一元二次方程解法复习
一元二次方程专题复习
![一元二次方程专题复习](https://img.taocdn.com/s3/m/b792760e680203d8ce2f24f8.png)
一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
一元二次方程的解法复习课
![一元二次方程的解法复习课](https://img.taocdn.com/s3/m/955e4e0ea9956bec0975f46527d3240c8447a1a5.png)
2
x2 4x 4 5 4
2
x 22 13
2 x2
26
2
x1
26 2 2
x2
26 2 2
例题讲解
四 公式法
一般地,对于一元二次方程 ax2+bx+c=0(a≠0)
当b2 4ac 0时,它的根是:
x b b2 4ac . b2 4ac 0 . 2a
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
x
2 9
2
4 17
.
4
4 16
1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边;
3.配方:方程两边都加上一次项 系数绝对值一半的平方; 4.变形:方程左边分解因 式,右边合并同类;
x 9 17 . 44
5.开方:两边开平方;
x 9 17 .
44
x1
9
4
17
;
x2
用配方法解一元二次方程的方法的助手:
平方根的意义: 如果x2=a, 那么x= a.
完全平方式:式子 a2±2ab+b2 叫完全平方式,且 a2±2ab+b2 =(a±b)2.
用配方法解一元二次方程:
2x2-9x+8=0
解 : x2 9 x 4 0.
x2
9
2 x
4.
x2
9
2 x
9
2
9
2
4.
解:原方程变形为: (2 x)2 9 16
直接开平方得:
2 x 3
4
x1
5 4
x2
11 4
(2) x(x 2) 1 0
专题复习:一元二次方程的五种常用解法(后附答案)【精品】
![专题复习:一元二次方程的五种常用解法(后附答案)【精品】](https://img.taocdn.com/s3/m/6b2aec9f5fbfc77da369b119.png)
专题:一元二次方程的5种解法方法1 形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程用直接开平方法求解1.用直接开平方法解下列方程:(1)9x2=25; (2)x2-√=0; (3)(2t-1)2=9;(4)(x-3)2-9=0. (5)2(x-1)2-18=0.用直接开平方法解一元二次方程的三个步骤:(1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式;(2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式;(3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解.方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解 2.用配方法解下列方程:(1)x 2-10x+9=0; (2)x 2+2x=2; (3)2x 2-4x+1=0.3. 用配方法解下列方程:(1)3x 2+6x -5=0; (2)12x 2-6x -7=0; (3)2x 2+7x -4=0.用配方法解一元二次方程的“五步法”(1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1.(3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x +n)2=p 的形式.(4)开方:若p ≥0,则两边直接开平方得到一元一次方程;若p <0,则原方程无解.(5)求解:解所得到的一元一次方程,求出原方程的解.方法3 易化成一般形式(二次项系数不为1)时,用公式法求解4.用公式法解方程:(1)x2+3x+1=0; (2)2x2-5x-7=0;(3)(x+1)(x-1)+2(x+3)=8; (4)y2-2√2y+2=0;(5)(x+1)(2x-6)=1; (6)x2+5x+18=3(x+4).用公式法解一元二次方程的四个步骤(1)化:若方程不是一般形式,先把一元二次方程化为一般形式ax2+bx+c=0(a≠0).(2)定:确定a,b,c的值.(3)算:计算b2-4ac的值.(4)求:若b2-4ac≥0,则利用求根公式求出方程的根;若b2-4ac <0,则原方程没有实数根.方法4 能化成形如(x+a)(x+b)=0时,用因式分解法求解5.用因式分解法解下列方程:(1)x2-9=0; (2)x2+2x=0;(3)x2-53x=0; (4)5x2+20x+20=0;(5)(2+x)2-9=0; (6)3x(x-2)=2(x-2).(7)(3x+2)2-4x2=0; (8)4(x-3)2-25(x-2)2=0;用因式分解法解一元二次方程的“四步法”(“右化零,左分解,两因式,各求解”)6.有三个方程:①(2x-1)2=5;②x2-x-1=0;③x(x-√3)=√3-x.解这三个方程时适合的解法依次是( )A.因式分解法、公式法、因式分解法B.直接开平方法、配方法、公式法C.直接开平方法、公式法、因式分解法D.公式法、配方法、公式法7.