数字信号处理--数字信号习题1

合集下载

数字信号处理习题集

数字信号处理习题集

《数字信号处理》习题集一. 填空题1、一线性时不变系统,输入为 x〔n〕时,输出为y〔n〕;则输入为2x〔n〕时,输出为;输入为x〔n-3〕时,输出为。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真复原,采样频率fs与信号最高频率f max关系为:。

3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X〔e jw〕,它的N点离散傅立叶变换X〔K〕是关于X〔e jw〕的点等间隔。

4、有限长序列x(n)的8点DFT为X〔K〕,则X〔K〕= 。

5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的所产生的现象。

6、δ(n)的z变换是。

7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较,阻带衰减比较。

8、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= 。

9、假设正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 。

10、序列x1〔n〕的长度为4,序列x2〔n〕的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。

11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的,而周期序列可以看成有限长序列的。

12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)= 。

13、无限长单位冲激响应〔IIR〕滤波器的结构是型的。

14.线性移不变系统的性质有、和分配律。

15.用DFT近似分析模拟信号的频谱时,可能出现的问题有、和。

16.无限长单位冲激响应滤波器的基本结构有型,型和。

17.如果通用电脑的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此电脑上计算210点的基2 FFT需要级蝶形运算,总的运算时间是______μs。

18.用窗函数设计FIR滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。

数字信号处理习题与答案

数字信号处理习题与答案

==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理习题集

数字信号处理习题集

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数字信号处理第三版第1章习题答案

数字信号处理第三版第1章习题答案

第 1 章 时域离散信号和时域离散系统
1.
学习要点
1
信号: 模拟信号、 时域离散信号、 数字信号三者
之间的区别; 常用的时域离散信号; 如何判断信号是周期性的
, 其周期如何计算等。
2
系统: 什么是系统的线性、 时不变性以及因果性
、 稳定性; 线性、 时不变系统输入和输出之
间的关系; 求解线性卷积的图解法(列表法)、 解析法,
第 1 章 时域离散信号和时域离散系统
解线性卷积也可用Z变换法, 以及离散傅里叶变换求解, 这是后面几章的内容。 下面通过例题说明。
设x(n)=R4(n), h(n)=R4(n), 求y(n)=x(n)*h(n)。 该题是两个短序列的线性卷积, 可以用图解法(列表法) 或者解析法求解。 表1.2.1给出了图解法(列表法), 用公式 可表示为
此是非周期序列。
第 1 章 时域离散信号和时域离散系统
4. 对题1图给出的x(n)要求:
(1) 画出x(-n)的波形;
(2) 计算x (n)= [x(n)+x(-n)], 并画出x (n)波形;
e
e
(3) 计算x (n)= o
[x(n)-x(-n)], 并画出x o(n)波形
(4) 令x (n)=x (n)+x (n), 将x (n)与x(n)进行比较, 你能得到
第 1 章 时域离散信号和时域离散系统 图1.3.2
第 1 章 时域离散信号和时域离散系统
[例1.3.5]已知x1(n)=δ(n)+3δ(n-1)+2δ(n-2),x2(n)=u
u(n-3), 试求信号x(n), 它满足x(n)=x1(n)*x2(n), 并画出x( 的波形。

(完整word版)数字信号处理习题及答案

(完整word版)数字信号处理习题及答案

==============================绪论==============================1。

A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。

①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(—n )的波形图。

②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理(第三版)-课后习题答案全-(原题+答案+图)

数字信号处理(第三版)-课后习题答案全-(原题+答案+图)
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}

数字信号处理题1

数字信号处理题1

数字信号处理模拟试题(一)一、单项选择题(本大题共15小题,每小题2分,共30分)1.已知x a (t )是频带宽度有限的,若想抽样后x(n)=x a (nT )能够不失真地还原出原信号x a (t ),则抽样频率必须大于或等于______倍信号谱的最高频率。

