集合的含义与表示--优质获奖课件 (90)

合集下载

集合的含义与表示说课稿公开课一等奖课件省赛课获奖课件

集合的含义与表示说课稿公开课一等奖课件省赛课获奖课件

3.对的理解列举法
(1)元素间用分隔号“,”隔开;
(2)元素不重复;
(3)对于含较多元素的集合,如果构成该集合 的元素有明显规律,可用列举法,但是必须把 元素间的规律显示清晰后才干用省略号.
4.合理选用集合的表达办法
列举法与描述法各有优点,列举法能够看清集 合的元素,描述法能够看清集合元素的特性, 普通含有较多或无数多个元素时不适宜采用列 举法,由于不能将集合中的元素一一列举出来, 而没有列举出来的元素往往难以拟定.
[例5] 用适宜的办法表达下列集合: (1)24的正约数构成的集合; (2)不不大于3不大于10的整数构成的集合; (3)方程x2+ax+b=0的解集; (4)平面直角坐标系中第二象限的点集;
[分析] 首先搞清晰集合的元素是什么,然 后选用适宜的办法表达集合.
[解析] (1){1,2,3,4,6,8,12,24}; (2){不不大于3不大于10的整数}={x∈Z|3<
(2)不等式2x-1<5的自然数解构成的集 合.________
(3)古代我国的四大发明构成的集合.________
(4)A={x|0<x≤5且x∈N}.________
(5)B={x|x2-5x+6=0}.________
[解析] (1)6的正约数为1,2,3,6,故所求集合 为{1,2,3,6}
x=2, y=2.
∴D={(0,6),(1,5),(2,2)}.
(5)依题意,p+q=5,p∈N,q∈N*,则
p=0, q=5;
p=1, q=4;
p=2, q=3;
p=3, q=2;
p=4, q=1.
∵x 要满足条件 x=pq,∴E={0,14,23,32,4}.
(2)集合①{x|y=x2+1}的代表元素是x, ∵当x∈R时,y=x2+1故意义. ∴{x|y=x2+1}=R; 集合②{y|y=x2+1}的代表元素是y, 满足条件y=x2+1的y的取值范畴是y≥1, ∴{y|y=x2+1}={y|y≥1}.

集合的含义与表示(优质PPT)

集合的含义与表示(优质PPT)

1
1 1

2
A
2
即 A 中必还有另外两个元素1和 1 2
(2)如果 A 为单元素集合,则必有a 1 1 a
化简得 a2 a 1 0 ...
1 4 3 0 方程无解 a 1
1 a
故集合 A 不可能是单元素集
GAMEOVER!
常用数集
实数有理数整数负正0 整整数数自然数

分数
:
q p
(
p、q互质)
无理数:2,3, ...
实数:R 有理数: Q 整数:Z 自然数:N 正整数: N 或N,Z 或Z
元素的特征
1.确定性:集合中的元素是确定的,不能含糊不清,模棱两可
元素的特征
【例 4】设集合 A=(x,y,x+y),B=(0, x 2 ,xy)且 A=B,求实数 x,y 的值
解:根据元素的互异性可得: x 0且y 0
A B
x y 0

x

x2,y

xy
时,解得xy
1 1

x

xy,y

x2
时,解得
x

y

1 1
⑤高一年级优秀的学生
其⑥中所能有构无成理集数合的组数有( A )
A⑦.大2 组于 2 的整数
B.3 组
C.4 组
() () () (D.5 组)
⑧本学校高一年级学生全体
()
元素的特征
2.互异性:集合中每两个元素都不相同
【例 3】已知a2 ,2 a ,4 组成一个集合,且集合里有两个元素,则a ____1_或__2_____.
能力拓展