用适当的方法解下列方程:(1)(x-1)2=3; (2)x2+2x-2=0;(3)(x-5)2=2(x-5)-1; (4)x(3x-2)=3x-2.方法5 用换元法解方程8.【阅读材料】解方程:x4-3x2+2=0.解:设x2=m,则原方程变为m2-3m+2=0,解得m1=1,m2=2.当m=1时,x2=1,解得x=±1.当m=2时,x2=2,解得x=± 2.所以原方程的解为x1=1,x2=-1,x3=2,x4=- 2.以上方法就叫做换元法,通过换元达到了降次的目的,体现了转化的思想.【问题解决】利用上述方法解方程(x2-2x)2-5x2+10x+6=0.参考答案:1.解:(1)方程两边同时除以9得,x 2=259,根据平方根的意义得,x=±53.(2)移项得,x 2=√256=16, 根据平方根的意义得,x=±4. (3)根据平方根的意义得,2t-1=±3, 移项得,2t=4或2t=-2, 系数化为1得,t=2或t=-1. (4)移项得,(x-3)2=9,根据平方根的意义得,x-3=±3, 移项得,x=0或x=6. (5)∵2(x -1)2-18=0,∴(x -1)2=9,∴x -1=±3,∴x 1=4,x 2=-2. 2.解:(1)移项,得x 2-10x=-9.配方,得x 2-10x+25=-9+25,(x-5)2=16.开方,得x-5=4,或x-5=-4.∴x 1=9,x 2=1.(2)配方,得x 2+2x+1=2+1,(x+1)2=3.∴x+1=±√3.∴x 1=√3-1,x 2=-√3-1.(3)将方程两边同时除以2,得x 2-2x+12=0,即x 2-2x=-12.配方,得x 2-2x+12=-12+12, (x-1)2=12.∴x=1±√22.即x 1=1+√22,x 2=1-√22.3.(1)原方程变形为3x 2+6x =5,∴x 2+2x =53,∴x 2+2x +1=83,∴(x +1)2=83,∴x +1=±263,∴x 1=-1+263,x 2=-1-263. (2)原方程变形为12x 2-6x =7,∴x 2-12x =14,∴x 2-12x +36=50,∴(x -6)2=50,∴x -6=±52, ∴x 1=6+52,x 2=6-5 2.(3)(x +74)2=8116,∴x 1=12,x 2=-4.4.解:(1)∵a=1,b=3,c=1,∴Δ=b 2-4ac=9-4×1×1=5>0,∴x=-3±√52.∴x 1=-3+√52,x 2=-3-√52.(2)∵a=2,b=-5,c=-7,∴b 2-4ac=81,∴x=5±√814,∴x 1=-1,x 2=72. (3)原方程可化为x 2+2x-3=0. ∵a=1,b=2,c=-3,∴b 2-4ac=16.∴x=-2±√162,∴x 1=1,x 2=-3.(4)∵这里a=1,b=-2√2,c=2,∴b 2-4ac=(-2√2)2-4×1×2=0,∴y=2√2±02,∴y 1=y 2=√.(5)整理得2x 2-4x -7=0,∵a =2,b =-4,c =-7, ∴Δ=b 2-4ac =(-4)2-4×2×(-7)=72,∴x =4±722×2=2±322,∴x 1=2+322,x 2=2-322.(6)整理得x 2+2x +6=0,∵a =1,b =2,c =6,∴Δ=b 2-4ac =22-4×1×6=-20<0,∴原方程无实数根. 5.(1)解:(x +3)(x -3)=0,∴x 1=-3,x 2=3. (2)解:x(x +2)=0, ∴x 1=0,x 2=-2. (3)解:x(x -53)=0, ∴x 1=0,x 2=5 3. (4)解:(x +2)2=0, ∴x 1=x 2=-2.(5)解:(x +5)(x -1)=0, ∴x 1=-5,x 2=1.(6)解:原方程变形为3x(x -2)-2(x -2)=0, 即(3x -2)(x -2)=0, ∴x 1=23,x 2=2.(7)解:(3x +2+2x)(3x +2-2x)=0, 解得x 1=-25,x 2=-2.(8)解:原方程可化为[2(x -3)]2-[5(x -2)]2=0, 即(2x -6)2-(5x -10)2=0.∴(2x -6+5x -10)(2x -6-5x +10)=0, 即(7x -16)(-3x +4)=0. ∴x 1=167,x 2=43.6.C7.解:(1)∵x-1=±√3,∴x 1=√3+1,x 2=-√3+1.(2)∵x2+2x+1=3,∴(x+1)2=3,∴x1=√3-1,x2=-√3-1.(3)∵(x-5)2-2(x-5)+1=0,∴[(x-5)-1]2=0,∴x1=x2=6.(4)∵x(3x-2)-(3x-2)=0,∴(3x-2)(x-1)=0,.∴x-1=0或3x-2=0,∴x1=1,x2=238.解:(x2-2x)2-5x2+10x+6=0,整理,得(x2-2x)2-5(x2-2x)+6=0.设x2-2x=m,则原方程变为m2-5m+6=0,解得m1=3,m2=2.当m=3时,x2-2x=3,解得x=3或x=-1;当m=2时,x2-2x=2,解得x=1± 3.所以原方程的解为x1=3,x2=-1,x3=1+3,x4=1- 3.。
(完整版)一元二次方程归纳总结
![(完整版)一元二次方程归纳总结](https://img.taocdn.com/s3/m/469be1c32b160b4e777fcf56.png)
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