( )A.1/2B.1C.2D.42.下列系统(其中y (n )为输出序列,x (n )为输入序列)中哪个属于线性系统?( )A. y (n )=y(n-1) x (n )B. y (n )=x (2n )C. y (n )= x (n )+1D. y (n )= x (n )-x (n -1)3.序列x (n )=sin ⎪⎭⎫ ⎝⎛n 311的周期为( ) A.3B.6C.11D.∞ 4.序列x(n)=u(n)的能量为( )A.1B.9C.11D.∞5.已知某序列Z 变换的收敛域为|Z |>3,则该序列为( )A.有限长序列B.右边序列C.左边序列D.双边序列6.序列实部的傅里叶变换等于序列傅里叶变换的______分量。

( )A.共轭对称B.共轭反对称C.偶对称D.奇对称7.线性移不变系统的系统函数的收敛域为|Z |>2,则可以判断系统为( )A.因果稳定系统B.因果非稳定系统C.非因果稳定系统D.非因果非稳定系统 8.下面说法中正确的是( )A.连续非周期信号的频谱为非周期离散函数B.连续周期信号的频谱为非周期离散函数C.离散非周期信号的频谱为非周期离散函数D.离散周期信号的频谱为非周期离散函数9.已知序列x (n )=δ(n ),其N 点的DFT 记为X (k ),则X (0)=( )A.N -1B.1C.0D.N 10.设两有限长序列的长度分别是M 与N ,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取()A.M+NB.M+N-1C.M+N+1D.2(M+N)11.已知DFT[x(n)]=X(k),0≤n,k<N,下面说法中正确的是()A.若x(n)为实数圆周奇对称序列,则X(k)为实数圆周奇对称序列B.若x(n)为实数圆周奇对称序列,则X(k)为实数圆周偶对称序列C.若x(n)为实数圆周奇对称序列,则X(k)为虚数圆周奇对称序列D.若x(n)为实数圆周奇对称序列,则X(k)为虚数圆周偶对称序列12.已知N点有限长序列x(n)=δ((n+m))N R N(n),则N点DFT[x(n)]=()A.N B.1C.W-kmN D.W kmN13.如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为()A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器14.对5点有限长序列{1,3,0,5,2}进行向左2点圆周移位后得到序列()A.{1,3,0,5,2}B.{5,2,1,3,0}C.{0,5,2,1,3}D.{0,0,1,3,0}二、判断题16.时间为离散变量,而幅度是连续变化的信号为离散时间信号。

数字信号处理习题及答案1

数字信号处理习题及答案1

数字信号处理习题及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( )A. y (n-2)B.3y (n-2)C.3y (n )D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n)D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0B.∞C. -∞D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

《数字信号处理》复习思考题、习题(一)

《数字信号处理》复习思考题、习题(一)

《数字信号处理》复习思考题、习题(一)一、选择题1.信号通常是时间的函数,数字信号的主要特征是:信号幅度取 ;时间取 。

A.离散值;连续值B.离散值;离散值C.连续值;离散值D.连续值;连续值2.一个理想采样系统,采样频率Ωs =10π,采样后经低通G(j Ω)还原,⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ5 05 51)(j G ;设输入信号:t t x π6cos )(=,则它的输出信号y(t)为: 。

A .t t y π6cos )(=; B. t t y π4cos )(=;C .t t t y ππ4cos 6cos )(+=; D. 无法确定。

3.一个理想采样系统,采样频率Ωs =8π,采样后经低通G(j Ω)还原,G j ()ΩΩΩ=<≥⎧⎨⎩14404 ππ;现有两输入信号:x t t 12()cos =π,x t t 27()cos =π,则它们相应的输出信号y 1(t)和y 2(t): 。

A .y 1(t)和y 2(t)都有失真; B. y 1(t)有失真,y 2(t)无失真;C .y 1(t)和y 2(t)都无失真; D. y 1(t)无失真,y 2(t)有失真。