集合的含义与表示 课件

集合的含义与表示 课件
集合的含义与表示
要点 1 集合的概念 把一些元素 组成的总体 叫做集合. 要点 2 集合的表示(列举法) 把集合中的元素 一一列举出来,写在花括号内;如集合{a, b,c}. 要点 3 元素 a 与集合 A 的关系 a ∈ A 或 a∉ A.
要点4 常用数集 自然数集(非负整数集) N ;正整数集 N* ;整数集 Z ;有理 数集 Q ;实数集 R . 要点5 集合中元素的性质 确定性 , 互异性 ,无序性;例如:若a∈{a2,1},则a=0. 备注:将列举法表示集合放在本课时以分散难点(描述法等 方法放在第2课时).
【解析】 (1){0,1,2,3,4,5},注意:自然数中包含0. (2)由x2=x,得x=0或x=1,∴集合为{0,1}. (3){2,3,5,7,11},质数——除去1和本身外没有其他约数的正 整数.
探究2 列举法表示集合的步骤: ①明确集合中的元素; ②把集合中的所有元素写在花括号“{}”内.
思考题5 已知集合A={x,y},B={2,2x},如果A,B表示 同一个集合,求实数x,y的值.【答案】x源自2, y=4或xy==02,
思考题2 用列举法表示下列集合: (1)所有绝对值等于3的数的集合A; (2)所有绝对值小于3的整数的集合B.
【答案】 (1)A={-3,3} (2)B={-2,-1,0,1,2}.
题型三 元素与集合的关系
例3
给出下列关系:①
1 2
∈R;②
2 ∉Q;③|-3|∉N;④|-
3|∈Q;⑤0∉N.其中正确的个数为( )
【答案】 C
题型四 集合中元素的性质
性质1:确定性(见例1) 例4 已知A={a-2,2a2+5a,12},且-3∈A,求实数a的 值.
【解析】 ∵-3∈A,∴a-2=-3或2a2+5a=-3. ∴a=-1或a=-32.但a=-1时,a-2=-3,2a2+5a=-3与 集合中元素的互异性矛盾,∴a=-32.

《集合的含义与表示》课件

《集合的含义与表示》课件

描述法
通过描述元素的特征或满 足某种条件来表示集合。 例如:{x | x 是正整数}
画图法
用图形的方式表示集合。 例如:使用圆表示一个集 合,圆内的点表示集合的 元素。
常见的集合
自然数集合
包括所有正整数和零。例如:{0, 1, 2, 3, 4, ...}
整数集合
包括所有的正整数、负整数和零。例如:{..., -2, -1, 0, 1, 2, ...}
《集合的含义与表示》课 件
探索集合的意义与表示,深入了解集合的定义、表示方式、常见类型、运算 和性质,并展示集合在实际问题中的应用。
什么是集合?
集合是由一组确定的、互不相同的对象所组成的整体。对象称为集合的元素。 了解集合的定义和集合与元素的关系是理解集合概念的基础。
集合的表示方式
列举法
通过逐个列举集合中的所 有元素来表示集合。例如: {1, 2, 3, 4, 5}
差集
从一个集合中去除 与另一个集合相同 的元素。例如:A-B = {1, 3}
补集
某个集合关于全集 中的补集包括那些 不属于该集合的元 素。例如:A的补集 A' = {6, 7, 8}
集合的性质
子集
若一个集合的所有 元素都是另一个集 合的元素,则前者 为后者的子集。例 如:A = {1, 2, 3} 是 B = {1, 2, 3, 4, 5} 的子 集。
总结
集合的含义与表示
通过定义与表示方式理解集合的概念。
集合在实际问题中的应用
通过示例演示集合在实际问题中的应用。
集合的运算及其性质
了解集它 们是相等的。例如: {1, 2, 3} = {3, 2, 1}
空集、全集
空集是不包含任何 元素的集合。全集 是指讨论范围内的 所有元素构成的集 合。

集合的含义与表示ppt课件

集合的含义与表示ppt课件

*
6、用符号 或 填空: (1)设A为所有亚洲国家组成的集合,则 中国 A,美国 A,印度 A,英国 A;
(2)若A= {x| x²=x}则-1 A
(3)若B= {x| x²+x-6=0}则3 B
*
作业:红对勾P29
作业
{x∈Q | x < 10 }
{x | x=2n,n∈Z }
{(x,y) |x<0 , 且y>0 }
说明:如果从上下文的关系来看,x∈R,x∈Z等是明确的,那么x∈R,x∈Z可以省略,只写其元素x.
如:不等式x-7<3的解集可以表示为A={x | x<10}.
所有奇数组成的集合可以表示为:
B={x| x=2k+1,k∈Z}.
*
说明:
●集合是数学中最原始的概念之一,我们不能用其他的概念下定义,只能作描述性说明,是不定义概念,即原始概念,和点、直线、平面等基本概念及原理构成了整个数学大厦的基石,是从现实世界中总结出来的.
●集合理论是由德国数学家康托尔发现的,他创造的集合论是近代许多数学分支的基础.
集合的描述性定义:我们把研究对象统称为元素.把一些元素组成的全体叫做集合(简称为集).
*
例1:用列举法表示下列集合: (1)小于10的所有质数组成的集合__________; (2)由大于3小于10的整数组成的集合___________________; (3)方程x2-16=0的实数解组成的集合_________;
{ 2, 3, 5, 7 }
{ 4, 5, 6, 7 ,8 ,9 }
{ -4, 4}
*
使用列举法时,应注意以下几点:
(1)元素间用分隔号“,”
(2)元素不重复

