工业机械手的夹钳式手部设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计
课题名称:工业机械手的夹钳式手部设计
学生姓名:
学部(系):
学习专业:
2013 年 12 月 15日
目录
摘要 (3)
第一章前言
1.1机械手概述 (4)
1.2机械手的组成和分类 (4)
1.2.1机械手的组成.......................................4
第二章机械手的设计方案
2.1机械手的坐标型式与自由度.............................. 8
2.2机械手的手部结构方案设计.............................. 8
2.3机械手的手腕结构方案设计.............................. 9
2.4机械手的手臂结构方案设计...............................9
2.5机械手的驱动方案设计...................................9
2.6机械手的控制方案设计...................................9
2.7机械手的主要参数.......................................9
2.8机械手的技术参数列表...................................9 第三章手部结构设计
3.1夹持式手部结构.........................................11
3.1.1手指的形状和分类.................................11
3.1.2设计时考虑的几个问题.............................14
3.1.3手部夹紧气缸的设计...............................14 第四章结论....................................................24 参考文献.......................................................25 致谢...........................................................25
摘要
在设计机械手臂的时,用两个电机提供动力。
左边电机通过谐波减速器减速后,通过齿轮来控制手臂的回转,手臂弯曲动作的动力由右边电机提供。
电机2同样也是通过谐波减速器减速后,通过长轴,把动力传到底部的小齿轮,再由小齿轮与大齿轮的啮合,把动力传到竖直的锥齿轮上,又通过锥齿轮之间的啮合,把动力与运动传递到横轴上,再通过键连接,把动力传到带轮上。
带轮以一定的速度不停的转,以给臂关节通过同步齿型带传递动力。
臂关节结构设计:用两个同步齿形带轮来传递动力,带轮与轴和机械式离合器的左半边相连,使轴与左半边相连的离合器转动。
右半边为电磁制动器,制动器的左半边与离合器的右半边相连,且通过盘与上臂相连。
当电磁铁通电时,制动器吸合,离合器分开。
上臂停止在所要求的位置上。
当电磁铁失电时,由于弹簧力的作用,把制动器推开,同时离合器在弹簧力的作用下自动啮合,手臂恢复原有的运动。
注:机械手臂的运动范围手其结构的限制,在手臂的运动到达结构位置之前,必须使其自动停止。
机械手臂的运动机械位置是有关节处牙嵌离合齿上的突起部分而定。
手臂在极限位置自动停止,反向运行的条件完全是靠离合齿上的凸起部分与滑块的接触实现的。
为了使离合齿轮能顺利的脱开和啮合,对离合齿上的凸起部分斜面的升角β≥arctgμν。
只有满足这个条件,离合齿上凸起部分的斜面与滑块在滑动时才不会发生自锁。
这样手臂才能自动停止和反向动作!
方案二
此方案在臂关节的结构设计上与方案一有所不同。
这里设计成中心轴不转动。
改在同步带轮处装两个轴承。
这样,带轮可自由转动,而不会影响轴,且把离合器的左半边加工在带轮上,这样,不仅可以缩小空间,而且可以提高强度。
其余与方案一相同。
第一章前言
1.1. 工业机械手概述
工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。
它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。
机器人应用情况,是一个国家工业自动化水平的重要标志。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设备.机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
在工业生产中应用的机械手被称为“工业机械手”。
生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。
因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用.机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。
随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。
由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。
1.2 .机械手的组成和分类
1.2.1.机械手的组成
机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。
各系统相互之间的关系如方框图2-1所示。
(一)执行机构
包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。
1、手部:
即与物件接触的部件。
