动态立体几何x
立体几何动态问题
![立体几何动态问题](https://img.taocdn.com/s3/m/e7a14be984868762cbaed53f.png)
立体几何的动态问题立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨 迹问题。
基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。
解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。
动点轨迹问题空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。
很少有题目会脱离这三个方向。
(注意:阿波罗尼斯圆,圆锥曲线第二定义)1.(2015·浙江卷8)如图1110,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支式题 如图,平面α的斜线AB 交α于B 点,且与α所成的角为θ,平面α内有一动点C 满足∠BAC =π6,若动点C的轨迹为椭圆,则θ的取值范围为________.3.(2015春•龙泉驿区校级期中)在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持P A ⊥BD 1,则动点P 的轨迹所在的曲线是直线; ②若点P 到点A 的距离为,则动点P 的轨迹所在的曲线是圆;③若P 满足∠MAP =∠MAC 1,则动点P 的轨迹所在的曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为2:1,则动点P 的轨迹所在的曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在的曲线是抛物线. 其中真命题的个数为( )A .4B .3C .2D .14.(2018•温州模拟)已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC上的射影,当C 运动,点H运动的轨迹()A.是圆B.是椭圆C.是抛物线D.不是平面图形5.(2013•铁岭模拟)如图所示,△P AB所在的平面α和四边形ABCD所在的平面β互相垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6.若tan∠ADP﹣2tan∠BCP=1,则动点P在平面α内的轨迹是()A.椭圆的一部分B.线段C.双曲线的一部分D.以上都不是6.(2013•嘉兴二模)设m是平面α内的一条定直线,P是平面α外的一个定点,动直线n经过点P且与m成30°角,则直线n与平面α的交点Q的轨迹是()A.圆B.椭圆C.双曲线D.抛物线7.(2008•浙江)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线8.(2015春•台州校级月考)AB是平面α的斜线段,长度为2,点A是斜足,若点P在平面α内运动,当△ABP的面积等于3 时,点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线9.(2016•浙江二模)在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,AB=AA1=2.若点M在△ABC所在平面上运动,且使得△AC1M的面积为1,则动点M的轨迹为()A.圆B.椭圆C.双曲线D.抛物线10.(2016•武汉校级模拟)如图,AB是平面α外的固定斜线段,B为斜足,若点C在平面α内运动,且∠CAB等于直线AB与平面α所成的角,则动点C的轨迹为()A.圆B.椭圆C.双曲线D.抛物线11.(2008年浙江·理10)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线12.(2014年金华高二十校联考·文10)圆柱的轴截面ABCD是边长为2的正方形,M为正方形ABCD对角线的交点,动点P在圆柱下底面内(包括圆周),若直线BM与直线MP所成角为45°,则点P形成的轨迹为( ) A.椭圆的一部分B.抛物线的一部分C.双曲线的一部分D.圆的一部分13.(2014•杭州二模)在等腰梯形ABCD中,E,F分别是底边AB,BC的中点,把四边形AEFD沿直线EF折起后所在的平面记为α,p∈α,设PB,PC与α所成的角分别为θ1,θ2(θ1,θ2均不为零).若θ1=θ2,则满足条件的P所形成的轨迹是.BACDMPABP14.(2018秋•诸暨市校级期中)如图,在底面为平行四边形的四棱锥P﹣ABCD中,E,F分别是棱AD,BP上的动点,且满足AE=2BF,则线段EF中点的轨迹是()A.一条线段B.一段圆弧C.抛物线的一部分D.一个平行四边形15.(2015秋•太原期末)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,P为棱A1B1的中点,点Q在侧面DCC1D1内运动,给出下列结论:①若BQ⊥A1C,则动点Q的轨迹是线段;②若|BQ|=,则动点Q的轨迹是圆的一部分;③若∠QBD1=∠PBD1,则动点Q的轨迹是椭圆的一部分;④若点Q到AB与DD1的距离相等,则动点Q的轨迹是抛物线的一部分.其中结论正确的是(写出所有正确结论的序号).16.如图,长方体ABCD﹣A′B′C′D′中,AB=BC=,AA,上底面A′B′C′D′的中心为O′,当点E在线段CC′上从C移动到C′时,点O′在平面BDE上的射影G的轨迹长度为()A.B.C.D.17.(2016秋•温州期末)点P为棱长是2的正方体ABCD﹣A1B1C1D1的内切球O球面上的动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.B.C.D.18.(2018•宁波二模)已知棱长为1的正方体ABCD﹣A1B1C1D1中,E为侧面BB1C1C中心,F在棱AD上运动,正方体表面上有一点P满足=x(x≥0,y≥0),则所有满足条件的P点构成图形的面积为.19.(2017•定海区校级模拟)已知异面直线a,b所成角为60°,直线AB与a,b均垂直,且垂足分别是点A,B 若动点P∈a,Q∈b,|P A|+|QB|=m,则线段PQ中点M的轨迹围成的区域的面积是.20.(2017秋•赣州期末)如图,在等腰梯形ABCD中,CD=2AB=2EF=2a,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得平面BEFC⊥平面ADFE.若动点P∈平面ADFE,设PB,PC与平面ADFE 所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ1=θ2,则动点P的轨迹围成的图形的面积为()A.B.C.D.翻折问题面(动问题)翻折问题的一线五结论.DF AE ⊥一线:垂直于折痕的线即五结论:1)折线同侧的几何量和位置关系保持不变;折线两侧的几何量和位置关系发生改变; 2--D HF D H F ''∠)是二面角的平面角;3D DF ')在底面上的投影一定射线上; 1、(2016年联考试题)平面四边形ABCD 中,AD=AB=2,CD=CB=5,且AD AB ⊥,现将△ABD 沿对角线BD 翻折成'A BD ∆,则在'A BD ∆折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______2.(2015年10月浙江省学业水平考试18)如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。
