气缸安装示意图

合集下载

无杆气缸安装步骤(图解)

无杆气缸安装步骤(图解)

无杆气缸安装步骤(图解)内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.根据气缸的安装件形式,可分为可拆式和固定式气缸。

根据气缸安装形式可分为固定式、摆动式、嵌入式、回转气缸四种。

在选择缓冲无杆气缸时,要求重量轻,应选轻型缸;要求安装空间窄且行程短,可选薄型缸;有横向负载,可选带导杆无杆气缸。

凭据安装位置、利用目的等因素决定。

在一样平常情况下,接纳牢固式无杆气缸。

在须要随事故机构连续回转时,应选用回转无杆气缸。

在要求活塞杆除直线运动外,还需作圆弧摆动时,则选用轴销式无杆气缸。

有特殊要求时,应选择相应的特殊无杆气缸。

一、无杆气缸作用力的巨细:即缸径的选择。

凭据负载力的巨细来确定无杆气缸输出的推力和拉力。

一样平常均按外载荷理论平衡条件所需无杆气缸作用力,凭据差别速率选择差别的负载率,使无杆气缸输着力稍有余量。

缸径过小,输着力不敷,但缸径过大,使装备粗笨,资源进步,又增长耗宇量,浪费能源。

在夹具筹划时,应只管接纳扩力机构,以减小无杆气缸的外形尺寸。

二、无杆气缸活塞行程:与利用的场合和机构的行程有关,但一样平常不选满行程,防备活塞和缸盖相碰。

如用于夹紧机构等,应按盘算所需的行程增长10~20㎜的余量。

三、无杆气缸5个安装流程:1、气缸安装前,应经空载试运转及在1.5倍最高工作压力下试压,运转正常和无漏气现象后方可使用。

2、气缸接入管道前,必须清除管道内脏物,防止杂物进入气缸内。

3、在行程中载荷有变化时,应使用输出力充裕的气缸,并附加缓冲装置。

4、缓冲气缸在开始运行前,先把缓冲节流阀拧在节流量较小的位置,然后逐渐开大,直到调到满意的缓冲效果。

5、不使用满意行程,特别是当活塞杆伸出时,不要使活塞杆与缸盖相碰。

气缸的基本组成和工作原理

气缸的基本组成和工作原理
其工作原理如下图5所示。它是在气缸活塞上安装永久磁环,在缸筒外壳上装有舌簧开关。开关内装有舌 簧片、保护电路和动作指示灯等,均用树脂塑封在一个盒子内。当装有永久磁铁的活塞运动到舌簧片附近,磁力 线通过舌簧片使其磁化,两个簧片被吸引接触,则开关接通。当永久磁铁返回离开时,磁场减弱,两簧片弹开, 则开关断开。由于开关的接通或断开,使电磁阀换向,从而实现气缸的往复运动。
磁性开关个数
无记号 2个
S
1个
N
2个
MY1 B 25 G
基本型
缸径
接管形式 无记号 G
标准型 集中配管型
300 L S Z73
行程调节方式 行程
行程调节装置数
无记号
两侧
S*
单侧
磁性开关的型号 无记号 无磁性开关
磁性开关个数
无记号 2个
S
1个
N
2个
Page: 14
气缸常见故障的判断及基本维修技巧
常用维修工具
磁性无杆气缸
图4
1-套筒 2-外磁环 3-外磁导板 4-内磁环 5-内磁导板 6-压盖 7-卡环 8-活塞 9-活塞轴 10-缓冲柱塞 11-气缸筒 12-端盖 13-进、排气口
Page: 6
气缸的基本组成部分及工作原理
齿轮齿条式摆动气缸的结构和工作原理
齿轮齿条式摆动气缸是通过连接在活塞上的齿条使齿轮回转的一种摆动气缸,其结构原理如下图7所示。活 塞仅作往复直线运动,摩擦损失少,齿轮传动的效率较高,此摆动气缸效率可达到95%左右。
Page: 8
气缸的基本组成部分及工作原理
气动手爪
气动手爪 气动手爪这种执行元件是一种变型气缸。它可以用来抓取物体,实现机械手各种动作。在自动化系统 中,气动手爪常应用在搬运、传送工件机构中抓取、拾放物体。