中考复习:一元二次方程组的解法归纳
![中考复习:一元二次方程组的解法归纳](https://img.taocdn.com/s3/m/f31d50bbd05abe23482fb4daa58da0116d171f51.png)
含有两个未知数且含未知数项的次数为1的方程称为二元一次方程,将两个二元一次方程合在一起称为二元一次方程组.二元一次方程组的解是满足两个二元一次方程的公共解.解二元一次方程组的方法很多,灵活选用合适的方法解不同的二元一次方程组,可以有效地提高解题的效率.一、换元法换元法是将复杂方程转化为简单方程的一种方法.灵活运用换元法可大大降低运算量.运用换元法解题的步骤为:首先分析方程组中的复杂结构,将方程组中某些相同的部分设为新的未知数(称为“元”),然后将新元代入原方程组得到新的方程组,解新的方程组,再将求得的值代回换元的式子中求出原未知数的值,即可解题.1.整体换元法整体换元法指的是当一个方程中含有(或者可配凑出)相同的因式时,可以将这个相同的因式看成一个整体并将这个整体设为一个新未知数(称为“元”),然后将原方程组转化为关于新“元”的方程组.通过整体换元,可以调整方程及方程组的结构,使方程组变成易于处理的简单形式,进而快速求解.例1解方程组:■■■■■■■1x +1x +y=3,3x -1x +y =1.解:设1x =a ,1x +y=b ,则方程组转化为■■■a +b =3,①3a -b =1,②①+②解得a =1,将a =1代入到方程①中解得b =2.代回得■■■■■1x =1,1x +y=2,解得■■■■■x =1,y =-12,所以原方程的解为■■■■■x =1,y =-12.评注:设1x =a ,1x +y =b 后可将原方程组转化为简单的二元一次方程组.先求解换元后的二元一次方程组,然后将值代回到换元的式子中求出原方程组的解.本题也可以将两方程直接相加求出1x的值,进而代回后求得1x +y 的值,然后求得最终结果.这种操作的本质也是整体换元思想.2.比值换元法当一个方程(或方程组)中出现形如x a =y b的方程时,可将x a 与y b 设为一个相同的新“元”,进而用新“元”表示x 和y ,将原方程组转化为关于新“元”的方程组.解这个关于新“元”的方程组,再将新“元”的值代回到换元的式子中,即可解题.例2解方程组:■■■■■x 5+y6=0,①3(x -y )-4(3y +x )=85.②解:由①得x 5=-y 6,设x 5=-y6=k ,则x =5k ,y =-6k .将x =5k ,y =-6k 代入方程②中得3(5k +6k )-4[3×(-6k )+5k ]=85,化简整理得85k =85,解得k =1,中考复习:一元二次方程组的解法归纳代回得x =5,y =-6,所以原方程组的解为{x =5,y =-6.评注:根据方程①的结构,设x 5=-y6=k ,将x 和y 用新“元”k 表示,然后代入方程②中,求出k 的值,最后将k 代回换元的式子中求得x 和y 的值.本题若直接去分母消元求解,则运算量较大.二、消元法消元法指的是由一些未知数间的已知等量关系,通过有限次的恒等变形,消去其中某些未知数,从而得到另一些相关未知数间的等量关系的方法.消元法是解方程组的基本方法,常见的有代入消元法和加减消元法,都是将方程组中未知数的个数由多化少,逐一求出未知数的解.1.代入消元法运用代入消元法解二元一次方程组,首先需从方程组中选一个系数比较简单的方程,将这个方程的一个未知数用含另一个未知数的代数式表示出来,或者将两个方程相加(相减),得到两个未知数系数相同或者相反的新方程,将这个新方程中的一个未知数用另一个未知数表示,然后代入原方程组中的其中一个方程,求得其中一个未知数的值,再将这个值代入变形后的关系式,即可求得另一个未知数的值,从而得到原方程组的解.例3解方程组:■■■2015x +2016y =2017,①2016x +2017y =2018.②解:由①-②得x +y =1③,由③得x =1-y ,将x =1-y 代入①中得2015(1-y )+2016y =2017,即2015+y =2017,解得y =2,将y =2代入③中解得x =-1.所以原方程组的解为{x =-1,y =2.评注:本题采用常规的加减或者代入消元法求解,运算量都较大.观察到两个方程的相同未知数的系数之差相等,因此,直接将两个方程作差得到一个新方程,将这个新方程中的一个未知数用另一个未知数表示,再运用代入消元法即可解题.2.加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.由于二元一次方程组的形式各异,因此往往需要利用等式的性质将二元一次方程组中的方程变形,使得两个方程中的其中一个未知数的系数有相同或相反的特点,然后运用加减消元法即可解题.例4已知■■■4x -3y =3,①x +2y =1,②求x -2y 的值.解:由②×4得4x +8y =4,③将①与③作差得-11y =-1,解得y =111,再将y =111代入其中一个方程中得x =911,则x -2y =911-211=711,所以x -2y 的值为711.评注:首先将方程组中的方程x +2y =1的两边同时乘以4得到一个新的方程,然后将方程组中的另一个方程与此方程作差求得y 的值,然后运用代入消元法求得x 的值,进而求得结果.当然,在求解x 的值时也可以再次运用加减消元法,这只需要将第一个方程两边同时乘以2,第二个方程两边同时乘以3,然后将得到的两个新方程作差即可求得x 的值.总之,解二元一次方程组问题时,应从整体与局部上观察方程的结构,把握其中的规律,灵活选择不同方法解题,准确地进行运算,这样才能缩短解题时间,做到事半功倍.。