高考数学专题复习破解立体几何中的动态问题
![高考数学专题复习破解立体几何中的动态问题](https://img.taocdn.com/s3/m/f512b5e225c52cc58bd6beff.png)
破解立体几何中的动态问题动态问题需要极高的空间想像能力与化归处理能力,在各省市的高考选择与填空中出现有较高的频次。
动态立体几何指的是求由点、线、面的变化引起的相关变量的取值范围或最值问题。
就变化起因大致可分为以下三类:一是移动;二是翻折;三是旋转。
就所求变量可分为:一是相关线、面、体的测度;二是角度;三是距离。
1.简化图形——“大道至简”从复杂的图形中分化出最简的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,从混沌中找出秩序是问题解决的关键。
例1(2006年浙江省数学高考理科试题第14题)正四面体ABCD 的棱长为1,棱α平面//AB (如图1),则四面体上的所有点在平面α内的射影构成的图形面积的取值范围是_______。
去掉与问题无关的面,将四面体看成是以AB 为棱的二面角C AB D --(二面角大小一定),用纸折出这个二面角,不妨将AB 置于平面α内,将二面角绕AB 转动一周,观察点,C D 在平面α上的射影,可以发现点,C D 在平面α上的射影始终在AB 的射影的中垂线上,当//CD α平面时,四边形ABCD 面积最大12(如图3),当CD α⊥平面时(此时点)(D C 到AB 的距离即为异面直线AB 与CD 的距离),四边形'(')ABC D 面积最小4(如图4),转动过程中D C ,在平面α上的射影从DC ,变化至'''',D C。
例2.(2017年台州市高三模拟试题)如图,在棱长为2正四面体A BCD -中,E 、F 分别为直线AB 、图1DCBAααABC D 图3A图4αC B图5D "C "C'(D')D CBACD上的动点,且||EF =EF 中点P 的轨迹为L ,则||L 等于 ▲ . (注:|L |表示L 的测度,在本题, L 为曲线、平面图形、空间几何体时,|L |分别对应长度、面积、体积.)四面体只需抽象为两条异面直线AB 与CD,两个动点E 、F(满足EF =EF 的中点的轨迹。
“动态”立体几何题面面观
![“动态”立体几何题面面观](https://img.taocdn.com/s3/m/bd665a9bba1aa8114531d94e.png)
“动态”立体几何题面面观本文所指的“动态”立体几何题,是指立体几何题中除了固定不变的的线线、线面、面面关系外,渗透了一些“动态”的点、线、面元素,给静态的立体几何题赋予了活力,题意更新颖,同时,由于“动态”的存在,也使立体几何题更趋灵活,加强了对学生空间想象能力的考查。
一.定值问题例1 如图 3,在棱长为 a 的正方体ABCD -A1B1C1D1 中,EF 是棱AB 上的一条线段,且 EF=b<a,若 Q 是A1D1 上的定点,P 在C1D1 上滑动,则四面体 PQEF 的体积().(A)是变量且有最大值(B)是变量且有最小值(C)是变量无最大最小值(D)是常量分析:此题的解决需要我们仔细分析图形的特点.这个图形有很多不确定因素,线段 EF 的位置不定,点P 在滑动,但在这一系列的变化中是否可以发现其中的稳定因素?求四面体的体积要具备哪些条件?仔细观察图形,应该以哪个面为底面?观察∆PEF ,我们发现它的形状位置是要变化的,但是底边 EF 是定值,且 P 到 EF 的距离也是定值,故它的面积是定值.再发现点 Q 到面 PEF 的距离也是定值.因此,四面体PQEF 的体积是定值.我们没有一点计算,对图形的分析帮助我们解决了问题.(1 - CP ) 2+ BQ 2MBON=二、最值问题例 2.如图,正方形 ABCD 、ABEF 的边长都是 1,而且平面CABCD 、ABEF 互相垂直。
点 M 在 AC 上移动,点 N 在 BF 上移动,若 CM=BN= a (0 < a <2). (1)求 MN 的长;D(2)当 a 为何值时,MN 的长最小; (3)当 MN 长最小时, 求面 MNA 与面 MNB 所成的二面角的大小。
E解析:(1)作 MP ∥AB 交 BC 于点 P ,NQ ∥AB 交 BE 于点 Q ,连接 PQ ,依题意可得 MP ∥NQ ,且 MP=NQ ,即 MNQP 是 A平行四边形。
备战2025年高考二轮复习数学课件:立体几何-立体几何中的动态问题
![备战2025年高考二轮复习数学课件:立体几何-立体几何中的动态问题](https://img.taocdn.com/s3/m/45cb907aa31614791711cc7931b765ce04087a0c.png)
1 · = -1 + + 4 = 0,
解得
1
λ=6,满足题意,故存在点
P,使得 BD1⊥平面 APC,故 B 正确;
对于 C,当
1
λ= 时,BD1⊥AP,BD1⊥PC,此时
6
AP,PC 同时取得最小值,即 AP+PC
取得最小值.
=
30
,故
3
1 5 1
- , ,
6 6 3
,=
A.当P为BD1的中点时,∠APC为锐角
B.存在点P,使得BD1⊥平面APC
C.AP+PC 的最小值为
30
3
D.顶点 B 到平面 APC 的最大距离为
6
6
解析 如图,以点D为原点,DA,DC,DD1所在直线为x轴、y轴、z轴,建立空间
直角坐标系,
则A(1,0,0),B(1,1,0),C(0,1,0),D1(0,0,2),
ABCD=PQ,MN⊥PQ,所以MN⊥平面ABCD.又M0N⊂平面ABCD,所以
1
MN⊥M0N.故动点M形成的轨迹长度为
4
×2π×
2
4
=
2π
.
8
角度二
与动点有关的最值、范围问题
例2(多选题)在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,动点P在体对角
线BD1上(含端点),则下列结论正确的有(ABC)
轨迹长度为
2π
8
.
解析 如图,连接AC,设AC的中点为M0,△ADE绕DE顺时针旋转90°,此时平
面A'DE⊥平面ABCD.
取CD中点P,CE中点Q,连接PQ,MP,MQ,M0P,M0Q,取PQ中点N,连接MN,M0N.