气缸工作原理介绍_图文

气缸工作原理介绍_图文
排气的绝热压缩过程。整个冲击段时间很短,约几十毫秒。见图 10-c。
气缸的工作原理
图10 普通型冲击气缸的工作原理 1— 蓄气缸;2—中盖;3—排气孔;4—喷气口;5—活塞
气缸的工作原理
• 第四阶段:弹跳段。在冲击段之后,从能量观点来说,蓄气缸腔内压力
能转化成活塞动能,而活塞的部分动能又转化成有杆腔的压力能,结果造成有 杆腔压力比蓄气-无杆腔压力还高,即形成“气垫”,使活塞产生反向运动,结果 又会使蓄气-无杆腔压力增加,且又大于有杆腔压力。如此便出现活塞在缸体内 来回往复运动—即弹跳。直至活塞两侧压力差克服不了活塞阻力不能再发生弹 跳为止。待有杆腔气体由A排空后,活塞便下行至终点。
杆腔压力下降,直到下列力平衡方程成立时,活塞才开始移动。
气缸的工作原理
式中 d——中盖喷气口直径(m); p30——活塞开始移动瞬时蓄气缸腔内压力(绝对压力)(Pa); p20——活塞开始移动瞬时有杆腔内压力(绝对压力)(Pa); G——运动部件(活塞、活塞杆及锤头号模具等)所受的重力(N); D——活塞直径(m); d1——活塞杆直径(m); Fƒ0——活塞开始移动瞬时的密封摩擦力(N)。
图5并联型气-液阻尼缸 1—液压缸;2—气缸
气缸的工作原理
• 按调速特性可分为:
1)慢进慢退式; 2)慢进快退式; 3)快进慢进快退式。 其调速特性及应用见表1。 就气-液阻尼缸的结构而言,尚可分为多种形式:节流阀、单向阀单独设置或 装于缸盖上;单向阀装在活塞上(如挡板式单向阀);缸壁上开孔、开沟槽、 缸内滑柱式、机械浮动联结式、行程阀控制快速趋近式等。活塞上有挡板式单 向阀的气-液阻尼缸见图6。活塞上带有挡板式单向阀,活塞向右运动时,挡板离 开活塞,单向阀打开,液压缸右腔的油通过活塞上的孔(即挡板单向阀孔)流 至左腔,实现快退,用活塞上孔的多少和大小来控制快退时的速度。活塞向左 运动时,挡板挡住活塞上的孔,单向阀关闭,液压缸左腔的油经节流阀流至右 腔(经缸外管路)。调节节流阀的开度即可调节活塞慢进的速度。其结构较为

气缸的安装形式

气缸的安装形式

气缸的安装形式气缸的安装形式表42.2-2?气缸的安装形式分类简图说明固定式气缸支座式轴向支座MS1式?轴向支座,支座上承受力矩,气缸直径越大,力矩越大切向支座式法兰式前法兰MF1式 ?前法兰紧固,安装螺钉受拉力较大后法兰MF2式 ?后法兰紧固,安装螺钉受拉力较小自配法兰式 ?法兰由使用单位视安装条件现配轴销式气缸尾部轴销式单耳轴销MP4式 ?气缸可绕尾轴摆动双耳轴销MP2式头部轴销式?气缸可绕头部轴摆动中间轴销MT4式 ?气缸可绕中间轴摆动1.2.1单作用气缸单作用气缸只有一腔可输入压缩空气,实现一个方向运动。

其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。

其原理及结构见图42.2-2。

图42.2-2单作用气缸1—缸体;2—活塞;3—弹簧;4—活塞杆;单作用气缸的特点是:1)仅一端进(排)气,结构简单,耗气量小。

2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输出力。

3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。

4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。

由于以上特点,单作用活塞气缸多用于短行程。

其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。

单作用柱塞缸则不然,可用在长行程、高载荷的场合。

1.2.2双作用气缸双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。

其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。

此类气缸使用最为广泛。

1)双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。

其工作原理见图42.2-3。

缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩空气依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。