一元二次方程的解法复习课件
![一元二次方程的解法复习课件](https://img.taocdn.com/s3/m/b3a90eb1710abb68a98271fe910ef12d2af9a9a8.png)
技巧
根据题目特点选择合适 的解法,提高解题效率。
复习建议
01
系统复习一元二次方程的 基本概念和性质,理解判 别式的意义和作用。
02
掌握一元二次方程的三 种解法,并能根据题目 特点灵活选择解法。
03
04
多做练习题,加强对知 识点的理解和记忆,提 高解题能力。
注意总结归纳,形成自 己的知识体系和方法论。
因式分解法的示例
1. 示例一:解方程 $x^2 - 5x + 6 = 0$。
• 将方程左边分解为 $(x - 2)(x - 3) = 0$。
• 分别令 $x - 2 = 0$ 和 $x - 3 = 0$,解得 $x_1 = 2$, $x_2 = 3$。
因式分解法的示例
2. 示例二:解方程 $2x^2 + x 3 = 0$。
一元二次方程的解法复习课件
contents
目录
• 引言 • 一元二次方程的基本概念 • 一元二次方程的解法-配方法 • 一元二次方程的解法-公式法 • 一元二次方程的解法-因式分解法 • 一元二次方程的应用 • 总结与回顾
01 引言
复习目的
熟练掌握一元二次方程的解法,包括直接开平方法、配方法、公式法和因式分解法。 能够根据方程的特点,选择合适的解法进行求解。
一元二次方程在化学中的应用
化学反应速率问题
通过一元二次方程求解化 学反应速率与反应物浓度 之间的关系,以及反应速 率常数等问题。
化学平衡问题
在化学平衡中,一元二次 方程可用于求解平衡常数、 转化率和反应进度等问题。
放射性衰变问题
通过一元二次方程求解放 射性元素的衰变规律,以 及半衰期和衰变常数等问 题。
07 总结与回顾
一元二次方程复习课(精品)
![一元二次方程复习课(精品)](https://img.taocdn.com/s3/m/2ca0f9fe580216fc700afde3.png)
一元二次方程复习一、一元二次方程知识点1、一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程2、一元二次方程的解法(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。
在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,(X2={-b-√[b2-4ac)]}/2a3、解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法(就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a也可以表示为x 1+x 2=-b/a,=c/a 。
利用韦达定理,可以求出一元二次方程中的各系数, 在题目中很常用 5、一元二次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“dei er ta”, 而△=b 2-4ac ,这里可以分为3种情况:I 、当△>0时,一元二次方程有2个不相等的实数根; II 、当△=0时,一元二次方程有2个相同的实数根;¥III 、当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)二、考点研究考点一、概念例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
一元二次方程总复习知识点梳理
![一元二次方程总复习知识点梳理](https://img.taocdn.com/s3/m/eb1e492cc381e53a580216fc700abb68a982add0.png)
一元二次方程总复习知识点梳理一元二次方程总复考点1:一元二次方程的概念一元二次方程是只含有一个未知数,未知数的最高次数是2,且系数不为0的方程。
一般形式为ax2+bx+c=0(a≠0)。
判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程,两边直接开平方而转化为两个一元一次方程的方法。
解法为x1=-a+√b,x2=-a-√b。
2.配方法:用配方法解一元二次方程:ax2+bx+c=0(a≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解。
3.公式法:公式法是用求根公式求出一元二次方程的解的方法。
它是通过配方推导出来的。
一元二次方程的求根公式是x=(-b±√(b2-4ac))/2a(b2-4ac≥0)。
步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法。
理论根据:若ab=0,则a=0或b=0.步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解。
因式分解的方法有提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因为当a=0时,不含有二次项,即不是一元二次方程。
⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解。
⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式。
一元二次方程专题复习资料
![一元二次方程专题复习资料](https://img.taocdn.com/s3/m/79fd8f0faf1ffc4fff47ac2f.png)
一元二次方程专题复习 知识盘点1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。
通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。
2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。
(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。
如果n <0,则原方程 。
(3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 ,得到两个 方程;④解这两个方程,它们的解就是原方程的解。
3.一元二次方程的根的判别式 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根,即-----=-----=2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根,即-----==21x x ,(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。
4. 一元二次方程根与系数的关系如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x ,则12x x += ,12x x =提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。
5. 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程解应用题的步骤一样,即审、找、设、列、解、答六步。
一元二次方程解法复习
![一元二次方程解法复习](https://img.taocdn.com/s3/m/ae407763f5335a8102d22071.png)
反思:
1:先考虑开平方法, 1:先考虑开平方法, 先考虑开平方法 2:再用因式分解法 再用因式分解法. 再用因式分解法 3:最后才用公式法或配方法 最后才用公式法或配方法. 最后才用公式法或配方法
注意点: ax2+bx+c=0(a≠0)有实数 有实数 b2-4ac≥0 解的前提是:________ 解的前提是
2
一元二次方程解法的复习
课堂要求
心静思维动
相关问题2: 已知ax +bx+c=0一元二次方程的一根为 相关问题2: 已知ax2+bx+c=0一元二次方程的一根为1, 一元二次方程的一根为1, 的值. 的值. 求 , b满足b = 的值 求c的值 的值 且aa+b+c的值 a − 2 + 2 − a − 4, 求关于 y 的方 1 2 程 y − c = 0的根. 通过观察,可以求的一元二 若a+b+c=0,通过观察 可以求的一元二 通过观察 6 1 的一根是x=___ 次方程 ax2+bx+c=0的一根是 的一根是 尝试园地
m− 2 ≠ 0
m=1
说明:当二次项系数也含有待定的字母时, 说明:当二次项系数也含有待定的字母时,要注意二次 项系数不能为0 还要注意题目中待定字母的取值范围. 项系数不能为0,还要注意题目中待定字母的取值范围.
求证:关于x的方程: 例3、求证:关于x的方程: 证明:∆= −( m+ 2) − 4( 2m−1) 证明:
− 5 x − 1的值总
练一练
x+2 的根的情况是( 3、方程x2-2x+2=0的根的情况是( 方程x (A)只有一个实数根 (A)只有一个实数根
D)
17.3一元二次方程的解法复习
![17.3一元二次方程的解法复习](https://img.taocdn.com/s3/m/990f61cd58f5f61fb73666f5.png)
5.一元二次方程解法的顺序:
先特殊,后一般;即先考虑能否用开平方法和因式分解法, 否则再用公式法,配方法一般不用.
6. 解方程时要仔细观察其数式的特征,再决定解法,若特 征不明显,可先化简整理,再确定解法。
方程两边都是整式 一元二次方程的定义 只含有一个未知数 ax²+bx+c=0(a0) 求知数的最高次数是2
选择适当的方法解下列方程: 16 2 开平方法 2 5x2 2x 因式分解法 1 x 1 25 2 2 2 开平方法 3 3x 1 4x 4 (x 2) 9x 因式分解法 因式分解法 公式法 49 5 x(3x 7) 2x 6 x(2x 7) 8 因式分解法 因式分解法
k ①两边同除以二次项系数 ( x h) a ②两边同时开平方 x h k
2
③化为两个一元一次方程
a
k k xh 或x h a a k k 或x 2 h ④求解 x1 h a a
配方法:
用配方法的条件是:适应于任何 2 一个一元二次方程,但是在没有 3 x 4x 1 特别要求的情况下,除了形如 x2+2kx+c=0 用配方法外,或常 数项较大时,一般不用;(即二次 项系数为1,一次项系数是偶 数。) 一除----把二次项系数化为1(方程的两 边同 时除以二次项系数a) 配方法的一 二移----把常数项移到方程的右边;
(3) 2(2x+1)2+15(2x+1)-8=0
1 2
解: [(2x+1)+8][2(2x+1)-1]=0
(2x+9)(4x+1)=0
9 x1=2 1 x2=4
8 -1
初三数学一元二次方程解法整理,附全面解析
![初三数学一元二次方程解法整理,附全面解析](https://img.taocdn.com/s3/m/dc167b814128915f804d2b160b4e767f5acf8021.png)
初三数学一元二次方程解法整理,附全面解析1一元二次方程详细的解法配方法(可解全部一元二次方程)如:解方程:x^2-4x+3=0把常数项移项得:x^2-4x=-3等式两边同时加1(构成完全平方式)得:x^2-4x+4=1因式分解得:(x-2)^2=1解得:x1=3,x2=1小口诀:二次系数化为一;常数要往右边移;一次系数一半方;两边加上最相当。
公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac0时 x有两个不相同的实数根当判断完成后,若方程有根可根属于第2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根关于高三数学中一个二次方程的解法,我也更新了自己非常有效的学习经验,包括如何调动孩子的学习积极性,自主学习,思维提升等等。
欢迎来我的主页看更多分析!尤其是首页的第一篇文章,我花了很多时间总结整理!希望能帮到你!因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-1代数法(可解全部一元二次方程)ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错,应为(y^2+b^2/4-by)除以(by-b^2/2)+c=0再变成:y^2+(b^22*3)/4+c=0 X/y^2-b^2/4+c=0 y=±√[(b^2*3)/4+c] X/y=±√[(b^2)/4+c]2初三数学学习方法提高数学思维在复习过程中,系统复习初中数学知识后,以反复练习和测试为主,充分发挥学生的主体作用,使学生掌握各种题型的解题方法和技巧,提高学生的综合解题能力。
一元二次方程的解法复习课
![一元二次方程的解法复习课](https://img.taocdn.com/s3/m/df41d2d33186bceb19e8bb8f.png)
一元二次方程的解法(复习)学案复习目标能掌握解一元二次方程的四种方法以及各种解法的要点。
会根据不同方程的特点选用恰当的方法,使解题过程简单合理,通过揭示各种解法的本质联系,渗透降次化归的思想方法。
重难点关键1.重点:会根据不同方程的特点选用恰当的方法,使解题过程简单合理。
2.难点:通过揭示各种解法的本质联系,渗透降次化归的思想。
学习过程【课前检测】1.一元二次方程的四种解法是①________②________③________④________.2. 一元二次方程ax2+bx+c=0(a≠0)的求根公式是:_____________________.3.因式分解法主要有__________法_________法和十字相乘法三种方法,如4x2-9可利用________法分解因式;3x2-3x可利用________法分解因式;x2-3x+2可利用________法分解因式。
4.利用配方法解一元二次方程时一般先把二次项系数___________然后_______再两边同时加上____________________________________.自主探究:用合适的方法解下列方程1.(x+1) 2 =9 2. y 2-6y=6 3. 3x2-1=4x 4. 3x2-5x=0填一填:(相信自己一定能填写得最好)①x2-3x+1=0 ②3x2-1=0 ③3t2+t=0④ x 2-4x=2 ⑤ 2x 2-x=0 ⑥ 5(m+2)2=8⑦ 3y 2-y-1=0 ⑧ 2x 2+4x-1=0 ⑨ (x-2)2=2(x-2)适合运用直接开平方法—————————————————— 适合运用因式分解法———————————————————— 适合运用公式法 ————————————————适合运用配方法 ————————————————————阅读材料,解答问题解方程(y²-1)² -3(y²-1)+2=0,我们将y²-1视为一个整体,解:设y²-1=a , 则 (y²-1)²=a²,a² - 3a+2=0, (1)a 1=1,a 2=2当a=1时,y² -1=1,y =±2 ,当a=2时,y²-1=2,y=±3所以y 1=2 ,y 2 =-2, y 3=3 , y 4=-3解答问题:1、在由原方程得到方程(1)的过程中,利用了 法达到了降次的目的,体现了 的数学思想。
一元二次方程的解法复习
![一元二次方程的解法复习](https://img.taocdn.com/s3/m/bf31e91516fc700abb68fc26.png)
(2)解 : 5 x 4 x 0, x5x 4 0.
2
x 0, 或5x 4 0.
4 x1 0; x2 . 5
用分解因式法解方程: (3)x-2=x(x-2);
3解:x 2 xx 2 0,
x 21 x 0.
x1 2; x2 1.