由于与物件接触的形式不同,可分为夹持式和吸附式手在本课题中我们采用夹持式手部结构。
夹持式手部由手指(或手爪)和传力机构所构成。
手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。
回转型手指结构简单,制造容易,故应用较广泛。
平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。
手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。
常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指数有双指式、多指式和双手双指式等。
而传力机构则通过手指产生夹紧力来完成夹放物件的任务。
传力机构型式较多时常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。
2、手腕:
是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势) 3、手臂:
手臂是支承被抓物件、手部、手腕的重要部件。
手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置.工业机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动。
4、立柱:
立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。
机械手的立I因工作需要,有时也可作横向移动,即称为可移式立柱。
5、行走机构:
当工业机械手需要完成较远距离的操作,或扩大使用范围时,可在机座上安滚轮式行走机构可分装滚轮、轨道等行走机构,以实现工业机械手的整机运动。
滚轮式布为有轨的和无轨的两种。
驱动滚轮运动则应另外增设机械传动装置。
6、机座:
机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。
(二)驱动系统
驱动系统是驱动工业机械手执行机构运动的动力装置调节装置和辅助装置组成。
常用的驱动系统有液压传动、气压传动、机械传动。
控制系统是支配着工业机械手按规定的要求运动的系统。
目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。
控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,
并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。
(二)控制系统
控制系统是支配着工业机械手按规定的要求运动的系统。
目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。
控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,
并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。
第二章气动机械手的设计方案
对气动机械手的基本要求是能快速、准确地拾-放和搬运物件,要求它们具有高精度、快速反应、一定的承载能力、足够的工作空间和灵活的自由度及在任意位置都能自动定位等特性。
设计气动机械手的原则是:充分分析作业对象(工件)的作业技术要求,拟定最合理的作业工序和工艺,并满足系统功能要求和环境条件;明确工件的结构形状和材料特性,定位精度要求,抓取、搬运时的受力特性、尺寸和质量参数等,从而进一步确定对机械手结构及运行控制的要求;尽量选用定型的标准组件,简化设计制造过程,兼顾通用性和专用性,并能实现柔性转换和编程控制.本次设计的机械手是通用气动上下料机械手,是一种适合于成批或中、小批生产的、可以改变动作程序的自动搬运或操作设备,劳动强度大和操作单调频繁的生产场合。
也可用于操作环境恶劣的生产场合。
2.1.机械手的坐标型式与自由度
按机械手手臂的不同运动形式及其组合情况,其坐标型式可分为直角坐标式、圆柱坐标式、球坐标式和关节式。
由于本机械手在上下料时手臂具有升降、收缩及回转运动,因此,采用圆柱座标型式。
相应的机械手具有三个自由度,为了弥补升降运动行程较小的缺点,增加手臂摆动机构,从而增加一个手臂上下摆动的自由度
图2-1 机械手的运动示意图
2.2 .机械手的手部结构方案设计
为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部;当工件是板料时,使用气流负压式吸盘。
2.3 .机械手的手腕结构方案设计
考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。
因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。
2.4 .机械手的手臂结构方案设计
按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和降(或俯仰)运动。
手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。
手臂的各种运动由气缸来实现。
2.5 .机械手的驱动方案设计
由于气压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机械手采用气压传动方式。
2.6 .机械手的控制方案设计
考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机械手进行控制。
当机械手的动作流程改变时,只需改变PLC 程序即可实现,非常方便快捷。
2.7 .机械手的主要参数