安装所占空间大,一般用于小型设备上。

发动机气缸排列形式

发动机气缸排列形式

水平对置式工作示意图 •
在前面介绍气缸V型排列发动机的时候已经提过,V型布局形成的夹角通常为60°(左右两列气缸中 心线的夹角γ<180°)而水平对置发动机只是其气缸夹角为180度。相比传统布局要符合运动机械原理的 汽车发动机组合形式,其制造成本和工艺难度相当高,目前世界上只有保时捷和斯巴鲁两个厂商在使用。
V形工作示意图 •
兼顾小体积与充沛动力的大众“VR6”发动机

众所周知,对于V型6缸发动机而言,60度夹角是最优化的设计,这是经过无数科学实验论证过的结 果。因而绝大多数的V6发动机都是采用这种布局形式的。但为了能在更小的空间内放下V6发动机,大众 集团在1994年另辟蹊径的研发出了夹角为15度、体积更小的VR6发动机。而从动力参数来看,它并不逊 色与普通的V6发动机,但在研发之初就暴露了明显的抖动问题。通过一系列的平衡稳定手段虽使问题得以 明显改善。但这依然无法超越改变其本身结构上的特性,就像普通直列发动机的震动通常都会大于V型发 动机一样,夹角更小的VR6从结构本身就决定了它的震动会大于V6。诸如大众旗下的高尔夫R32、EOS 等车型都曾装配过这款发动机。而出于环保以及成本的考虑,这款3.2升VR6发动机已经逐渐淡出了历史 的舞台。但增加了燃油分层喷射技术(FSI)的3.6升VR6发动机目前仍然广泛装配在奥迪Q7、大众途锐 、R36等诸多车型上。

特点
采用水平对置布局的气缸可以降低车身重心,但对润滑要求也要更高: 1、水平对置发动机的最大优点是重心低。由于它的汽缸为“平放”,不仅降低了汽车的重心,还 能让车头设计得又扁又低,这些因素都能增强汽• 车的行驶稳定性。 同时,水平对置的汽缸布局是一 种对称稳定结构,这使得发动机的运转平顺性比V型发动机更好,运行时的功率损耗也是最小。当 然更低的重心和均衡的分配也为车辆带了更好的操控性,那为什么其它厂家没有研发水平对置引擎 呢? 2、除了因为水平对置结构较为复杂外,还有如机油润滑等问题很难解决。横置的气缸因为重力 的原因,会使机油流到底部,使一边气缸得不到充分的润滑。显然保时捷和斯巴鲁都很好的解决了 众多技术难题,但高精度的制造要求也带来了更高的养护成本,并且由于机体较宽,因而并不利于 布局。

气 缸

气    缸
Page ▪ 2
气缸
Page ▪ 3
图 双活塞杆双作用气缸工作原理 1.缸体;2.工作台;3.活塞;4.活塞杆;5.机架。
气缸
Page ▪ 4
图 双活塞杆双作用气缸工作原理 1.缸体;2.工作台;3.活塞;4.活塞杆;5.机架。
Page ▪ 5
气缸
(2)单作用气缸 单作用气缸只有一腔可输入压缩空气,实现一个方向运动。
图12.2 缓冲气缸
1.活塞杆; 2.活塞; 3.缓冲柱塞; 4.柱塞孔; 5.单向阀; 6.节流阀; 7.端盖; 8.气孔。
气缸
单作用气缸的特点是: 1)仅一端进(排)气,结构简单,耗气量小。 2)用弹簧力或膜片张力等复位,压缩空气能量的一部分用于克服弹
簧力或膜片张力,因而减小了活塞杆的输出力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气
Page ▪ 12
Page ▪ 13
气缸
1,6.进(排)气口; 2.有杆腔; 3.活塞; 4.低压排气口; 5.蓄能腔; 7.后盖; 8.中盖; 9.密封垫片; 10.活塞杆; 11.前盖。
图12.7 普通型冲击气缸
气缸
4、薄膜式气缸 薄膜式气缸是一种利用压缩空气通过膜片推动活塞杆作往复直线运
动的气缸。 组成:缸体、膜片、膜盘和活塞杆等。 分类:单作用式和双作用式两种,如图12.8所示。 薄膜式气缸的膜片可以做成盘形膜片和平膜片两种形式。 薄膜式气缸和活塞式气缸相比较,具有结构简单、紧凑、制造容
缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小而变化,因而活塞杆的
输出力在行进过程中是变化的。 2、组合气缸
组合气缸指气缸与液压缸相组合形成的气-液阻尼缸、气-液增压缸等。 气缸特点:动作快,但速度不易控制,当载荷变化较大时,容易产生 “爬行”或“自走”现象; 液压缸特点:动作不如气缸快,但速度易于控制,当载荷变化较大时, 只要采取措施得当,一般不会产生“爬行”和“自走”现象。