∵A● B=0
∴A=0 或 B=0
亲,你知道的:
∵(x-1)(x+2)=0
∴ x-1 = 0 或 x+2 = 0 ∴x1 = 1 x2 = -2
1(1)把下列各式分解因式 x2 + 3x+2=0
x x
1
(x+1)(x+2)=0
x+1=0或x+2=0
2
x1=0
x2=0
1(2)把下列各式分解因式
x2 - 5x+6=0
2
解:化简为一般式: x2
2 3x 3 0
这里 a=1, b= 2 3 , c= 3. ∵b2 - 4ac=( 2 3)2 - 4×1×3=0,
2 3 0 2 3 x 21 2
即:x1= x2=
3,
3
2 1.解方程: x +2x+2=0
解:a=1,b=2,c=2
1.解方程:x2-7x-18=0.
b b 4ac x 2a
2
解:这里 a=1, b= -7, c= -18. ∵b2 - 4ac=(-7)2 - 4×1×(-18)=121﹥0,
7 121 7 11 x , 21 2
即:x1=9, x2= -2.
2.解方程
x 3 2 3x
完整版一元二次方程知识点总结和例题复习
![完整版一元二次方程知识点总结和例题复习](https://img.taocdn.com/s3/m/3993f128910ef12d2af9e7ed.png)
知识框架 知识点总结:一兀二次方程4. 一元二次方程的解法(1) 直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如 (X 可知,X a 是b 的平方根,当 b<0时,方程没有实数根。
(2) 配方法 配方法是一种重要的数学方法,2a) b 的一元二次方程。
根据平方根的定义b 0 时,X a4b , X a J b ,当它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式2 2 2a 2ab b (a b),把公式中的a 看做未知数x ,并用x X 2 2bx b 2(x b)2。
配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;代替,则有 化二次项系知识点、概念总结 1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知 数的最高次数是 2 (二次)的方程,叫做一元二次方程。
2. 一元二次方程有四个特点:(1) 含有一个未知数; (2) 且未知数次数最高次数是 2; (3) 是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整 式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a 丰0)的形 式,则这个方程就为一元二次方程。
(4 )将方程化为一般形式: 3. 一元二次方程的一般形式 过整理,?都能化成如下形式 一个一元二次方程经过整理化成 是二次项系数;bx 是一次项, 2ax +bx+c=0时,应满足( :一般地,任何一个关于 X 2ax +bx+c=0 (aM 0)。
2ax +bx+c=0 (a 丰 0)后,b 是一次项系数;a 丰0) 的一元二次方程,经其中ax 2是二次项,c 是常数项。
数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p ±V q ;如果qv 0,方程无实根.(3) 公式法 公式法是用求根公式解一元二次方程的解的方法, 方法。
一元二次方程解法专题复习
![一元二次方程解法专题复习](https://img.taocdn.com/s3/m/59ef18ce0b1c59eef9c7b475.png)
页 1【考点一 一元二次方程定义与解法】1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.3.基本解法:(1)直接开平方法:如果()02≥=a a x ,则a x ±=,即方程的解为a x a x -==21, (2)公式法:如果()04,0022≥-≠=++ac b a c bx ax ,得a ac b b x 2421---=,aac b b x 2422-+-= (3)配方法:用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.【典例讲解】1.下列方程中,一元二次方程共有( )个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1B.2C.3D.42.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.3.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对4.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1B.2C.22D.305.方程x2+ax+1=0和x2﹣x﹣a=0有一个公共根,则a的值是()A.0B.1C.2D.36.设a,b是方程x2+x﹣2011=0的两个实数根,则a2+2a+b的值为()A.2009B.2010C.2011D.2012【课堂闯关】1.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19 2.已知关于x 的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为()A.1B.﹣1C.0D.﹣2页23.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣34.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.5.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=.6.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.7.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.【巩固练习】1.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3B.3C.﹣3D.都不对2.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=.3.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是.4.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19【考点二一元二次方程判别式】页3页 4一元二次方程判别式为①当时,原方程有两个不等的实数根; ②当时,原方程有两个相等的实数根;③当时,原方程没有实数根. 【典例讲解】 1.若关于x 的一元二次方程(k ﹣1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k <5B .k <5,且k ≠1C .k ≤5,且k ≠1D .k >5 2.方程(m ﹣2)x 2﹣x +=0有两个实数根,则m 的取值范围( )A .m >B .m ≤且m ≠2C .m ≥3D .m ≤3且m ≠23.已知关于x 的方程mx 2﹣(m +2)x +2=0.(1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根.)0(02≠=++a c bx ax ac b 42-=∆4.已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.5.若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.【课堂闯关】1.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2页52.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.3.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.4.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).页6页 7【巩固练习】1.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有不相等实数根,则k 的取值范围是( )A .k >B .k ≥C .k >且k ≠1D .k ≥且k ≠12.关于x 的一元二次方程x 2﹣(k +3)x +2k +2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k 的取值范围.【考点三 韦达定理】如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.常见变形:①; ②; ③;)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21222121212()2x x x x x x +=+-12121211x x x x x x ++=2212121212()x x x x x x x x +=+页 8④; ⑤; ⑥⑦【典例讲解】 1.若关于x 的方程x 2+(m +1)x +=0的一个实数根的倒数恰是它本身,则m 的值是( )A .﹣B .C .﹣或D .12.已知关于x 的方程(x ﹣3)(x ﹣2)﹣p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1,x 2,且满足x 12+x 22=3x 1x 2,求实数p 的值.2221121212x x x x x x x x ++=2121212()2x x x x x x +-=22121212()()4x x x x x x -=+-12||x x -==12||||x x +===3.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.【课堂闯关】1.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0B.x2+7x+12=0C.x2+7x﹣12=0D.x2﹣7x﹣12=0 2.已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是.3.已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.页94.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1•x2,求k的值.5.关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.【巩固练习】1.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m 的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.页10第1讲一元二次方程解法专题复习2.已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.3.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.4.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.页11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中答案完全正确的题目个数为( A ) A. 0个 B. 1个 C. 2个 D. 3个
2、用配方法解方程 x 2 x 5 0 时,原方程 应变形为( B )
2
A. x 1 6
2
B. x 1 6
2
2
C. x 2 9
2
D. x 2 9
学习进步,快乐成长!