4.凡是满足叠加原理的系统称为线性系统,亦即: 。

A. 系统的输出信号是输入信号的线性叠加B. 若输入信号可以分解为若干子信号的线性叠加,则系统的输出信号是这些子信号的系统输出信号的线性叠加。

C. 若输入信号是若干子信号的复合,则系统的输出信号是这些子信号的系统输出信号的复合。

D. 系统可以分解成若干个子系统,则系统的输出信号是这些子系统的输出信号的线性叠加。

5.时不变系统的运算关系T[·]在整个运算过程中不随时间变化,亦即 。

A. 无论输入信号如何,系统的输出信号不随时间变化B. 无论信号何时输入,系统的输出信号都是完全一样的C. 若输入信号延时一段时间输入,系统的输出信号除了有相应一段时间延时外完全相同。

数字信号处理习题及解答

数字信号处理习题及解答

数字信号处理习题及解答
第二章 Z变换及离散时间系统分析
3 解答
n≥0时, 因为c内无极点,x(n)=0; n≤-1时, c内有极点 0 , 但z=0是一个n阶极点, 改为求
圆外极点留数, 圆外极点有z1=0.5, z2=2, 那么
x(n)Res[F(z),0.5]Res[F(z),2]
(5z7)zn (z0.5) (z0.5)(z2)
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 2 解答
数字信号处理习题及解答
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 2 解答
数字信号处理习题及解答
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 2 解答
数字信号处理习题及解答
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 2 解答
数字信号处理习题及解答
第一章 离散时间信号与离散时间系统 1 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系 统输入和输出, 判断系统是否是线性非时变的。 y(n)=x2(n)
数字信号处理习题及解答
数字信号处理习题及解答
第一章 离散时间信号与离散时间系统
1 解答 令输入为 x(n-n0)
数字信号处理习题及解答
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析
3 已知
X(z)
3 11z1
122z1
2
求出对应X(z)的各种可能的序列表达式。
数字信号处理习题及解答
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析
3 解答 X(z)有两个极点: z1=0.5, z2=2, 因为收敛域总是以极点为

数字信号处理 第1章习题答案

数字信号处理  第1章习题答案

由于 x2 (n) x1 (n 1) ,而且 y2 (n) y1(n 1) 故当 y(-1)=0时,系统具有移不变性。
(c)设 x3 (n) (n) (n 1) 则 y3 (n) a y3 (n 1) x3 (n) 且 y3 (1) 0
根据 y3 (n) a y3 (n 1) x3 (n) ,当 n ≥ 0 时有
3 ( a ) x( n) A cos( n ) 7 8 (c ) x ( n ) e
j( n ) 6
;
13 (b) x( n) A sin n 3
π π 解 (a) 2 2 14 为有理数 3 π 3 ω
0
7
故 x(n)是周期的,周期 N=14


x(m)h(n m)
x(m) : m n0
h(n m) : n N 1 m n
① 当 n n0时, y(n) 0 ② 当 n0 n n0 N 1 时,
n n
n n y(n) x(m)h(n m) mn0 nm n 0 mn0 mn0 mn0
(b)设 x2 (n) (n 1) ,则 y2 (n) a y2 (n 1) x2 (n) 且 y2 (0) 0
根据 y2 (n) a y2 (n 1) x2 (n) ,当 n > 0 时有
y2 (1) a y2 (0) x2 (1) 1 ,
……
y2 (2) a y2 (1) x2 (2) a
y3 (1) a y3 (0) x3 (1) 1 , y3 (2) a y3 (1) x3 (2) a y3 (3) a y3 (2) x3 (3) a 2 , , y3 (n) a y3 (n 1) x3 (n) a n1