培优提能10 立体几何中的动态问题
![培优提能10 立体几何中的动态问题](https://img.taocdn.com/s3/m/28088934640e52ea551810a6f524ccbff121ca23.png)
培优提能10 立体几何中的动态问题立体几何中的“动态问题”是指空间中的某些点、线、面的位置是不确定的或可变的一类开放性问题,解答此类问题应该动静结合、化动为静,找到相应的几何关系,具体有以下几种解决方法:(1)函数法:某些点、线、面的运动,必然导致某些位置关系或一些变量的变化.变量变化时会引发其他变量的变化,从而建立函数关系,将立体几何问题转化为函数问题来解.(2)解析法:我们常利用空间直角坐标系解决立体几何问题,即实现几何问题代数化.因此利用空间直角坐标系将空间图形中的若干元素坐标化后,借助向量进行运算和分析,是解决这类问题的常用方法. (3)等价转换法:动和静是相对的,在运动变化过程中,要善于寻找或构造与之相关的一些不变因素,将一些变化的点、线、面进行合理转换,实现变量与不变量的结合.培优点1 以静制动(旋转问题、射影问题)典例1 正四面体ABCD的棱长为1,棱AB∥平面α(如图),则四面体上的所有点在平面α内的射影构成的图形面积的取值范围是.解析:去掉与问题无关的面,将四面体看成是以AB为棱的二面角C-AB-D(二面角大小一定),用纸折出这个二面角,不妨将AB置于平面α内,将二面角绕AB 转动一周,观察点C,D 在平面α上的射影,可以发现点C,D 在平面α上的射影始终在AB 的射影的中垂线上.当CD ∥平面α时,四边形ABCD 的面积最大,为12(如图1).当CD ⊥平面α时,四边形ABCD 的面积最小,为√24(如图2),转动过程中C,D 在平面α上的射影从C,D 变化到C ′,D ′(如图3),故图形面积的取值范围是[√24,12]. 答案:[√24,12]在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.触类旁通1 如图,直线l ⊥平面α,垂足为O.正方体ABC D −A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1的中点P 的距离的最大值为 .解析:从题图中分化出4个点O,A,B1,P,其中△AOB1为直角三角形,固定A,B1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,从而OP≤OQ+QP=12AB1+2=√2+2,当且仅当OQ⊥AB1,即点O,Q,P共线时,取到等号,此时直线AB1与平面α成45°角.答案:√2+2培优点2 动点轨迹(长度)问题典例2 在棱长为2√2的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD 的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为( )A.2√153B.4√33C.2√133D.4√23解析:如图,连接B1D1,因为E,F 分别为棱AB,AD 的中点,所以B 1D 1∥EF,则B 1,D 1,E,F 四点共面.连接A 1C 1,A 1D,设A 1C 1∩B 1D 1=M,A 1D ∩D 1F=N,连接MN,则点Q 的轨迹为线段MN,易得A 1D=√A 1D 12+DD 12=4,△A 1ND 1∽△DNF,且A 1D 1FD=2,所以A 1N=23A 1D=83.易知A 1C 1=C 1D=A 1D=4,所以∠C 1A 1D=60°,又A 1M=2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1Mcos 60°=529,所以MN=2√133,即点Q 的轨迹长度为2√133.故选C.空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆、圆锥曲线.很少有题目会脱离这三个方向.触类旁通2 (多选题)(2022·湖南郴州高三期末)如图,点P 是棱长为2的正方体ABCD-A 1B 1C 1D 1表面上的一个动点,则( AC )A.当点P 在平面BCC 1B 1上运动时,四棱锥P-AA 1D 1D 的体积不变B.当点P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是[π6,π2]C.当直线AP 与平面ABCD 所成的角为45°时,点P 的轨迹长度为π+4√2D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ∥平面B 1CD 1时,PF 长度的最小值是 √5解析:当P 在平面BCC 1B 1上运动时,点P 到平面AA 1D 1D 的距离不变,正方形AA 1D 1D 的面积不变,故四棱锥P-AA 1D 1D 的体积不变,故A 正确; 建立如图所示的空间直角坐标系,设P(x,2-x,0),0≤x ≤2,A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),则D 1P →=(x,2-x,-2),A 1C 1→=(-2,2,0),设D 1P 与A 1C 1所成的角为θ(0≤θ≤π2),则cos θ=|cos<D 1P →,A 1C 1→>|=|D 1P →·A 1C 1→||D 1P →||A 1C 1→|=|x -1|√(x -1)2+3,因为0≤|x-1|≤1,当|x-1|=0时,θ=π2,当0<|x-1|≤1时,cos θ=|x -1|√(x -1)2+3=√1+3|x -1|2,0<cos θ≤12,则π3≤θ<π2,综上,π3≤θ≤π2,所以D 1P 与A 1C 1所成角的取值范围是[π3,π2],故B 错误;因为直线AP 与平面ABCD 所成的角为45°,若点P 在平面BCC 1B 1和平面DCC 1D 1内,因为∠B 1AB=45°,∠D 1AD=45°已为最大,不成立,在平面ADD 1A 1内,点P 的轨迹长度是AD 1=2√2,在平面ABB 1A 1内,点P 的轨迹长度是AB 1=2√2, 在平面A 1B 1C 1D 1内,如图所示,作PM ⊥平面ABCD,因为∠PAM=45°,所以PM=AM,又PM=AB,所以AM=AB,则A 1P=AB,所以点P 的轨迹是以A 1为圆心,以2为半径的四分之一圆,所以点P 的轨迹长度为14×2π×2=π,所以点P 的轨迹总长度为π+4√2,故C 正确; 建立如图所示的空间直角坐标系,设P(x,y,0),x,y ∈[0,2],B 1(2,2,2),D 1(0,0,2),C(0,2,0),F(2,1,2),则CB 1→=(2,0,2),CD 1→=(0,-2,2),FP →=(x-2,y-1,-2), 设平面B 1CD 1的法向量为n=(a,b,c),则{CD 1→·n =0,CB 1→·n =0,即{-2b +2c =0,2a +2c =0,令a=1,则n=(1,-1,-1), 因为PF ∥平面B 1CD 1,所以FP →·n=(x-2)-(y-1)+2=0,即y=x+1,所以|FP →|=√(x -2)2+(y -1)2+4=√2x 2-4x +8=√2(x -1)2+6≥√6,当x=1时,等号成立,故D 错误.