标准气缸的安装方式大全

标准气缸的安装方式大全

标准气缸的安装方式大全描述:斯麦特(5A标化缸国家标准品牌气缸厂家)更多无杆气缸、旋转旗杆、手动气爪、机器人专用气缸、气缸配套一体化方案设计尽在斯麦特。

标准气缸的安装方式大全,你了解多少?气缸的安装方式有很多种,根据气缸安装后缸体是否可以活动简要分为固定式和摆动式。

一般情况下,同一种气缸有多种安装形式,以SC标准气缸为例,有自由型、脚架型、法兰型、耳环性与中摆型。

首先需要了解一下标准气缸的外形尺寸及基本概述SC标准尺寸尺寸图标准气缸固定安装方式及安装参数尺寸标准气缸单耳安装尺寸图CA尾部单耳座固定安装:应确认DE孔的直径大小和气缸的中心距标准气缸双耳安装尺寸图CB尾部双耳座固定安装:确认DE孔的直径大小和气缸的中心距标准气缸前后法兰安装尺寸图法兰板安装有头部法兰安装(FA)和尾部法兰安装(FB),需要确认活塞杆的距离和法兰板BD,BF的安装尺寸,而尾部法兰安装(FB),同理只要保证法兰到气缸顶端的距离。

标准气缸中摆安装尺寸图标准气缸中摆安装座尺寸图TC和TC-M中间轴销安装:中摆安装确认TC中间轴到气缸顶端的距离1.自由型安装方式,是指不使用安装附件,利用气缸缸体内的螺纹拧入机械体内固定安装;或者利用气缸缸体外部的螺纹,使用螺母把气缸固定在机械上;也可以通过端盖的螺钉孔用螺钉来固定在机械上。

2.脚架型安装方式,用LB表示,指用一只L型安装脚架配合前端端盖处螺孔使用螺钉进行安装固定,安装脚架上可以承受较大的倾覆力矩,可以用于负载运动方向与活塞杆轴线一致的场合。

3.法兰型安装可分为前法兰型与后法兰型,前法兰型是在前端盖处使用法兰与螺钉固定气缸,后法兰型则是指在后端盖处安装法兰并使用螺钉固定,同样适用于负载运动方向与活塞杆轴线一致的场合。

4.耳环型安装方式分为单耳型与双耳型,是指在SC系列标准气缸后端盖处用螺钉把气缸端盖与耳环型安装配件固定在一起,活塞杆轴线的垂直方向带有轴销孔的气缸,负载和气缸可绕销轴摆动。

气缸盖的拆装(共10张PPT)