数字信号处理第一章题目

数字信号处理第一章题目

第一章题目一、单项选择题(每题1分)1. 在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs与信号最高截止频率Ωc应满足关系()A.Ωs>2ΩcB. Ωs>ΩcC.Ωs<ΩcD. Ωs<2Ωc2. 以下四个序列中,与其他三个不相等的序列是()A. u(n)-u(n-3)B. δ(n)+δ(n-1)+δ(n-2)C. δ(n)+ R4(n+1)D. R3(n)3. 计算两个序列的卷积涉及多种序列运算,以下哪种运算不包含在其中()A.序列的移位B. 序列的数乘C.序列相乘D. 序列的反转4. 若一线性移不变系统当输入为x(n)=δ(n)时,输出为y(n)=R2(n),则当输入为u(n)-u(n-2)时,输出为()A.R2 (n)-R2 (n-2)B.R2 (n)+R2 (n-2)C.R2 (n)-R2 (n-1)D.R2 (n)+R2 (n-1)5. 下列哪一个单位冲激响应h(n)所表示的系统不是因果系统()A.h(n)=δ(n-4)B.h(n)=u(n)-u(n+1)C.h(n)=u(n)-u(n-1)D.h(n)=u(n)6. 数字信号的特征是( )A.时间离散、幅值连续B.时间离散、幅值量化C.时间连续、幅值量化D.时间连续、幅值连续7. 根据时域采样定理,为确保不发生频谱混叠现象,则采样频率f s与信号最高截止频率f c应满足关系是()A. f s>2 f cB. f s>f cC. f s< f cD. f s<2 f c8. 经典数字信号处理理论的研究对象是()A.非线性移变离散时间系统B. 线性移变离散时间系统C.线性移不变离散时间系统D. 非线性移变离散时间系统 9. 已知正弦序列1()sin()8x n n =,则以下叙述正确的是( ) A.()x n 为周期序列,最小周期N=8 B.()x n 为非周期序列 C.()x n 为周期序列,最小周期N=16D.()x n 的周期性不确定10. 设两有限长序列的长度分别是M 与N ,二者进行线性卷积,输出结果序列的长度为( )A. M+NB.M+N-1C. M+N+1D.2(M+N)11.设系统的单位冲激响应为h (n),则系统因果的充要条件为( ) A .当n>0时,h (n)=0 B .当n>0时,h (n)≠0 C .当n<0时,h (n)=0D .当n<0时,h (n)≠012. 下列哪一个单位冲激响应h (n)所表示的系统不是因果系统( ) A.h (n)=δ(n) B.h (n)=u(n)-u(n+1) C.h (n)=u(n)-u(n-1)D.h (n)=u(n)13.下列哪个单位冲激响应h (n)所表示的线性移不变系统是因果系统 ( ) A. h (n)=δ(n+5)B.3()(3)h n R n =+C. h (n)=u(n)-u(n-1)D.1()()(-)2nh n u n =14. 以下四个序列中,与其他三个序列不相等的序列是( )A. u(n)B. ()N R nC.0()k n k δ+∞=-∑D. u(2n)15. 设两有限长序列的长度分别是3与5,欲计算两者的线性卷积,则线性卷积结果的序列长度为( )A. 8B. 7C. 9D. 1616. 已知某连续信号()sin(2100)x t t π=⨯,现对其进行时域均匀采样,则根据时域采样定理的要求,采样频率f s 应满足的关系为( ) A. f s>100Hz B. f s>200Hz C. f s<100Hz D. f s <200Hz17. 以下四个周期序列中,与其他三个序列最小周期不同的序列是( )A. 1()sin()8x n n π= B. 23()2sin()8x n n π= C. 3()2sin()4x n n π= D. 45()sin()sin()84x n n n ππ=+ 18. 关于离散卷积的运算规律,下列叙述错误的是( ) A. 离散卷积运算满足结合律B. 离散卷积运算满足分配律C. 离散卷积运算是可逆的D. 离散卷积运算满足交换律 19.下列系统哪个为线性系统( ) A.()()x n y n e =B.()()(1)y n x n x n =⋅+C.()()1y n x n =+D.()()(1)y n x n x n =-- 20. 下列对数字信号处理的特点,叙述错误的是( ) A.数字信号易于存储和调试B.数字信号的功率大C.数字信号抗干扰能力强D.数字信号的精度高21. 要从采样信号不失真恢复原连续信号,应满足下列条件的哪几条( ) (1) 原信号为带限信号;(2) 采样频率大于两倍信号谱的最高频率;(3) 采样信号通过理想低通滤波器。