集合的含义及其表示公开课一等奖课件省赛课获奖课件

集合的含义及其表示公开课一等奖课件省赛课获奖课件
思考2:由“good中的字母”构 成的集合中的元素是什么?
思考3:由“1,2,3”构成的集合 与由“3,2,1”构成的集合同样
集合的有关概念
5、集合中元素的特性
集合中的元素含有下列三个特性:
①拟定性:集合中的元素必须是拟 定的。即拟定了一种集合,任何一种对 象是不是这个集合的元素也就拟定了.
②互异性:集合中的元素是互异的。 即集合元素是没有重复现象的.
N----全体非负整数形成的集合普通简称自然数集 (或非负整数集);
N*(或N+)----非负整数集内排除0的集,也称正整 数集;
Z----全体整数形成的集合普通称整数集; Q----全体有理数形成的集合普通称有理数集; R----全体实数形成的集合普通称实数集。
思考1:“我们班比较勤奋的学 生”能构成一种集合吗?
请元的同 素如元窗 及果素们 这两都比 两个是较 个集B的集集合元合合所素间{含1,,的B2的,中3关元,4的系}素与元?完集素全合也相{都2似,是3(,即1A,4的A}中中元的 素),则称这两个集合相等. 如:{北京,天津,上海,重庆}= {上海,北京,天津, 重庆}
(2)描述法: 将集合的全部元素都含有的性质
6、集合的分类
(1)有限集:含有有限个元素的集合; (2)无限集:含有无限个元素的集合。
问题:
方程x2+1=0的全部实数解能够构成集合吗?
上面的方程是无解的,也就是这个集合是没 有元素的,像这样的不含任何元素的集合我
们称之为空集,记作 .
例2.用适宜的办法表达下列集合,并判断与否为 有限集。
(1)全部非负偶数构成的集合;
(满足的条件)表达出来,写成{x|p(x)}
代表元素
的形式. 其中x为集合的代表元 素,p(x)为集合中全部元素满足的条

集合的含义及其表示教育课件市公开课一等奖省优质课获奖课件.pptx

集合的含义及其表示教育课件市公开课一等奖省优质课获奖课件.pptx
形式如 :{ | }
例2 试用列举法和描述法表示以下集合:
(1)方程x2 2 0的所有实数根组成的集合; (2) 由大于10小于20全部整数组成集合.
第5页
解 : (1)设方程x2 2 0的实数根为x, 并且满足条 件x2 2 0,因此,用描述法表示为
A {x R | x2 2 0}.
1. 选择题
1:方程组 x+y=1 解集是:( x+y=-1
C)
A .{x=0,y=1} B .{0,1}
C .{(0,1)}
D .{(x,y)|x=0或y=1}
2:M={m|m=2k,k∈Z},X={x|x=2k+1,k∈Z}, Y={y|y=4k+1,k∈Z},则( A )
A .x+y∈M C .x+y∈Y
⑴ 有限集-------含有有限个元素集合叫有限 集
比如: A={1~20以内全部质数} ⑵ 无限集--------含有没有限个元素集合叫无 限集
比如: B={小于3全部实数}
第4页
(2) 描述法-用集合所含元素共同特征表示集 合方法.
详细方法:在花括号内先写上表示这个集合 元素普通符号及以取值(或改变)范围,再画一 条竖线,在竖线后写出这个集合中元素所含有 共同特征.
2.集合几个表示方法
⑴ 列举法-将所给集合中元素一一列举出来, 写在大括号里,元素与元素之间用逗号分 开. 例1 用列举法表示以下集合: (1) 小于10全部自然数组成集合;
(2) 方程x2 x的所有实数根组成的集合;
(3) 由1~20以内全部质数组成集合.
第2页
解:⑴设小于10全部自然数组成集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}. 因为元素完全相同两个集合相等,而与列举