故选AC.培优点3 翻折问题典例3 如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D,E,F 为圆O 上的点,△DBC,△ECA,△FAB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△FAB,使得D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积的最大值为 cm 3.解析:如图,连接OD,交BC于点G,由题意,知OD⊥BC,OG=√3BC.6设OG=x,则BC=2√3x,DG=5-x,×2√3x×3x=3√3x2,三棱锥的高h=√DG2-OG2=√25-10x,S△ABC=12则三棱锥的体积V=1S△ABC·h=√3x2·√25-10x=√3·√25x4-10x5.3),则f′(x)=100x3-50x4.令f′(x)=0,得令f(x)=25x4-10x5,x∈(0,52x=2.当x∈(0,2)时,f′(x)>0,f(x)单调递增;当x∈(2,5)时,f′2(x)<0,f(x)单调递减.故当x=2时,f(x)取得最大值80,则V≤√3×√80=4√15.所以三棱锥体积的最大值为4√15 cm3.答案:4√15在解决立体几何中的“动态”问题时,对于一些很难把握运动模型(规律)的求值问题,可以通过构建某个变量的函数,以数解形.触类旁通3 (1)(多选题)(2022·河北唐山高三期末)如图,四边形ABCD是边长为2的正方形,E为AB的中点,将△AED沿DE所在的直线翻折,使A与A′重合,得到四棱锥A′-BCDE,则在翻折的过程中( AB )A.DE⊥AA′B.存在某个位置,使得A′E⊥CDC.存在某个位置,使得A′B∥DED.存在某个位置,使四棱锥A′-BCDE的体积为1(2)(多选题)(2022·广东罗湖高三期末)在△ABC中,AB⊥BC,且AC=2,BC=1,若将△ABC沿AC边上的中线BD折起,使得平面ABD⊥平面BCD.点E在由此得到的四面体ABCD的棱AC上运动,则下列结论正确的为( BCD )A.∠ADC=π2B.四面体ABCD的体积为18C.存在点E使得△BDE的面积为14D.四面体ABCD外接球的表面积为13π3解析:(1)对于A,如图所示,过A′作A′O⊥DE,垂足为O,延长AO交BC于点F,因为DE⊥AO,且AO∩A′O=O,AO,A′O⊂平面A′AO,所以DE⊥平面A′AO,又因为A′A⊂平面A′AO,所以DE⊥AA′,A正确;对于B,取DC的中点G,连接EG,A′G,当A′在平面ABCD上的射影在直线EG上时,此时DC⊥平面A′EG,从而得到A′E⊥CD,B正确;对于C,连接A′B,因为点E∈平面A′BE,点D∉平面A′BE,所以直线A′B与DE是异面直线,所以不存在某个位置,使得A′B∥DE,C错误;对于D,由VA′BCDE =13×12×(1+2)×2×h=1,解得h=1,由A′O⊥DE,可得A′O=A′E·A′DDE =√5=√5,即此时四棱锥的高h∈(0,√5],此时√5<1,所以不存在某个位置,使四棱锥A′-BCDE的体积为1,D错误.故选AB.(2)对于A,取BD的中点M,连接CM,因为BC=CD=1,所以CM⊥BD,又平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,所以CM⊥平面ABD,则CM⊥AD,若∠ADC=π2,则AD⊥CD,所以AD⊥平面CBD,则AD⊥BD,显然不可能,A错误;对于B,易知△BCD的面积为√34,在平面ABD中,过A作BD的垂线,交BD的延长线于点H,易知AH=√32,因为平面ABD ⊥平面BCD,平面ABD ∩平面BCD=BD,所以AH ⊥平面BCD,即三棱锥A-BCD 的高为AH=√32,所以三棱锥A-BCD 的体积V=13×√34×√32=18,即四面体ABCD 的体积为18,B正确;对于C,显然当AC ⊥平面BDE 时,△BDE 的面积取得最小值,易知CD=1,DH=12,由余弦定理可得CH=√72,所以AC=√AH 2+CH 2=√102, 又四面体ABCD 的体积为18, 所以18=13×S ×√102,即S=3√1040<14, 且△BCD 的面积为√34>14,所以存在点E 使得△BDE 的面积为14,C 正确;对于D,设△BCD 与△ABD 的外心依次为O 1,O 2, 过O 1作平面BCD 的垂线l 1,过O 2作平面ABD 的垂线l 2,则四面体ABCD 的外接球球心O 为直线l 1与l 2的交点,延长CO 1交BD 于点M,则M 为BD 的中点,连接O 2M,则四边形MO 1OO 2为矩形,结合正弦定理可求得O 2M=√32,O 1C=√33, 所以四面体ABCD 的外接球半径为R=OC=√O 1O 2+O 1C 2=√O 2M 2+O 1C 2=√34+13=√1312,则四面体ABCD 外接球的表面积为S=4πR 2=4π×1312=13π3,D 正确.故选BCD.培优点4 动态最值问题典例4 (多选题)(2022·江苏常州高三期末)已知正方体ABCD-A 1B 1C 1D 1的棱长为3a,点M 是棱BC 上的定点,且BM=2CM,点P 是棱C 1D 1上的动点,则( )A.当PC 1=23a 时,△PAM 是直角三角形B.四棱锥A 1-PAM 体积的最小值为32a 3 C.存在点P,使得直线BD 1⊥平面PAM D.