气缸盖的拆装(共10张PPT)
注意:扭力(niǔlì)扳手上的接杆的轴线应该与螺 栓的轴线在同一直线上面
第九页,共10页。
左图为汽缸(qìgāng)盖拆卸;右图为汽缸(qìgāng)盖安装
第十页,共10页。
注意:摇把的轴线(zhóu xiàn)应该与螺栓轴线(zhóu xiàn)在同一直线上面 注意:扭力扳手上的接杆的轴线应该与螺栓的轴线在同一(tóngyī)直线上面 图2 汽缸螺栓(luóshuān)的拧紧顺序 注意扭力(niǔlì)扳手上两个单位的区别, 二、汽缸(qìgāng)盖的拆卸 三、汽缸(qìgāng)盖的安装 左图为汽缸(qìgāng)盖拆卸; 发动机机体(jītǐ)组 图2 汽缸螺栓(luóshuān)的拧紧顺序 注意:扭力扳手上的接杆的轴线应该与螺栓的轴线在同一(tóngyī)直线上面 图1 汽缸(qìgāng)盖螺栓的拆卸顺序 二、汽缸(qìgāng)盖的拆卸 注意:摇把的轴线(zhóu xiàn)应该与螺栓轴线(zhóu xiàn)在同一直线上面 三、汽缸(qìgāng)盖的安装 图2 汽缸螺栓(luóshuān)的拧紧顺序
气缸盖的拆装
第一页,共10页。
发动机机体(jītǐ)组
第二页,共10页。
二、汽缸(qìgāng)盖的拆卸
图1 汽缸(qìgāng)盖螺栓的拆卸顺序
第三页,共10页。
注意扭力(niǔlì)扳手上两个单位的区别, 我们所选用的是:NEWTON MET应该与螺栓 的轴线在同一(tóngyī)直线上面
第五页,共10页。
注意:摇把的轴线(zhóu xiàn)应该与螺栓轴 线(zhóu xiàn)在同一直线上面
第六页,共10页。
三、汽缸(qìgāng)盖的安装
图2 汽缸螺栓(luóshuān)的拧紧顺序

标准气缸安装尺寸

标准气缸安装尺寸

神威气动 文档标题:标准气缸安装尺寸一、标准气缸安装尺寸的介绍:引导活塞在缸内进行直线往复运动的圆筒形金属机件。

空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。

涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。

气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。

二、气缸种类:①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。

②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。

③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。

它的密封性能好,但行程短。

④冲击气缸:这是一种新型元件。

它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以做功。

⑤无杆气缸:没有活塞杆的气缸的总称。

有磁性气缸,缆索气缸两大类。

做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。

此外,还有回转气缸、气液阻尼缸和步进气缸等。

三、气缸结构:气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示:2:端盖端盖上设有进排气通口,有的还在端盖内设有缓冲机构。

杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。

杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。

导向套通常使用烧结含油合金、前倾铜铸件。

端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。

3:活塞活塞是气缸中的受压力零件。

为防止活塞左右两腔相互窜气,设有活塞密封圈。

活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。

耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。

活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。

气缸的工作原理

气缸的工作原理

气缸的工作原理图42.2-9 是又一种浮动联接气-液阻尼缸。

与前者的区别在于:T形顶块和拉钩装设位置不同,前者设置在缸外部。

后者设置在气缸活塞杆内,结构紧凑但不易调整空行程s1(前者调节顶丝即可方便调节s1的大小)。

1 .2.4 特殊气缸(1)冲击气缸图42.2-9 浮动联接气-液阻尼缸冲击气缸是把压缩空气的能量转化为活塞、活塞杆高速运动的能量,利用此动能去做功。

冲击气缸分普通型和快排型两种。

1)普通型冲击气缸普通型冲击气缸的结构见图42.2-10。

与普通气缸相比,此种冲击气缸增设了蓄气缸1和带流线型喷气口4及具有排气孔3的中盖2。

其工作原理及工作过程可简述为如下五个阶段(见图42.2-11):第一阶段:复位段。

见图42.2-10和图42.2-11a,接通气源,换向阀处复位状态,孔A进气,孔B排气,活塞5在压差的作用下,克服密封阻力及运动部件重量而上移,借助活塞上的密封胶垫封住中盖上的喷气口4。