数字信号处理试题(1)班

数字信号处理试题(1)班

1.设h(n)是一个线性非移变系统的单位取样响应,若系统又是因果的,则h(n)应该满足当n<0时,h(n)=0;若该系统又是稳定的,则h(n)应该满足∑|h(n)|<∞。

2设x(n)是一实序列,X(k)=DFT[x(n)],则X(k)的模是周期性偶序列,X(k)的幅度是周期性奇序列。

3用脉冲响应不变法设计IIR数字滤波器,S平面的S=jπ/T点映射为Z平面的z=-1点。

4.线性非时变因果系统是稳定系统的充分必要条件是其系统函数H(z)的所有极点都在z平面的单位圆内。

5.FIR数字滤波器的单位取样响应为h(n),0≤n≤N-1,则其系统函数H(z)的极点在z=0,是N-1阶的。

6.线性相位FIR滤波器的单位取样响应h(n)是偶对称或奇对称的。

设h(n)之长度为N(0≤n≤N-1),则当N为奇数时,对称中心位于N+1/2;当N为偶数时,对称中心位于N-1/2.7.已知序列:x(n),0≤n≤15;g(n),0≤n≤19,X(k)、G(k)分别是它们的32点DFT,令y(n)=IDFT[X(k)G(k)],0≤n≤31,则y(n)中相等于x(n)与g(n)线性卷积中的点有29点,其序号是从3到31.8.DFT是利用W N mk的对称性、可约性和周期性三个固有特性来实现FFT快速运算的。

9.IIR数字滤波器设计指标一般由Wp、Ws、Ap、As等四项组成。

10.IIR数字滤波器有窗函数法和频率抽样设计法两种设计方法,其结构有直接型、级联型和并联型三种基本结构。

11.两个有限长序列x1(n),0≤n≤33和x2(n),0≤n≤36,做线性卷积后结果的长度是70,若对这两个序列做64点圆周卷积,则圆周卷积结果中有n=6至63为线性卷积结果。

12.请写出三种常用低通原型模拟滤波器:巴特沃什滤波器、切比雪夫滤波器、椭圆滤波器。

13.用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Ω=W/T。

数字信号处理总结与习题1(答案).

数字信号处理总结与习题1(答案).

一、填空题1、对模拟信号(一维信号,是时间的函数)进行采样后,就是离散信号,再进行幅度量化后就是数字信号。

2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是当n<0时,h(n)=0 。

3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在单位圆的N 点等间隔采样。

4、)()(5241n R x n R x ,只有当循环卷积长度L ≥8时,二者的循环卷积等于线性卷积。

5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是()nh n 6、用来计算N =16点DFT ,直接计算需要__(N 2)16*16=256_ __次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32_____次复乘法。

7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型____和_并联型__四种。

8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中并联型的运算速度最高。

9、数字信号处理的三种基本运算是:延时、乘法、加法10、两个有限长序列和长度分别是和,在做线性卷积后结果长度是__N 1+N 2-1_____。

11、N=2M点基2FFT ,共有__ M列蝶形,每列有__ N/2个蝶形。

12、线性相位FIR 滤波器的零点分布特点是互为倒数的共轭对13、数字信号处理的三种基本运算是:延时、乘法、加法1、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。

16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。

17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。

18、单位脉冲响应分别为和的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n),=H 1(e j ω)×H 2(e j ω)。

数字信号处理习题集(附答案)

数字信号处理习题集(附答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器.在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器.判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

( )答:错.需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理.( ) 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础.第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器.(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率. (b)对于kHz T 201=,重复(a )的计算.解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

数字信号处理习题1

数字信号处理习题1

(3)T[x(n)]
n n0

x(k)
k nn0
(5)T[x(n)] ex(n)
(2)T[x(n)]
n

x(k)
k n0
(4)T[x(n)] x(n n ) 0
(6)T[x(n)] ax(n) b
解 : (1)线性 因果 稳定
(2)线性
非因果(n n0时)
(3)e uan (n)
(4)e(a jw0 )nu(n)
(5)ean cos w nu(n) (6)ean sin w nu(n)
0
0
(7)R (n) N