《集合的含义与表示》课件

《集合的含义与表示》课件
集合的含义与表示
在离散数学中,集合是一个非常重要的概念。它不仅仅在数学中有应用,同 时也在计算机科学、物理学和哲学等领域中有广泛应用。
什么是集合
集合的基本含义
集合是一组无序的元素。
集合的特点
集合中的元素互不相同,且不依赖于元素的顺序。
集合的表示方法
列举法
用大括号将元素括起来,元素之间用逗号分隔,例如:$A = \{1,2,3\}$。
“ ∩”
意思是“ 交集(并且)” 。
“ ⊂”
意思是“ 是子集(包含于)” 。
“ ∪”
意思是“ 并集(或者)” 。
集合的应用
1
离散数学
离散数学中的大量理论和方法涉及到集合。

逻辑学
逻辑学中集合的概念被用来描述逻辑关系,如命题间的并与交等。
3
组合数学
组合数学中的组合问题可以用集合论的方法解决。
4
集合论
描述法
通过描述集合中元素的性质来定义集合,例如:$A=\{x|x\text{是正整数且} x<4\}$。
图示法
用一个可视化的方法,例如用Venn图,表示集合的元素和关系。
集合的运算
并集
所有在两个集合中的 元素构成的集合。
交集
同时在两个集合中的 元素构成的集合。
差集
属于A但不属于B的元 素构成的集合。
集合论是一门对集合及其运算和性质的研究。
总结
集合的基本含义和特点 集合的表示方法和运算 集合的性质和常见数学符号 集合的应用
补集
对于A的补集,指与A 相对立的全集中不属 于A的元素所构成的 集合。
集合的性质
包含关系
一个集合包含另一个集合当其中一个集合的所有元素也在另一个集合中。

集合的含义与表示说课稿市公开课一等奖课件名师大赛获奖课件

集合的含义与表示说课稿市公开课一等奖课件名师大赛获奖课件
(3)奇数集合;偶数集合;
(4)抛物线y x2 1上所有点坐标组成集合;
(5)方程组
4x 3 x
y 2
6 的解集; y7
(6)第二象限内所有点坐标集合;
(7)线段AB垂直平分线上所有点P .
例3.下列集合有何不同:
(1)1, 2, (2)2, 1, (3)(2, 1), (4)(1, 2),
(C )M { y | y x2 1, x R},P {( x, y) | y x2 1, x R}
(D)M { y | y x2 1, x R}, P { y | y ( x 1)2 1, x R}
例4.集合M { x | ax2 2x 1 0}只含一个元素, 求实数a的值.
§1.1.1 集合的含义与体现(二)
一、集合概念 :
1.一般地, 我们把研究对象统称为元素, 把一些元素
组成的总体叫做集合.(简称集)
2. 集合三个特征 : (1)确定性 (2)互异性 (3)无序性
构成两个集合的元素是一样的, 就称这两集合是相等的. 3. 元素与集合关系 : a是集合A的元素,就说a属于A,记作a A.
(5) y y x2 , (6) x y x2 , (7) ( x, y) y x2 ,
(8) y x2
练习: 下列各题中的集合M与P表示同一个集合的有哪 些?
( A)M {(1, 3)}, P {(3,1)} (B) M { 1, 3}, P {3,1}
(B) (D)
A.3 B.4 C.7 D.12
3.由实数x, x,| x |, x2 , 3 x3 所组成的集合,
最多含有 ( A )
( A)2个元素
( B )3个元素
(C )4个元素