中盖和活塞之间的环形空间C经过排气小孔3与大气相通。

最后,活塞有杆腔压力升高至气源压力,蓄气缸内压力降至大气压力。

第二阶段:储能段。

见图42.2-10和图42.2-11b,换向阀换向,B孔进气充入蓄气缸腔内,A孔排气。

由于蓄气缸腔内压力作用在活塞上的面积只是喷气口4的面积,它比有杆腔压力作用在活塞上的面积要小得多,故只有待蓄气缸内压力上升,有杆腔压力下降,直到下列力平衡方程成立时,活塞才开始移动。

式中 d——中盖喷气口直径(m);p30——活塞开始移动瞬时蓄气缸腔内压力(绝对压力)(Pa);p20——活塞开始移动瞬时有杆腔内压力(绝对压力)(Pa);G——运动部件(活塞、活塞杆及锤头号模具等)所受的重力(N);D——活塞直径(m);d1——活塞杆直径(m);F?0——活塞开始移动瞬时的密封摩擦力(N)。

若不计式(42.2-1)中G和F?0项,且令d=d1,,则当时,活塞才开始移动。

这里的p20、p30均为绝对压力。

实训课题气缸盖的拆装

实训课题气缸盖的拆装

本周实训课题丰田8发动机气缸盖拆装(时间:2吩钟)气缸盖拆装:拆装过程包括①拆卸气缸盖、②清洗气缸盖、③测量气缸盖、④安装气缸盖四个部分。

作业程序:一、工具所需检查:套筒扳手、扭力扳手、刀口尺、塞尺、铲刀、棉纱等二、拆卸气缸盖1、拆下气缸盖总成(1)按下图所示顺序,均匀松开并拆下10个缸盖螺栓。

注意:气缸盖翘曲或破裂可能是由于不正确拆卸螺栓引起的。

(2)拆下10个垫片(3)从气缸体上的定位销处撬起气缸盖,把缸盖放置在条形木块上。

注意:如果气缸盖很难提起,将螺丝刀伸入气缸盖和气缸体之间,如下图所示;小心不要损坏缸盖和缸体接触表面。

2、拆下气缸盖垫片三、测量气缸盖1、清除水垢和积碳;2、汽缸盖无裂纹;3、汽缸盖无腐蚀、无损伤;4、汽缸盖螺纹良好;5、火花塞孔螺纹良好;6、汽缸盖平面度误差小于0.10mm。

