 由(1)知抛物线的顶点坐标为(1,527).………………………………………4分 ∴⎪⎩⎪⎨⎧+=+=.527,33b k b k 即⎪⎪⎩⎪⎪⎨⎧=-=53356b k , ∴53356+-=x y . ………………………………5分作CM ⊥x 轴, CN ⊥y 轴,垂足分别为M ,N .∵∠FCE =∠NCM , ∴∠FCN =∠ECM . ………………………………6分 又 ∵∠FNC =∠EMC ,CN=CM=3, ∴△FNC ≌△EMC .………………………………7分 ∴FN=EM ,即m -=-33533. ∴53-=m , 即CF 能经过抛物线的顶点,此时点E 的坐标为(53-,0).……………………8分 (3)设点E 的坐标为(m ,0),由(2)知CF=CE . 同理CD=CB ,∠FCD =∠ECB .∴△FDC ≌△EBC .…………………………………………………………………9分 当CF=CD 时,CE=CB ,∴EM=BM ,即343-=-m ,∴2=m . …………10分 当DC=DF 时,BC=BE ,∴BE CM MB =+22,即m -=+43122,∴104-=m . …………………………………………………………………………………………11分 当FD=FC 时,EB=EC ,∴22CM EM EB +=,即223)3(4+-=-m m ,∴1-=m . ∴所求点E 的坐标为(2,0)、(104-,0)、(1-,0).……………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年大连市数学中考模拟(一)
一、选择题 1. 2
3-
的绝对值是( ) A .32- B .23- C .23 D .32
2.图1是由四个完全相同的正方体组成的几何体,这个几何体的俯视图是( )
3.下列计算结果正确的是( )
A .224222+=
B .33222÷= C
= D
=4.袋中有3个红球和4个白球,这些球除颜色不同外其余均相同,在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是( ) A .
17 B .37 C .47 D .34
5.在平面直角坐标系中,将点P (—2,3)向下平移4个单位得到点P ’,则点P ’所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
6.我市某一周的最大风力情况如下表所示:
则这周最大风力的众数与中位数分别是( )
A .7 ,5
B .5 ,5
C .5 ,1.75
D .5 ,4
7.矩形和菱形都具有的特征是( )
A .对角线相等
B .对角线互相平分
C .对角线互相垂直 D
8.如图2,一条抛物线与x 轴相交于A 、B 两点(点A 在点B 的左侧)点P 在线段MN 上移动.若点M 、N 的坐标分别为(—1,—2)、(1,—2点B 的横坐标的最大值为3,则点A 的横坐标的最小值为( ) A .—3 B .—1 C . 1 D . 3
图1
A
B
C
D
图2
二、填空题
9.sin30°= .
10.因式分解:24a -= . 11.当x=11时,221x x -+= .
12.从小刚等7名合唱队员中任选1名作为领奖者,则小刚被选中的概率是 . 13.如图3,AB ∥CD ,CE 与AB 交于点A ,BE ⊥CE ,垂足为E.若∠C=37°,则∠B= °. 14.如果关于x 的方程230x x k -+=(k 为常数)有两个不相等的实数根,那么k 应满足的条件为 .
15.如图4,在平面直角坐标系中,线段OA 与线段OA ’关于直线:l y x =对称.已知点A 的坐标为(2,1),则点A ’的坐标为 .
16.如图5,为了测量某建筑物CD 的高度,测量人员先在地面上用测角仪AE 自A 处测得建筑物顶部C 的仰角是30°,然后在水平地面上向建筑物前进42米,此时自B 处测得建筑物顶部C 的仰角是60°.已知测角仪的高度始终是1.5米,则该建筑物CD 的高度约为 米(结果保留到1
1.4 1.7≈≈) 三、解答题
17.
计算:11
1)()2
--

3
图5
18.解不等式组:
235,
4
.
2
x
x
x
+


⎨-
<⎪⎩

19.如图6
中,E是CD的中点,AE的延长线与BC的延长线相交于点F.
求证:BC=CF.
20.某校图书馆欲购买5000本学生课外书,为了使所购书籍更加贴近学生的需求,学校随机选取部分学生就他们最喜欢的图书类型进行问卷调查,问卷共设“艺术类、科技类、文学类、其
他”四个选项,被调查学生必须从四项中选出一项.整理调查结果,绘制出部分条形统计图(如图7)和部分扇形统计图(如图8).根据图中的信息,解答下列问题:
(1)本次调查共选出名学生;
(2)在被调查的学生中,最喜欢艺术类书籍的学生占被调查学生的%;
(3)如果按照本次调查情况购买学生课外书,那么学校将购买多少本文学类书籍?
图6
艺术类科技类文学类其他课外书籍类型
图7 30%
艺术类
其他文学类
科技类
图8
21.如图9.直线y ax
=(1
(2)求不等式ax b +>
22.一个圆柱形容器的容积为V 米3,用一根小水管向容器内注水,当水面高度达到容器高度的一半时,立即改用一根内径为小水管内径3倍的大水管注水(假设水压足够大,改换水管的时间可忽略不计),注满容器共用时间为t 分.
(1)大水管的注水速度是小水管注水速度的 倍; (2)求大、小水管的注水速度(用含V 、t 的式子表示).
23.如图10,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC 的平分线与AC 相交于点D ,与⊙O 过点A 的切线相交于点E.
(1)∠ACB= °,理由是: ; (2)猜想△EAD 的形状,并证明你的猜想; (3)若AB=8,AD=6,求BD.
图10
24.如图11,直线
1:4
l y x
=与直线
2
420 :
33
l y x
=-+相交于点A,
2
l与x轴相交于点B,
OC⊥
2
l,AD⊥y轴,垂足分别为C、D.动点P以每秒1个单位长度的速度从原点O出发沿线段OC向点C匀速运动,连接DP.设点P的运动时间为t(秒),DP2=S(单位长度2).
(1)求点A的坐标;
(2)求S与t的函数关系式,并写出t的取值范围;
(3)在点P的运动过程中,DP
能否为t值,若不能,说明理由.
25.如图12,四边形ABCD中,∠ABC=2∠ADC=2α,点E、F分别在CB、CD的延长线上,且EB=AB+AD,
∠AEB=∠FAD.
(1)猜想线段AE、AF的数量关系,并证明你的猜想;
(2)若将“EB=AB+AD”改为“EB=AB+kAD(k为常数,且k>0)”,其他条件不变(如图13),
求DF
AB
的值(用含k、α的式子表示).
F 图12
F E
图13
26.如图14,点A (—2,0)、B (4,0)、C (3,3)在抛物线2
y ax bx c =++上,点D 在y 轴
上,且DC ⊥BC ,∠BCD 绕点C 顺时针旋转后两边与x 轴、y 轴分别相交于点E 、F. (1)求抛物线的解析式;
(2)CF 能否经过抛物线的顶点?若能,求出此时点E 的坐标,若不能,说明理由; (3)若△FDC 是等腰三角形,求点E 的坐标.。

相关文档
最新文档