特殊平行四边形证明及解答题困难学生版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.解答题(共30小题)
1.(2012?威海)(1)如图①,?ABCD 的对角线AC ,BD 交于点O ,直线EF 过点O ,分别交
AD ,BC 于点E ,F .
求证:AE=CF .
(2)如图②,将?ABCD (纸片)沿过对角线交点O 的直线EF 折叠,点A 落在点A 1处,点B
落在点B 1处,设FB 1交CD 于点G ,A 1B 1分别交CD ,DE 于点H ,I .
求证:EI=FG .
2.(2011?贵阳)[阅读]
在平面直角坐标系中,以任意两点P ( x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为
.
[运用](1)如图,矩形ONEF 的对角线相交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原
点,点E 的坐标为(4,3),则点M 的坐标为 .
3.(2007?黑龙江)在△ABC 中,AB=AC ,点P 为△ABC 所在平面内一点,过点P 分别作PE ∥AC
交AB 于点E ,PF ∥AB 交BC 于点D ,交AC 于点F .若点P 在BC 边上(如图1),此时PD=0,
可得结论:PD+PE+PF=AB . 请直接应用上述信息解决下列问题:
当点P 分别在△ABC 内(如图2),△ABC 外(如图3)时,上述结论是否成立?若成立,请给
予证明;若不成立,PD ,PE ,PF 与AB 之间又有怎样的数量关系,请写出你的猜想,不需要证
不需要证明.
4.(2006?泰安)如图,矩形ABCD 的对角线交于点O ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,
连接AF ,CE .
(1)求证:四边形AECF 是平行四边形;
(2)若∠BAD 的平分线与FC 的延长线交于点G ,则△ACG 是等腰三角形吗?并说明理由.
(2)在直角坐标系中,有A (﹣1,2),B (3,1),C (1,4)三点,另有一点D 与点A 、B 、C 构成平行四边形的顶点,求点D 的 (3)
5.(2006?陕西)如图,在Rt△ABC中,∠BAC=90°,E,F分别是BC,AC的中点,延长BA到点D,使AD=AB.连接DE,DF.
(1)求证:AF与DE互相平分;
(2)若BC=4,求DF的长.
6.如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF.
请回答下列问题:
(1)求证:四边形ADEF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADEF是矩形.
7.(2010?盘锦)如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.
(1)若点D是BC边的中点(如图①),求证:EF=CD;
(2)在(1)的条件下直接写出△AEF和△ABC的面积比;
(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
8.(2011?海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).
9.(2007?常德)如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG
交AC于F,过F作FH∥CD交BC于H,可以证明结论成立.(考生不必证明)
(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.
(3)发现:通过上述过程,你发现G在直线CD上时,结论还成立吗?
10.(2001?河北)如图,在菱形ABCD中,AB=10,∠BAD=60度.点M从点A以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10).
(1)点N为BC边上任意一点,在点M移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;
(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动,在什么时刻,梯形ABNM的面积最大并求出面积的最大值;
(3)点N从点B(与点M出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动,过点M作MP∥AB,交BC于点P.当△MPN≌△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,井求当S=0时的值.
11.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.
(1)如图1,证明平行四边形ECFG为菱形;
(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;
(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.
12.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE、AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积.
13.(2011?清远)如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.
(1)求证:AB=DF;
(2)若AD=10,AB=6,求tan∠EDF的值.
14.(2010?大庆)已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.
(1)根据题目所提供的信息,可求得b=4,a=5,m=9;