任意点P,都有直线BB 1∥平面PAM 解析:由已知及计算可得PC 1=23a,AM=√13a,AP=√2113a,MP=√943a,所以AP 2=MP 2+AM 2,所以△PAM 为直角三角形,A 正确;S △AA 1M =12×3a ×√13a=3√132a 2,当P 与C 1重合时,点P 到平面AA 1M 的距离最小,设点P 到平面AA 1M 的距离为h, 在B 1C 1上取M 1,使B 1M 1=2C 1M 1,sin ∠B 1M 1A 1=√13=ℎmin a,所以h min =√13a,所以V A 1PAM =V PAA 1M =13×S △AA 1M ×h ≥13×3√132a 2×√13a=32a 3,B 正确;因为BD 1⊥平面AB 1C,平面AB 1C 与平面PAM 不平行,所以BD 1与平面PAM 不垂直,C 错误;P 与C 1重合时,平面PAM 为平面C 1AM,BB 1∥CC 1,若BB 1∥平面PAM,则CC 1⊂平面C 1AM,与CC 1⊄平面C 1AM 矛盾,D 错误.故选AB.解决与空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:(1)从问题的几何特征入手,充分利用其几何性质去解决; (2)利用空间几何体的侧面展开图;(3)找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及导数法等.触类旁通4 (多选题)(2022·广东揭阳高三期末)如图所示,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M,N 分别是AD,CC 1的中点,P 是线段AB 上的动点,则下列说法正确的是( BD )A.平面PMN 截正方体所得的截面可以是四边形、五边形或六边形B.当点P 与A,B 两点不重合时,平面PMN 截正方体所得的截面是五边形C.△MPN 是锐角三角形D.△MPN 面积的最大值是√212解析:如图所示,当点P 与A,B 两点不重合时,将线段MP 向两端延长,分别交CD,CB 的延长线于点O,Q,连接NO,NQ 分别交DD 1,BB 1于R,S 两点,连接RM,SP,此时截面为五边形MPSNR,故B 正确;当点P 与点A 或点B 重合时,截面为四边形,不可能为六边形,故A 错误;考虑△MPN,当点P 与点A 重合时,MN=√6,PM=1,PN=3, 此时因为MN 2+PM 2<PN 2,故∠PMN 为钝角,故C 错误;当点P 与点B 重合时,点P 到直线MN 的距离取到最大值,△MPN 的面积取到最大值,此时MN=√6,BM=BN=√5,则MN 边上的高为√(√5)2-(√62)2=√142,△MPN的面积为12×√142×√6=√212,即最大值为√212,故D正确.故选BD.。
高考数学专题四立体几何 微专题29 立体几何中的动态问题
![高考数学专题四立体几何 微专题29 立体几何中的动态问题](https://img.taocdn.com/s3/m/ded09466905f804d2b160b4e767f5acfa1c78330.png)
√C.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线 √D.若D1N与AB所成的角为 π3,则点N的轨迹为双曲线
如图所示,对于A, 根据正方体的性质可知,MD⊥平面ABCD, 所以∠MND为MN与平面ABCD所成的角, 所以∠MND=4π,所以 DN=DM=12DD1=12×4=2, 所以点N的轨迹是以D为圆心,2为半径的圆,故A正确;
思维导图
内容索引
典型例题
热点突破
PART ONE
典型例题
考点一 动点的轨迹
典例1 (1)(多选)已知正方体ABCD-A1B1C1D1 的棱长为4,M为DD1的中点,N为四边形ABCD 所在平面上一动点,则下列命题正确的是
√A.若MN与平面ABCD所成的角为 π4,则点N的
轨迹为圆
B.若MN=4,则MN的中点P的轨迹所围成图
当 B 是 AC 的中点时,AB=BC= 6,
此时△SAB为等腰三角形,△ABC为等腰直角三角形,
将△SAB,△ABC沿AB展开至同一个平面,得到如
图2所示的平面图形,
取AB的中点D,连接SC,SD,CD,
则 SD=
22-
262=
210,
所以 sin ∠ABS=SSDB= 410, 所以 cos∠CBS=cos(90°+∠ABS)=-sin∠ABS=- 410,
此时点B与点Q重合,点P与点O1重合,故C正确;
对于D,当点P与点B1,点Q与点A重合时,
AP+PQ+QB1 的值为 3AP=3 12+22=3 5>2 3+ 5,故 D 错误.
考点二 折叠、展开问题
典例2 (多选)如图,在矩形ABCD中,M为BC的中点,将△ABM沿直线 AM翻折成△AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列 说法正确的是 A.存在某个位置,使得CN⊥AB1
2024版高考数学总复习:立体几何思维深化微课堂立体几何中的动态问题课件
![2024版高考数学总复习:立体几何思维深化微课堂立体几何中的动态问题课件](https://img.taocdn.com/s3/m/92e3491e4a35eefdc8d376eeaeaad1f34693113f.png)
5
5
.因为cos α
× 5×d=
类型三
例3
求最值问题
如图,平面ACD⊥α,B为AC的中点,|AC|=2,∠CBD=60°,
P为α内的动点,且点P到直线BD的距离为 3,则∠APC的最大值为
(
A.30°
B.60°
C.90°
D.120°
)
[思维架桥] 由题意知空间中到直线BD的距离为 3的点构成一个圆
柱面,它与平面α的相交面是一个椭圆面,即点P的轨迹是一个椭
圆.由椭圆上的点关于两焦点的张角在短轴的端点取得最大值,可
求得答案.
B
解析:因为点P到直线BD的距离为 3,所以空间中到直线BD的
距离为 3的点构成一个圆柱面,它和平面α相交得到一个椭圆,即
点P在α内的轨迹为一个椭圆,B为椭圆的中心,b=
3
3,a=
面A1DE的一个法向量为n=(2,1,-2).设M(x,2,z),则=(x
-2,2,z).由·n=0,得2(x-2)+2-2z=0,所以x-z=1,
故点M的轨迹为以BC,BB1的中点为端点的线段,长为 2.故选B.
[应用体验]
如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD为正
2
2
B.1
D. 2
C.2
D
)
解析:因为当M在直线A1C1上时,都满足BM∥平面ACD1,
1
1
所以tan∠DMD1=
= 2=
1
2
2是最大值.故选D.
迹长度为(
)
π
A.