1.机械手的最大抓重是其规格的主参数,由于是采用气动方式驱动,因此考虑抓取的物体不应该太重,查阅相关机械手的设计参数,结合工业生产的实际情况,本设计设计抓取的工件质量为5公斤
2.基本参数运动速度是机械手主要的基本参数。
操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。
而影响机械手动作快慢的主要因素是手臂伸缩及回转的速度。
该机械手最大移动速度设计为s m /0.1。
最大回转速度设计为s /90 。
平均移动速度为s m /8.0。
平均回转速度为s /60 。
机械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快
慢更为符合速度特性。
除了运动速度以外,手臂设计的基本参数还有伸缩行程和工作半径。
大部分机械手设计成相当于人工坐着或站着且略有走动操作的空间。
过大的伸缩行程和工作半径,必然带来偏重力矩增大而刚性降低。
在这种情况下宜采用自动传送装置为好。
根据统计和比较,该机械手手臂的伸缩行程定为600mm,最大工作半径约为mm 1400。
手臂升降行程定为mm 120。
定位精度也是基本参数之一。
该机械手的定位精度为mm 1±。
2.8. 机械手的技术参数列表
一、用途:
用于自动输送线的上下料。
二、设计技术参数:
1、抓重:kg 5
2、自由度数:4个自由度
3、坐标型式:圆柱坐标
4、最大工作半径:mm 1400
5、手臂最大中心高:mm 1250
6、手臂运动参数: 伸缩行程mm 1200
伸缩速度s mm /400
升降行程mm 120
升降速度s mm /250
回转范围 1800-
回转速度s /90
7、手腕运动参数: 回转范围 1800-
回转速度s /90
8、手指夹持范围:棒料:mm mm 15080φφ-
9、定位方式:行程开关或可调机械挡块等
10、定位精度:mm 1±
11、驱动方式:气压传动
12、控制方式:
机械手臂剖视图图2-6
第三章手部结构设计
为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部:如果有实际需要,还可以换成气压吸盘式结构,
3.1夹持式手部结构
夹持式手部结构由手指(或手爪)和传力机构所组成。
其传力结构形式比较多,如滑槽杠杆式、斜楔杠杆式、齿轮齿条式、弹簧杠杆式等。
3.1.1手指的形状和分类
夹持式是最常见的一种,其中常用的有两指式、多指式和双手双指式:按手指夹持工件的部位又可分为内卡式(或内涨式)和外夹式两种:按模仿人手手指的动作,手指可分为一支点回转型,二支点回转型和移动型(或称直进型),其中以二支点回转型为基本型式。
当二支点回转型手指的两个回转支点的距离缩小到无穷小时,就变成了一支点回转型手指;同理,当二支点回转型手指的手指长度变成无穷长时,就成为移动型。
回转型手指开闭角较小,结构简单,制造容易,应用广泛。
移动型应用较少,其结构比较复杂庞大,当移动型手指夹持直径变化的零件时不影响其轴心的位置,能适应不同直径的工件。
3.1.2设计时考虑的几个问题
(一)具有足够的握力(即夹紧力)
在确定手指的握力时,除考虑工件重量外,还应考虑在传送或操作过程中所产生的惯性力和振动,以保证工件不致产生松动或脱落。
(二)手指间应具有一定的开闭角
两手指张开与闭合的两个极限位置所夹的角度称为手指的开闭角。
手指的开闭角应保证工件能顺利进入或脱开,若夹持不同直径的工件,应按最大直径的工
件考虑。
对于移动型手指只有开闭幅度的要求。
(三)保证工件准确定位
为使手指和被夹持工件保持准确的相对位置,必须根据被抓取工件的形状,选择相应的手指形状。
例如圆柱形工件采用带“V ”形面的手指,以便自动定心。
(四)具有足够的强度和刚度
手指除受到被夹持工件的反作用力外,还受到机械手在运动过程中所产生的惯性力和振动的影响,要求有足够的强度和刚度以防折断或弯曲变形,当应尽量使结构简单紧凑,自重轻,并使手部的中心在手腕的回转轴线上,以使手腕的扭转力矩最小为佳。
(五)考虑被抓取对象的要求
根据机械手的工作需要,通过比较,我们采用的机械手的手部结构是一支点 两指回转型,由于工件多为圆柱形,故手指形状设计成V 型,其结构如附图所示。
3.1.3手部夹紧气缸的设计
1、手部驱动力计算
本课题气动机械手的手部结构如图3-2所示,
图3-2 齿轮齿条式手部
其工件重量G=5公斤,
V 形手指的角度 1202=ϑ,mm R mm b 24120=>=,摩擦系数为10.0=f
(1)根据手部结构的传动示意图,其驱动力为:
R
b p 2=N (2)根据手指夹持工件的方位,可得握力计算公式:
)(5.0ϕθ-=tg N
)(25)
42560(55.0'N tg =-⨯⨯=
所以R
b p 2=
N )(245N = (3)实际驱动力: η21K K p p ≥实际
I,因为传力机构为齿轮齿条传动,故取94.0=η,并取5.11=K 。
若被抓取工件
的最大加
速度取g a 3=时,则:412=+
=g a K 所以)(156394
.045.1245N p =⨯⨯=实际 所以夹持工件时所需夹紧气缸的驱动力为N 1563。
2、气缸的直径
本气缸属于单向作用气缸。
根据力平衡原理,单向作用气缸活塞杆上的输出推力必须克服弹簧的反作用力和活塞杆工作时的总阻力,其公式为:
z t F F P
D F --=421π
式中: 1F - 活塞杆上的推力,N
t F - 弹簧反作用力,N
z F - 气缸工作时的总阻力,N
P - 气缸工作压力,Pa
弹簧反作用按下式计算:
)1(s G F f t +=
n
D Gd G f 3141
= f G =n D Gd 31418
式中:f G - 弹簧刚度,N/m
1- 弹簧预压缩量,m
s - 活塞行程,m
1d - 弹簧钢丝直径,m
1D - 弹簧平均直径,.
n - 弹簧有效圈数.