四、安装气缸盖1、安装气缸盖垫片(1)将新的气缸盖垫片安装在缸体上。

注意:留意垫片安装方向(光滑的一面朝向汽缸体)(2)将气缸盖放置在气缸盖垫片2、安装气缸盖总成注意:气缸盖螺栓的紧固分3个步骤,如果螺栓有断裂或变形则予以更换。

(1)在螺纹和气缸盖螺栓头部下面涂一层薄薄的发动机机油。

(2)如下图所示,按顺序安装并均匀紧固10个气缸盖螺栓,拧紧力矩:29N ·m。

注意:1、如果任何一个螺栓不能达到规定力矩,则予以更换。

2、气缸盖螺栓长度有90m和108m,将90m螺栓(③安装在进气歧管一侧的位置。

将108m螺栓(A)安装在排气歧管一侧的位置。

(3)给气缸盖螺栓头部作油漆记号。

(4)按照下图所示顺序号,再紧固气缸盖螺栓90°。

五、整理工具,实训场地5S实施。

气缸的工作原理及详细介绍_图文

气缸的工作原理及详细介绍_图文

图7
➢齿轮齿条式摆动气缸
1-齿条组件 2-弹簧柱销 3-滑块 4-端盖 5-缸体 6-轴承 7-轴 8-活塞 9-齿轮
单齿条式
双齿条式
Page: 7
气缸的基本组成部分及工作原理
✓ 叶片式摆动气缸和工作原理
单叶片式摆动气缸的结构原理如图13-13所示。它是由叶片轴转子(即输出轴)、定子、缸体和前 后端盖等部分组成。定子和缸体固定在一起,叶片和转子联在一起。在定子上有两条气路,当左路进气时, 右路排气,压缩空气推动叶片带动转子顺时针摆动。反之,作逆时针摆动。
理论推力(活塞杆伸出) Ft1=A1p
理论拉力(活塞杆缩回) Ft2=A2p
式中
Ft1、Ft2——气缸理论输出力(N);
A1、A2——无杆腔、有杆腔活塞面积(m2);
p — 气缸工作压力(Pa)。
实际中,由于活塞等运动部件的惯性力以及密封等部分的摩擦力,活塞杆的实际输出力小于理论推 力,称这个推力为气缸的实际输出力。气缸的效率 是气缸的实际推力和理论推力的比值,即
叶片式摆动气缸体积小,重量最轻,但制造精度要求高,密封困难,泄漏是较大,而且动密封接触 面积大,密封件的摩擦阻力损失较大,输出效率较低,小于80%。因此,在应用上受到限制,一般只用在安 装位置受到限制的场合,如夹具的回转,阀门开闭及工作台转位等。
➢单叶片式摆动气缸
1-叶片 2-转子 3-定子 4-缸体
螺纹配管 内置快换接头
可选项 无记号
M
标准(杆端内螺纹 )
杆端外螺纹
Page: 13
SMC常见气缸型号的表示方法
➢ SMC双联气缸CXS系列( 6~ 32)
CXS M 20
轴承的种类 M L
滑动轴承 球轴承
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神威气动 文档标题:气缸安装示意图
气缸安装示意图的介绍:
引导活塞在缸内进行直线往复运动的圆筒形金属机件。

空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。

涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。

气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。

二、气缸种类:
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。

②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。

③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。

它的密封性能好,但行程短。

④冲击气缸:这是一种新型元件。

它把压缩气体的压力能转换为活塞高速(10~20米/秒)
运动的动能,借以做功。

⑤无杆气缸:没有活塞杆的气缸的总称。

有磁性气缸,缆索气缸两大类。

做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。

此外,还有回转气缸、气液阻尼缸和步进气缸等。

三、气缸结构:
气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示:
2:端盖
端盖上设有进排气通口,有的还在端盖内设有缓冲机构。

杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。

杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。

导向套通常使用烧结含油合金、前倾铜铸件。

端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。

3:活塞
活塞是气缸中的受压力零件。

为防止活塞左右两腔相互窜气,设有活塞密封圈。

活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。

耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。

活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。

滑动部分太短,易引起早期磨损和卡死。

活塞的材质常用铝合金和铸铁,小型缸的活塞有黄
神威气动 铜制成的。

4:活塞杆
活塞杆是气缸中最重要的受力零件。

通常使用高碳钢、表面经镀硬铬处理、或使用不锈钢、以防腐蚀,并提高密封圈的耐磨性。

5:密封圈
回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。

缸筒与端盖的连接方法主要有以下几种:
整体型、铆接型、螺纹联接型、法兰型、拉杆型。

6:气缸工作时要靠压缩空气中的油雾对活塞进行润滑。

也有小部分免润滑气缸。

四、气缸工作原理:
1:根据工作所需力的大小来确定活塞杆上的推力和拉力。

由此来选择气缸时应使气缸的输出力稍有余量。

若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。

在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。

2:下面是气缸理论出力的计算公式:
F:气缸理论输出力(kgf)
F′:效率为85%时的输出力(kgf)--(F′=F×85%)
D:气缸缸径(mm)
P:工作压力(kgf/C㎡)
例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少?芽输出力是多少?
将P、D连接,找出F、F′上的点,得:
F=2800kgf;F′=2300kgf
在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1
神威气动 中查出。

例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为132kgf,(气缸效率为85%)问:该选择多大的气缸缸径?
由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf)
由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为?63的气缸便可满足使用要求。

五:气缸图片展示:
抱紧气缸如下图:
带阀气缸:
神威气动
带锁气缸
迷你气缸
神威气动 笔型气缸
薄型气缸
手指气缸。

相关文档
最新文档