4
B. 2
C.2
D.π
[思维架桥]
建立空间直角坐标系,设点M(x,2,z),求出平面
立体几何中两类动态问题的解法
![立体几何中两类动态问题的解法](https://img.taocdn.com/s3/m/e3deb0d9f605cc1755270722192e453610665b64.png)
方法集锦立体几何中的动态问题是指空间图形中的某些点、线、面的位置是不确定的或可变的一类开放性问题,主要包括动点问题、轨迹问题、旋转问题、翻折问题、投影与截面问题.在解题时,一般可以通过改变视角、将问题转为平面几何问题或者寻找变化过程中的不变因素,把动态问题转化静态问题,然后利用几何中的定义、定理或现有的结论来解答问题.本文主要探讨两类动态问题.一、投影问题投影问题一般是指点在线段上、点在平面上、线段在平面上的投影的长度、位置、范围问题.对于动态的投影问题,我们需要结合立体几何图形,找出点、线段的投影位置,然后在平面内利用平面几何知识,如勾股定理、两点间的距离公式、正余弦定理等得到投影的长度、位置、范围.例1.在四面体ABCD中,AC=BC=CD=8,AB=AD=BD=6,AB⊂平面α,点E,F分别为线段AD,BC的中点,如图1所示.将四面体以AB为轴旋转,则线段EF在平面α内射影长度x的取值范围是____.图1图2解:如图2,取AC中点G,连接EG,FG,∵点E,F分别为线段AD,BC的中点,∴EG//CD,FG//AB,∵在四面体ABCD中,AC=BC=CD=8,AB=AD=BD=6,∴EG=4,FG=3,∴AB⊥CD,即EG⊥FG,∴EF=EG2+FG2=5,当EG//平面α时,EG在平面α内的射影长度最大,此时x=5;当EG⊥α时,EG在平面α内的射影长度最短,长度为0,此时x=3;∴线段EF在平面α内射影长度x的取值范围为[]3,5.将四面体以AB为轴旋转,FG在平面α内射影长度不变,当CD不与平面α垂直时,AB与CD在平面α内的射影垂直,即可得到EG、FG在平面α内的射影E′G′、F′G′,而E′G′、F′G′满足关系E′G′2+F′G′2=x2,于是可分别讨论当EG//平面α时、当EG⊥平面α时EG在平面α内的射影长度的最值,进而求得线段EF在平面α内射影长度x的取值范围.二、旋转问题空间几何体可以绕着直线旋转,也可以绕着点旋转.对于旋转问题,我们需要通过寻找运动中的不变量,把动态问题转化为静态问题来研究,从而找到解题的突破口.因此解答旋转问题的关键是,明确在整个旋转的过程中空间几何体经历了哪些变化,找出在变化的过程中隐含的不变量与不变关系.例2.已知四面体ABCD棱长满足AB=AC=BD=CD=2,BC=AD=1,现将四面体ABCD放入主视图为等边三角形的圆锥中,使四面体ABCD可以在圆锥中任意转动,此时圆锥的侧面积最小值为_____.解:如图3,分别取AD,BC中点M,N,连接MN,MC,取MN中点为O,连接OB,由题意可得,点O为四面体ABCD外接球的球心,且MN⊥BC,CM⊥AD.CM=CD2-DM22MN=CM2-CN2=ON=12MN=,OB=ON2-BN2=,∴四面体ABCD外接球的半径为OB=,当圆锥的侧面积最小时,圆锥的内切球即四面体ABCD的外接球,此时圆锥内切球半径为则对应圆锥的底面圆半径为,母线长为侧面积S=12×æèçø2π×27π4.在解答上述问题时,首先要对题目条件进行分析,四面体ABCD可以在圆锥中任意转动,可看作四面体ABCD外接球在圆锥中任意转动,当求圆锥侧面积最小值时圆锥的内切球即为四面体ABCD外接球,运用勾股定理便可求出最值.立体几何中的旋转问题往往和球体有密切的联系,同学们要熟练掌握外接球、内接球等知识.由于立体几何动态问题中的某些点、线、面的位置不确定,对同学们的空间想象能力要求较高,所以同学们在解题时,要注意观察、分析、比较、联想、转化等,将动静结合或者化动为静,找到对应的几何关系,用平面几何知识、代数方法等来解答问题.(作者单位:宁夏回族自治区银川市银川高级中学)图346。
剖析立体几何中的“动态”问题
![剖析立体几何中的“动态”问题](https://img.taocdn.com/s3/m/bbb0145b640e52ea551810a6f524ccbff021ca67.png)
ʏ沈建良所谓动态立体几何问题,是指在点㊁线㊁面运动变化的几何图形中,探寻点㊁线㊁面的位置关系或进行有关角与距离的计算㊂立体几何中常求解一些固定不变的点㊁线㊁面的关系,若给静态的立体几何问题赋予 活力 ,渗透了 动态 的点㊁线㊁面元素,立意会更新颖㊁更灵活,能培养同学们的空间想象能力㊂下面是对破解立体几何 动态 问题的一些思考,以期抛砖引玉㊂一㊁ 动态 问题之轨迹问题例1如图1,在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H,N分别是C C1,C1D1,D D1,C D,B C的中点,M在四边形E F G H边上及其内部运动,若MNʊ面A1B D,则点M轨迹的长度是()㊂图1A.3aB.2aC.32aD.22a解:因为在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H分别是C C1, C1D1,D D1,C D的中点,N是B C的中点,则G HʊB A1,HNʊB D㊂又G H⊄面A1B D, B A1⊂面A1B D,所以G Hʊ面A1B D㊂同理可得,NHʊ面A1B D㊂又G HɘHN=H,所以面A1B Dʊ面G HN㊂因为点M在四边形E F G H上及其内部运动,MNʊ面A1B D,所以点M一定在线段G H上运动,即满足条件㊂易得G H=22a㊂故点M轨迹的长度是22a㊂应选D㊂本题利用线面平行㊁面面平行,在动态问题中提炼一些不变的 静态 的量,建立不变量与动点之间的关系,从而确定动点的轨迹长度㊂二㊁ 动态 问题之定值问题例2如图2,在单位正方体A B C D-A1B1C1D1中,点P在线段A D1上运动㊂图2给出以下四个命题:①异面直线A1P与B C1间的距离为定值;②三棱锥D-B P C1的体积为定值;③异面直线C1P与C B1所成的角为定值;④二面角P-B C1-D的大小为定值㊂其中真命题的序号是()㊂A.