解:(1)(e jw ) (n)e jwn 1
n


(2)(e jw ) (n n0 )e jwn (m)e jw(mn0 ) e jwn0
解:信号时域总记录时间:Tp 2 60 120(s)
信号频域频率范围:f=0~100Hz
由采样定理: fs 2 f 所以最少采样点数:
T 1 fs
N

Tp T
Tp

fs
120 200

24000点
1.8设一连续时间信号频普包括直流,1kHz,2kHz, 和3kHz 等频率分量,它们的幅度分别为0.5:1:0.5:0.25,相位频谱 为零。设对该连续信号进行采样的采样率为10kHz,画出 经过采样后的离散信号频谱。包括从直流到30kHz的所 有频率分量。

非稳定 x(n) M l im x(k)
(3)线性非因果稳定n k
nn0
nn0
x(k) x(k) 2n0M

数字信号处理习题集

数字信号处理习题集

数字信号处理习题集数字信号处理习题集第⼀章习题1、已知⼀个5点有限长序列,如图所⽰,h (n )=R 5(n )。

(1)⽤写出的()n δ()x n 函数表达式;(2)求线性卷积*。

()y n =()x n ()hn 2、已知x (n )=(2n +1)[u (n +2)-u (n -4)],画出x (n )的波形,并画出x (-n )和x (2n )的波形。

3、判断信号是否为周期信号,若是求它的周期。

3()sin 73x n n ππ??=+4、判断下列系统是否为线性的,时不变的,因果的,稳定的?(1),(2)2()(3)y n x n =-0()()cos()y n x n n ω=5、已知连续信号。

()2sin(2),3002a x t ft f Hz ππ=+=(1)求信号的周期。

()a x t (2)⽤采样间隔T=0.001s 对进⾏采样,写出采样信号的表达式。

()a x t ?()a xt (3)写出对应于的时域离散信号的表达式,并求周期。

?()a xt ()x n 6、画出模拟信号数字处理的框图,并说明其中滤波器的作⽤。

第⼆章习题1、求下列序列的傅⽴叶变换。

(1),(2)11()333nx n n ??=-≤ ?[]2()()()n x n a u n u n N =--2、已知理想低通滤波器的频率响应函数为:为整数,000(),0j n j e H e n ωωωωωωπ-?≤≤?=? <≤??cc 求所对应的单位脉冲响应h (n )。

3、已知理想⾼通滤波器的频率响应函数为:,求所对应0()1j H e ωωωωωπ≤≤=<≤??cc 的单位脉冲响应h (n )。

4、已知周期信号的周期为5,主值区间的函数值=,求该周期信号的()(1)n n δδ+-离散傅⾥叶级数和傅⾥叶变换.5、已知信号的傅⽴叶变换为,求下列信号的傅⽴叶变换。

()x n ()j X e ω(1)(2)(3)x n -*()x n -6、已知实因果信号如图所⽰,求和。

数字信号处理习题及答案完整版

数字信号处理习题及答案完整版

数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。

(完整版)数字信号处理试题(1)

(完整版)数字信号处理试题(1)

一、单项选择题1. 序列x(n)=Re(e jn π/12)+I m (e jn π/18),周期为( )。

A. 18πB. 72C. 18πD. 362. 设C 为Z 变换X(z)收敛域内的一条包围原点的闭曲线,F(z)=X(z)z n-1,用留数法求X(z)的反变换时( )。

A. 只能用F(z)在C 内的全部极点B. 只能用F(z)在C 外的全部极点C. 必须用收敛域内的全部极点D. 用F(z)在C 内的全部极点或C 外的全部极点3. 有限长序列h(n)(0≤n ≤N-1)关于τ=21-N 偶对称的条件是( )。

A. h(n)=h(N-n) B. h(n)=h(N-n-1)C. h(n)=h(-n)D. h(n)=h(N+n-1)4. 对于x(n)= n)21(u(n)的Z 变换,( )。

A. 零点为z=21,极点为z=0 B. 零点为z=0,极点为z=21 C. 零点为z=21,极点为z=1 D. 零点为z=21,极点为z=2 5、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。