G - 弹簧材料剪切模量,一般取Pa G 9104.79⨯=
在设计中,必须考虑负载率η的影响,则:
t F p D F -=421η
π
由以上分析得单向作用气缸的直径:
η
πp Ft F D )(41+= 代入有关数据,可得=f G n
D Gd 31418=4
333915)1030(8)105.3(104.79⨯⨯⨯⨯⨯⨯-- )/(46.3677m N =
)1(s G F f t += )
(6.220106046.36773
N =⨯⨯=- 所以:=D pn
Ft F π)1(4+=6105.0)6.220490(4⨯⨯+⨯π )(23.65mm =
查有关手册圆整,得mm D 65=
由3.02.0/-=D d ,可得活塞杆直径:mm D d 5.1913)3.02.0(-=-=
圆整后,取活塞杆直径mm d 18=校核,按公式][)4//(21σπ≤d F
有:5.0])[/14(σπF d ≥
其中,[σ]MPa 120=,N F 7501=
则:5.0)120/4904(⨯⨯≥πd
1828.2≤=
满足实际设计要求。
3,缸筒壁厚的设计
缸筒直接承受压缩空气压力,必须有一定厚度。
一般气缸缸筒壁厚与内径之比小于或等于1/10,其壁厚可按薄壁筒公式计算:
][2/σδp DP =
式中:6- 缸筒壁厚,mm
D - 气缸内径,mm
p P - 实验压力,取P P p 5.1=, Pa
材料为:ZL3,[σ]=3MPa
代入己知数据,则壁厚为:
][2/σδp DP =
)(5.6)
1032/(1066565mm =⨯⨯⨯⨯=
取mm 5.7=δ,则缸筒外径为:)(8025.7651mm D =⨯+=
第四章 结论
1、本次设计的是气动通用机械手,相对于专用机械手,通用机械手的自由 度可变,控制程序可调,因此适用面更广。
2、采用气压传动,动作迅速,反应灵敏,能实现过载保护,便于自动控制。
工作环境适应性好,不会因环境变化影响传动及控制性能。
阻力损失和泄漏较小, 不会污染环境。
同时成本低廉。
3、通过对气压传动系统工作原理图的参数化绘制,大大提高了绘图速度, 节省了大量时间和避免了不必要的重复劳动,同时做到了图纸的统一规范。
4、机械手采用PLC 控制,具有可靠性高、改变程序灵活等优点,无论是进
行时间控制还是行程控制或混合控制,都可通过设定PLC 程序来实现。
可以根据 机械手的动作顺序修改程序,使机械手的通用性更强。
参考文献:
[1] 张建民.工业机器人.北京:北京理工大学出版社,2007
[2] 蔡自兴.机器人学的发展趋势和发展战略.机器人技术,2003
[3] 金茂青,曲忠萍,张桂华.国外工业机器人发展势态分析.机器人技术与应用 , 2005
[4] 王雄耀.近代气动机器人(气动机械手)的发展及应用.液压气动与密封,2004
[5] 严学高,孟正大.机器人原理.南京:东南大学出版社,2003
[6] 机械设计师手册.北京:机械工业出版社,2006
[7] 黄锡恺,郑文伟.机械原理.北京:人民教育出版社,2006
[8] 成大先.机械设计图册.北京:化学工业出版社
[9] 郑洪生.气压传动及控制.北京:机械工业出版社,2007
[10] 吴振顺.气压传动与控制.哈尔滨:哈尔滨工业大学出版社,2004
[11] 徐永生.气压传动.北京:机械工业出版社,2002
[12]傅祥志,机械原理(第二版),武汉:华中科技大学出版社,2000.10
[13]吴昌林等,机械设计(第二版),武汉:华中科技大学出版社,2001.2
致谢
本次设计是在我的导师悉心指导下完成的。
老师严谨的治学态度和精益求精的工作作风使我受益匪浅。
在此,我首先向导师表示诚挚的感谢,并致以崇高的敬意! 本次毕业设计是大学期间所学知识的综合运用,通过这次设计把所学的基础理论和专业课程作了一个总结和回顾,加深了对理论的理解,能够掌握机械设计的全套思路,为即将走上工作岗位和以后的发展打下了一定的基础。
在设计过程中,我查阅了大量的图书资料以及网络上的资料,包括机械零件、材料力学、液压控制、几何量公差与测量、机械制图、机械手设计基础等等,尤其是在从对各类设计手册的查阅中,我的知识面得到了很大的提高;通过对该课题的独立设计,使我对机械知识有了一个更加深入的了解,对机械这门学科有了进一步的理解。
也使我独立设计的能里有了极大的提高。
在课题的研究和开发阶段,我得到了机电系老师的大力支持和帮助,在此一并向他们表示衷心的感谢。
在设计过程中,遇到不懂的地方,我也经常与同学进行讨论,解决难题,感谢所有关心我的同学和老师。
当然,由于本人设计水平有限、在课程中很少接触机械手的相关课程,实际经验的不足,在设计中难免存在一些错误。
恳请老师给予以批评以及指正。
再次表示感谢!
2013年12月15日。