①②B.③④C.①②③D.①②③④解:对于①,异面直线A1P与B C1间的距离即为两平行平面A D D1A1和平面B C C1B1间的距离,即为正方体的棱长,为定值,①正确㊂对于②,V D-B P C1=V P-D B C1,因为SәD B C1为定值,点PɪA D1,A D1ʊ平面B D C1,所以点P到平面B D C1的距离即为正方体的棱长,所以三棱锥D-B P C1的体积为定值,②正确㊂对于③,在正方体A B C D-A1B1C1D1中,因为B1Cʅ平面A B C1D1,而C1P⊂平面A B C1D1,所以B1CʅC1P,即这0 1数学部分㊃知识结构与拓展高一使用2022年4月Copyright©博看网. All Rights Reserved.两条异面直线所成的角为90ʎ,③正确㊂对于④,因为二面角P -B C 1-D 的大小即为平面A B C 1D 1与平面B D C 1所成的二面角的大小,而这两个平面位置固定不变,所以二面角P -B C 1-D 的大小为定值,④正确㊂应选D㊂动态立体几何问题,在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口㊂三㊁ 动态 问题之翻折问题例3 如图3,在长方形A B C D 中,A B =2,B C =1,E 为D C 的中点,F 为线段E C (端点除外)上一动点㊂现将әAF D 沿A F 折起,使平面A B D ʅ平面A B C F ,得到如图4所示的四棱锥D -A B C F ㊂在平面A B D 内过点D 作D K ʅA B ,垂足为K ㊂设A K =t ,则t 的取值范围是㊂图3 图4解:过点F 作F M ʅA B 交A B 于点M (作法略)㊂设F C =x ,0<x <1,则M F =B C =1,M B =F C =x ㊂易知A K <A D =1,A B =2,所以点K 一定在点M 的左边,则MK =2-t -x ㊂在R t әA D K 中,D K 2=1-t2,在R tәF MK 中,F K 2=1+(2-t -x )2㊂因为平面A B D ʅ平面A B C F ,平面A B D ɘ平面A B C F =A B ,D K ʅA B ,D K ⊂平面A B D ,所以D K ʅ平面A B C F ,所以D K ʅF K ㊂在R t әD F K 中,D F =2-x ,D K 2+F K 2=D F 2,所以1-t 2+1+(2-t -x )2=(2-x )2,化简得1-2t +t x =0,即t =12-x㊂又因为t =12-x在(0,1)上单调递增,所以12<t <1,即t 的取值范围为12,1()㊂本题是一个动态的翻折问题,通过发现不变的垂直关系,从而得到相关变量间的关系,最终转化成函数的值域问题㊂解决折叠问题的关键是分清折叠前后图形的位置和数量关系的变与不变的量㊂四㊁ 动态 问题之展开问题例4 已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为㊂设线段A B 为该圆锥底面圆的一条直径,一质点从A 出发,沿着该圆锥的侧面运动,到达B 点后再沿侧面回到A 点,则该质点运动路径的最短长度为㊂解:易得该圆锥的高h =32-1=22㊂所以该圆锥的体积V =13ˑπˑ12ˑ22=223π㊂将该圆锥侧面沿母线S A 展开,如图5所示㊂图5因为圆锥底面周长为2π,扇形半径为3,所以侧面展开后得到的扇形的圆心角øA S A '=2π3㊂由题意知点B 是圆锥侧面展开后得到的扇形的弧A A '的中点,则øA S B =π3,所以A B =A 'B =A S =3㊂所以该质点运动路径的最短长度为A B +A 'B =6㊂空间动态问题常转化为平面的动态问题求解㊂化曲为直是求解曲面上路径长度最短问题的关键㊂本题是求解圆锥侧面上质点运动路径的最短长度问题,可将圆锥侧面沿一条母线展开成扇形,从而在平面图形中解决问题㊂作者单位:江苏省盐城市时杨中学(责任编辑 郭正华)11数学部分㊃知识结构与拓展高一使用 2022年4月Copyright ©博看网. All Rights Reserved.。
2025年高考数学总复习课件47第六章微专题立体几何中的动态问题
![2025年高考数学总复习课件47第六章微专题立体几何中的动态问题](https://img.taocdn.com/s3/m/bcdb8115e55c3b3567ec102de2bd960591c6d942.png)
3+1
AP·sin (45˚+30˚)=
.
2
微专题
立体几何中的动态问题
【例6 】 如 图 , 在 正 三棱柱 ABC-A1B1C1 中 , 底面 边 长为 a ,侧 棱长为 b, 且
a≥b,点D是BC1的中点,则直线AD与侧面ABB1A1所成角的正切值的最小值是
HF,可得四边形EGC1D1 是平行四边形,所以C1G∥D1E.又C1G⊄平面CD1EF,
D1E⊂ 平 面 CD1EF , 所 以 C1G∥ 平 面 CD1EF. 同 理 可 得 C1H∥CF , C1H∥ 平 面
CD1EF.
因为C1H∩C1G=C1,C1H,C1G⊂平面C1GH,所以平面C1GH∥平面CD1EF.
D.平面A1BCD1∥平面EFGH
)
B
解析:当E与A1 重合,H与D1 重合时,BD1 与EH的夹角即BD1 与A1D1 的夹
角,显然BD1与A1D1的夹角不是 ,故A错误.
2
当 FG 不 与 B1C1 重 合 时 , 因 为 EH∥FG , EH⊂ 平 面 A1B1C1D1 , FG ⊄ 平 面
A1B1C1D1 ,所以FG∥平面A1B1C1D1.因为FG⊂平面BCC1B1 ,平面A1B1C1D1∩平
面BCC1B1=B1C1,所以FG∥B1C1∥AD.当FG与B1C1重合时,显然FG∥AD,故
B正确.
当平面EFGH与平面BCC1B1重合时,显然平面BB1D1D与平面BCC1B1不垂直,故
C错误.