A.16>NB.16=NC.16<ND.16≠N6. 设系统的单位抽样响应为h(n)=δ(n)+2δ(n-1)+5δ(n-2),其频率响应为( )。

A. H(e j ω)=e j ω+e j2ω+e j5ωB. H(e j ω)=1+2e -j ω+5e -j2ωC. H(e j ω)=e -j ω+e -j2ω+e -j5ωD. H(e j ω)=1+21e -j ω+51e -j2ω 7. 设序列x(n)=2δ(n+1)+δ(n)-δ(n-1),则X(e j ω)|ω=0的值为( )。

A. 1B. 2C. 4D. 1/28. 设有限长序列为x(n),N 1≤n ≤N 2,当N 1<0,N 2>0,Z 变换的收敛域为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N4 N0 N2
N5 N1 N3
202
x(n)
0 N0 N1 h(n m)
n0
N1 N00
m
h(n m)
n
0 N2 N3
n
h(n m)
n N0 N2
0 N2
m
0 n N0 m h(n m)
0
2020/7/14
n N1
h(n m) n N1 N3
yn 1 yn 1 xn 1 xn 1
2
2
令x n n
则y n h n 1 h n 1 x n 1 x n 1
2
2
2020/7/14
课件
23
h 0 1 h 1 x 0 1 x 1 1
2
2
h 1 1 h 0 x 1 1 x 0 1 11 1
2
2
2
h 2 1 h 1 x 2 1 x 1 1
k n0
k n0
满足叠加原理
是线性系统
n
令k' k m nm
T x n m x k m
x k'
k n0
k ' n0 m
nm
y n m x k T x n m k n0
是移变系统
2020/7/14
课件
13
n
T x n x k k n0
当 n n0 时,输出只取决于当前输入和以前 的输入
是因果系统
若 x n M 则 exn e xn eM
是稳定系统
2020/7/14
课件
16
1-8 以下序列是系统的单位抽样响应 hn ,
试说明系统是否是(1)因果的(2)稳定的
(3) 3n u n
解:
当n 0时 h n 0 是因果的
h n 3n
n
n0
是不稳定的
2020/7/14
m
n
2n 4m
m
2n 4m
mn
2020/7/14
2n
1
4n 41
4 2n 3
课件
4
当n 0时
1
y n 2m 0.5nm
m
1
2n 4m
m
2n 4m
m1
2n
41 1 41
1 2n 3
y n 4 2n u n 1 1 2n u n
3
3
2020/7/14
课件
5
1-3 已知h n anu n 1,0 a 1 ,通过直
课件
34
m
0
N3
m
课件
29
1-14 有一调幅信号
xa t 1 cos2 100t cos2 600t
用DFT做频谱分析,要求能分辨 xa t 的
所有频率分量,问 (1)抽样频率应为多少赫兹(Hz)? (2)抽样时间间隔应为多少秒(Sec)? (3)抽样点数应为多少点? (4)若用 fs 3kHz频率抽样,抽样数据为512
课件
15
(4)T x n exn T ax1 n bx2 n eax1nbx2n eax1n ebx2n aT x1 n bT x2 n aex1n bex2n
不满足叠加原理 是非线性系统
T x n m exnm y n m
是移不变系统
输出只取决于当前输入,与未来输入无关
ag n x1 n bg n x2 n
aT x1 n bT x2 n 满足叠加原理
是线性系统
T x n m g n x n m
y n m g n m x n m T x n m
不是移不变系统
2020/7/14
课件
11
T x n g n x n
因为系统的输出只取决于当前输入,与未 来输入无关。所以是因果系统
第一章习题讲解
2020/7/14
课件
1
1-2 已知线性移不变系统的输入为 xn,系统的 单位抽样响应为hn ,试求系统的输出y n ,
并画图。
2)x n R3 n,h n R4 n
解:
y n x nhn R3 n R4 n n n 1 n 2 R4 n R4 n R4 n 1 R4 n 2
1 2
n 1
2e j 1 2e
n 1 j 1
e jn
e jn1
2e j 2e j 1
e jn
2e j 2e j
1 1
2020/7/14
课件
26
1-12 已知一个线性时不变系统的单位抽样
响应 hn 除区间 N0 n N1 之外皆为零; 又已知输入 xn 除区间 N2 n N3 之外 皆为零;设输出 yn 除区间 N4 n N5
e
j
2
2e
jn
m1
1 2
m
e
j
m
2e j
e jn
2e jn 2e j 1
e jn
2e j 2e j
1 1
2020/7/14
课件
25
或y
n
x
n
h
n
e
j n
n
1 2
n 1
u
n
1
e
j n
n 1
e
m
jm
1 2
n 1 m
e
jn
1 2
n 1
m1n
2e j
m
e
j n
课件
9
1-6 试判断 yn xn2 是否是线性系统?
并判断是否是移不变系统?
解:设 T x1(n) x1(n)2 T x2(n) x2(n)2
T x1 n x2 n x1 n x2 n2 x1 n2 x2 n2 2x1 n x2 n
T x1 n T x2 n 不满足可加性
或 T ax n ax n2 a2 x n2 aT x n
之外皆为零,试以 N0, N1, N2 和 N3 表示 N4 和N5 。
2020/7/14
课件
27
解:
对线性移不变系统,有
yn xnhn xmhn m
m
对 xm ,非零值的区间为 N2 m N3
对hn m ,非零值区间为 N0 n m N1
N0 m n N1 m
得输出 yn 的非零值区间 N0 N2 n N1 N3
不是线性系统
不满足比例性
T x n m x n m2 y n m x(n m)2
是移不变系统
2020/7/14
课件
10
1-7 判断以下每一系统是否是(1)线性 (2)移不变(3)因果(4)稳定的?
(1)T x n g n x n 解: T ax1 n bx2 n g n ax1 n bx2 n
2
2
2
h
3
1 2
h
2
x
3
1 2
x
2
1 2
2
h
n
1 2
h
n
1
x
n
1 2
x
n
1
1 2
n1
系统的单位抽样响应
2020/7/14
h
n
n
课件
1 2
n1
u
n
1
24
(b)y
n
h
n
x
n
n
1 2
n 1
u
n
1
e
j n
e
j n
m1
1 2
m1
e
j n m
1 e j
e
j n
2e
jn
2 1 1
课件
17
(4) 3n u n
解:
当n 0时 h(n) 0
是非因果的
hn
n
0
3n
n
3n
n0
1 1 1
3 2
3
是稳定的
2020/7/14
课件
18
(5) 0.3n u n
解:
当n 0时 h n 0
是因果的
h n 0.3n
1
10
n
n0
1 0.3 7
是稳定的
1 a
1 a
2020/7/14
课件
8
1-4 判断下列每个序列是否是周期性的,若是周期 性的,试确定其周期
(1)x n
Acos
3
7
n
8
解:x(n)为正弦序列
其中0
3
7
2 14 是有理数 0 3
N 14是满足x(n N ) x(n)的最小正整数
x n为周期序列,周期为14
2020/7/14
2020/7/14
课件
19
(6) 0.3n u n 1
解:
当n 0时 h n 0
是非因果的
1
h n 0.3n 0.3n
n
n
n 1
是不稳定的
2020/7/14
课件
20
(7) n 4
解:
当n 4时 h(n) n 4 1 0
是非因果的
hn n 4 1
接计算卷积和的办法,试确定单位抽样响
应为 hn的线性移不变系统的阶跃响应。
2020/7/14
课件
6
解:LSI系统的阶跃响应是指输入为阶跃序列时 系统的输出,即
xn u n, hn anu n 1,0 a 1
求y n x n h n x mh n m
m
当n 1时
y
n
anm
an
m0
1 a
当n 0时
y n
anm
a
m n 1
1 a
相关文档
最新文档