1、 若x2+ax+b = (x+1)(x- 4), 则方程x2+ax+b =
0 的解为
。
2、 一个三角形的两边长为2和5 ,第三边长是方程 x2 – 6x + 8 = 0的根,则这个三角形的周长为( ) A 9 B 11 C 9或11 D 以上都不对
3、若 x2 3 与 x 15 既是最简二次根式又是同类 二次根式,试求x的值。
例2、阅读下面的例题: 2
解方程
x x 2 0
解:(1)当x≥0时,原方程化为 x 2 x 2 0 解得:x= 1 2,
=- 1(不合题意,舍去). x 2
(2)当x<0时,原方程化为
x x20
2
x2 =-2. 解得: x = 1 (不合题意,舍去), 1
∴ 原方程的根是
解一元二次方程的方法有:
直接开平方法 配方法 公式法 因式分解法
b b 2 4ac 2 x (b 4ac 0) 2a
解一元二次方程的 基本思想是什么?
1、下列方程:
① x2 + 2x - 195 = 0 ; ② 2x2 = x;
③ 2x(x-2) + x = 2 ;
⑤ (x+2)2 + x2 = 10 ⑦ x2 – 2x + 1 = 25
乘胜追击
例1、已知关于x的 一元二次 方程
kx 2 (2k 1) x k 1 0
(1)用含k的式子表示方程的两实数根;
(2)若此方程的解为整数,求整数k的值;
1、已知关于x的一元二次方程 mx2 – (3m+2)x + 2m+2=0 (m>0) 设方程的两根为x1 , x2 ,且( x1 < x2 ), 求 x 2– 2 x 1 。
4、试着用两种或两种以上的方法解下面的方程。
x2
–x=2
1 x x0 2
2
2 a ( x m 2) b 0 (a,m,b均为常数,a≠0),则方程
的解是
。
已知关于 x的方程x2-mx+2m-n=0的根的判别式为零, 方程的一个根为1,求m,n的值。
通过学习,谈谈你本节课的收获。
知识与技能方面……….
数学思想方法方面……….
9:37
放飞心中的理想
祝同学们:
3、若△ABC的三条边长都满足方程x2 – 6x +8 = 0 ,
则△ABC的周长为 6 、10或12 。
4、( 2011重庆)已知关于x的一元二次方程(a-1)x2-2x+1=0 有两个不相等的实数根,则a的取值范围是( ) A.a<2 B,a>2 C.a<2且a≠1 D.a<-2
2 a ( x m ) b 0 的解是x1=-2,x2=1 5、(2011兰州)关于x的方程
④ (x - 1)2 = 5
⑥ 3x(2x +1) = 4x+2 ⑧
x 3x 3 0
2
其中 最适合用直接开平方法的是
最适合用因式分解的是 ① ⑤、⑧
④、⑦
;
②、③、⑥ ;
用配方法比较简便; 用公式法最简单。
我来试试
用适当的方法解下列方程:
(1)
2 ( y 1) 2 4 3
(2) x2 – 7x – 1 = 0 (3) 3x2 + 27 = 18x (4) (x-2)(x-4) = 8
x1 2, =
x2 =-2.
请参照例题解方程
x2 x 1 1 0
降次是解高次方程的基本思想。试用你 学过的方法解下列方程: (x2 –1)2 – 4(x2–1) – 5 = 0
1、下面是某同学在一次测验中解答的填空题: (1)若x2=4,则x=2; (2)方程x2=x的根为x=1; (3)方程(x-1)2 = 1的两根互为相反数.•