集合的概念与表示ppt课件

集合的概念与表示ppt课件
由此能总结出集合元素有什么特性?
互异性 一个集合中的任何两个元素都互不相同。
也就是说,集合中的元素互不相同
探究3: 将某学校高一(1)班全体学生组成的集合记为集合A, 改变这个班同学的座次,集合A是否发生改变?
集合A不发生改变,即不管班里的学生怎么改变座次,学生改 变座次后的集合仍然还是学生改变座次之前的集合.
描述法 通过描述元素满足的条件表示集合的方法叫作描述法。
一般地可将集合表示为{x及x的范围|x满足的条件}
例如,集合 D={x∈R|x<10}也可表示为D={x|x<10}; 集合E={x∈Z|x=2k+1,k∈Z}也可表示为E={x|x=2k+1,k∈Z}.
思考:你能用列举法表示不等式 x-7<3的解集吗?
如上述思考中不等式x-7<3的解是x<10,因为满足x<10的实数 有无数个,所以x-7<3的解集无法用列举法表示,
但是,我们可以利用解集中元素的共同特征,即:x是实数, 且x<10,因此把解集表示为{x|x<10}.
整数集Z可以分为奇数集和偶数集。 对于每一个x∈Z,如果它能表示为x=2k+1(k∈Z)的形式,那么它 是一个奇数;反之,如果x是一个奇数,那么它能表示为x=2k+1(k∈Z) 的形式。 所以,x=2k+1(k∈Z)是所有奇数的一个共同特征,于是奇数集可 以表示为:{x|x=2k+1,k∈Z}.
5、集合的表示方法
思考:从上面的例子看到,我们可以用自然语言描述一个集合。 除此之外,还可以用什么方式表示集合呢? 列举法 把集合的所有元素一一列举出来,并用花括号“{ }”括起来 表示集合的方法叫做列举法。
“地球上的四大洋”组成的集合可以表示为{太平洋,大西洋, 印度洋,北冰洋}; “方程x2-3x+2=0的所有实数根”组成的集合可以表示为{1,2}.

集合的含义与表示 全市一等奖-完整版PPT课件

集合的含义与表示 全市一等奖-完整版PPT课件

集合的含义与表示
— 观察下列的对象: (3)金星汽车厂2003年所生产的汽车; (4) 2004年1月1日之前与我国建立外交关系的所 有国家。 (5)所有的正方形。
(6)到直线L的距离等于定长d的所有点。 (7)十六中学2005年9月入学的高一的学生全体 。
集合的含义与表示

集合的含义与表示
集合的含义是什么呢?我们再看一些例子: (1)1~20以内的所有质数 (2)我国从1991~2003年的13年内所发射的所有人 造卫星;
在(1)中,我们把1~20以内的每一个质数作为 元素,这些元素的全体就组成一个集合;同样地 ,例(2)中,把我国从1991~2003年内发射的每 一颗人造卫星作为元素,这些元素的全体也组成 一个集合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1) {0,1,2,3,4,5,6,7,8,9}
(2) {1,0}
(3) {1}
(4) {2,3,5,7,11,13,17,19}
思考?
• 你能用列举法表示不等式 x 7 3 的解
集吗?
描述法
• 用集合所含元素的共同特征表示集合的方法,
称为描述法.如: xR | x 10
• 在大括号内先写上表示这个集合元素的一般 符号及取值(或变化)范围,再画一条竖线, 在竖线后写出这个集合中元素所具有的共同 特征.
用列举法 11,12,13,14,15,16,17,18,19
区间的概念:
设a、b是两个实数,且a<b,规定:
① 满足不等式a≤x≤b的实数x的集合, 叫作闭区间,记作 [a,b],
② 满足不等式a<x<b的实数x的集合, 叫作开区间,记作 (a,b),
③ 满足不等式a≤x<b 或a<x≤b的实数x的集合, 叫作半开半闭区间,分别记作[a,b), (a,b],
课题导入
观察下列对象: (1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国古代四大发明; (5)抛物线y=x2上的点.
1.1.1集合的含义与表示
目标引领
(1)能准确判断哪些对象能构成集合, 能运用集合元素的互异性进行计算
(2)正确使用集合及元素的符号,熟记 常见集合的记号 示?

x Z x 2k 1, k Z
用描述法与列举法表示以下集合
(1)方程 x2 2 0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
解:(1)用描述法 x R x2 2 0
用列举法 2, 2
(2)用描述法 x Z 10 x 20
思路点拨:用描述法表示集合.解答此类问题要清楚集合中的代表元素是什么,元素满 足什么条件,并能正确运用符号语言或自然语言写出描述条件.
解:(1){x|x=5k+1,k∈N}; (2){x|x=2k+1,k≥2,k∈N}; (3){(x,y)|xy=0}; (4){x|x 是三角形}。
集合的表示方法有两种形式,要掌握同一集合的多种表达形式,还要学会准 确选择最佳最简的表示方法.
(3)能准确用符号与来表示元素与集合 的关系,能用列举法或描述法正确表示 集合
独立自学
1、什么是集合?什么是元素?元素与 集合有几种关系?什么是相等集合? 2、用符号如何表示集合与元素?用符 号如何表示元素与集合的关系? 3、如何表示集合?什么是例举法?什 么是描述法?描述法构成要素有几个?
引导探究一
(A)①② (B)②③ (C)③④ (D)②④
集合中元素的确定性是集合最基本的特征,即是否可以找到一个 明确的评判标准来判断,这是能否构成集合的主要依据.
集合相等
• 集合相等:构成两个集合的元素是一样的. • 判断正误:
(1)1,2 2,1
(2) 1,2,2,1 2,1,1,2
引导探究二
集合与元素的关系:
如果a是集合A的元素,就说a属于集合A, 记作a∈A.
如果a不是集合A的元素,就说a不属于 集合A,记作aA.
例如:A表示方程 x2 1 的解集.
2A,1∈A.
重要的数集:
• N:自然数集(含0) • N :正整数集(不含0) • Z:整数集 • Q:有理数集 • R:实数集
空集()
我们看这样一个集合:{ x |x2+x+1=0}, 它有什么特征? 显然这个集合没有元素.我们把这样的 集合叫做空集,记作. 练习2:⑴ 0 (填∈或)
⑵互异性: 集合的元素必须是互异不相同的. 如: 方程 x2-x+=0的解集为{1}而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1, 2},{2,1}为同一集合.
例 1:
对于以下说法: ①接近于 0 的数的全体构成一个集合; ②棱柱的全体构成一个集合; ③未来世界的高科技产品构成一个集合; ④不大于 3 的所有自然数构成一个集合. 正确的是( D )
定义
名称
{x|a≤x≤b} 闭区间
{x| a<x<b } 开区间
{x| a≤x<b} 半开半闭区间
{x| a<x≤b} 半开半闭区间
符号 [a, b] (a, b) [a, b) (a, b]
数轴表示
a
b
a
b
a
b
a
b
例3
用描述法表示下列集合: (1)被 5 除余 1 的正整数集合; (2)大于 4 的全体奇数构成的集合; (3)坐标平面内,两坐标轴上点的集合; (4)三角形的全体构成的集合.
区间的概念:
设a、b是两个实数,且a<b,规定:
④实数集R记作(-∞,+∞), ⑤满足不等式x≥a的实数x的集合,记作[a, +∞ ); ⑥满足不等式x>a的实数x的集合, 记作(a, +∞ ); ⑦满足不等式x≤b的实数x的集合,记作(-∞ ,b]; ⑧满足不等式x<b的实数x的集合, 记作(-∞ ,b);
集合的含义
元素:我们把研究的对象统称为元素;
常用小写字母a, b, c …表示元素.
集合:把能够确定的不同元素的全体叫
做集合,简称集.我们常用大写字母A,B, C…表示集合
集合的三要素
⑴确定性: 集合中的元素必须是确定的. 关键要看 是否有一个明确的客观标准来鉴定这些对象, 若鉴定对象确定的客观标准存在,则这些对象 就能构成集合,否则不能构成集合.
引导探究三 集合的表示方法
列举法
描述法
区间表示
列举法
• 将集合中的元素一一列举出来,元素与元 素之间用逗号隔开。
• 用花括号{ }括起来
例2
用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程 x2 x的所有实数根组成的集合; (3)方程 x 12 0 的所有实数根组成的集合; (4)由1~20以内的所有质数组成的集合.
区间表示(a<b)
• 闭区间
x | a x b 可表示为 a,b
• 开区间
• x | a x b 可表示为 a,b • x | x 可表示为, 或R
• 半开半闭区间
• x | a<x b 可表示为 a,b • x | a x<+ 可表示为 a, +
目标升华
关键词: 集合、元素、集合的元素的特征、集合相等、 元素与集合的关系; 集合与元素的字母表示 常用的数集及记法: 非负整数集(或自然数集),记作N;正整数集,记作N*或N+;
相关文档
最新文档