直 线 AD 与 侧 面 ABB1A1 所 成 的 角 . 在 Rt△AFD 中 , DF =
高考数学立体几何中的动态问题方法总结
![高考数学立体几何中的动态问题方法总结](https://img.taocdn.com/s3/m/82a0d723e55c3b3567ec102de2bd960591c6d969.png)
高考数学立体几何中的动态问题方法总结一、立体几何动态问题的概念立体几何中的动态问题呢,就是那种图形在动或者点啊线啊在动的问题。
就像是有个小虫子在立体的几何图形里爬来爬去,它每爬到一个新位置就会产生新的几何关系。
这种问题特别有趣,也特别考验咱们的空间想象能力和数学知识的综合运用。
二、常见的动态类型1. 动点问题比如说一个点在一条直线或者一个平面上动,那这个点的位置不同,它和其他几何元素的关系就会跟着变。
像在一个三棱柱里,有个点在棱上动,那这个点到各个面的距离就会随着它的移动而改变。
2. 动线问题线在动就更复杂一点啦。
想象一下,一条直线绕着一个点旋转,那它扫过的空间形状就是我们要研究的。
比如一条直线在一个圆锥里绕着圆锥的顶点旋转,它和圆锥底面圆周上的点连线的夹角就会一直在变。
3. 动面问题面动起来就像是一张纸在三维空间里飘来飘去。
一个平面在一个立体图形里平移或者旋转,那这个平面和其他平面或者直线的交线就会不断变化。
就像一个平面在正方体里平移,它和正方体各个面的交线就会有不同的情况。
三、解决动态问题的方法1. 建立空间直角坐标系这是一个很厉害的方法哦。
把立体几何图形放在空间直角坐标系里,就可以用坐标来表示点的位置。
这样不管是点动、线动还是面动,我们都可以通过坐标的变化来研究它们之间的关系。
比如说一个动点在一个长方体的棱上动,我们设这个点的坐标,然后根据它的运动轨迹来确定坐标的取值范围,再通过向量的方法来计算它和其他点、线、面的关系。
2. 利用向量法向量在解决动态问题里超级好用。
对于动的点、线、面,我们可以用向量来表示它们的方向和位置关系。
像计算两条动直线的夹角,我们就可以用向量的点积公式。
如果是一个动平面和一条直线的夹角,也可以用向量来计算。
而且向量的运算比较有规律,不像纯几何方法那样有时候要绞尽脑汁想辅助线。
3. 特殊位置法这个方法很巧妙呢。
我们可以先找到动元素的一些特殊位置,比如动点在棱的端点的时候,动线和某个平面平行的时候,动面垂直于某个坐标轴的时候。
微重点 立体几何中的动态问题 解析版-2024年高考数学重难点攻略
![微重点 立体几何中的动态问题 解析版-2024年高考数学重难点攻略](https://img.taocdn.com/s3/m/87723c63ec630b1c59eef8c75fbfc77da26997b6.png)
微重点 立体几何中的动态问题“动态”问题是高考立体几何问题最具创新意识的题型,它渗透了一些“动态”的点、线、面等元素,给静态的立体几何题赋予了活力,题型更新颖.同时,由于“动态”的存在,也使立体几何题更趋多元化,将立体几何问题与平面几何中的解三角形问题、多边形面积问题以及解析几何问题之间建立桥梁,使得它们之间灵活转化.知识导图考点一:动点轨迹问题考点二:折叠、展开问题考点三:最值、范围问题考点分类讲解考点一:动点轨迹问题规律方法 解决与几何体有关的动点轨迹问题的方法(1)几何法:根据平面的性质进行判定.(2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定或用代数法进行计算.(3)特殊值法:根据空间图形线段长度关系取特殊值或位置进行排除.1(2024·浙江温州·一模)如图,所有棱长都为1的正三棱柱ABC -A 1B 1C 1,BE =2EC,点F 是侧棱AA 1上的动点,且AF =2CG,H 为线段FB 上的动点,直线CH ∩平面AEG =M ,则点M 的轨迹为()A.三角形(含内部)B.矩形(含内部)C.圆柱面的一部分D.球面的一部分【答案】A【分析】根据题意首先保持H 在线段FB 上不动(与F 重合),研究当点F 运动时M 的轨迹为线段MN ,再根据H 点在线段FB 上运动的轨迹即可得出点M 的轨迹为△MNE 及其内部的所有点的集合.【详解】如下图所示:首先保持H 在线段FB 上不动,假设H 与F 重合根据题意可知当F 点在侧棱AA 1上运动时,若F 点在A 1点处时,G 为CC 1的中点,此时由AF =2CG 可得满足FM =2MC,当F 点运动到图中F 1位置时,易知AF 1 =2CG 1,取AG 1∩CF 1=P ,可得F 1P =2PC ,取棱AC 上的点N ,满足AN =2NC,根据三角形相似可得M ,N ,P 三点共线,当点F 在侧棱AA 1上从A 1点运动到A 点时,M 点轨迹即为线段MN ;再研究当点H 在线段FB 上运动,当点H 在线段FB 上从点F 运动到点B 时,M 点的轨迹是线段ME ,当点H 在线段F 1B 上从点F 1运动到点B 时,M 点的轨迹是线段PE ,因此可得,当点F 是侧棱AA 1上运动时,H 在线段FB 上运动时,点M 的轨迹为△MNE 及其内部的所有点的集合;即可得M 的轨迹为三角形(含内部).故选:A2(多选)(23-24高三上·贵州安顺·期末)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E 、F 、G 、H 分别为棱CC 1、C 1D 1、A 1D 1、AB 的中点,点M 为棱A 1B 1上动点,则()A.点E 、F 、G 、H 共面B.GM +MH 的最小值为1+5C.点B 到平面AB 1C 的距离为233D.DE ⊥A 1H【答案】ACD【分析】根据题意建立空间之间坐标系,利用平面向量基本定理可对A 判断,利用向量的垂直表示可对D 判断;利用正方体面展开图可对B 判断;利用等体积法可对C 判断.【详解】如图,以D 为原点,建立空间直角坐标系,则D 0,0,0 ,E 0,2,1 ,F 0,1,2 ,G 1,0,2 ,H 2,1,0 ,对A :EF =0,-1,1 ,EG =1,-2,1 ,EH =2,-1,-1 ,设EF =λEG +μEH ,即0,-1,1 =λ1,-2,1 +μ2,-1,-1 ,解得λ=23,μ=-13,所以EF ,EG ,EH共面,故A 正确.对B :将正方体沿AB 剪开展开如下图,连接GH 交A 1B 1于一点,此点为M 点,此时GM +MH 为最小值32+22=13,故B 错误;对C :由等体积法可知V B -AB 1C =V B 1-ABC ,即13·S △AB 1C ·d =13·S △ABC ·BB 1 ,由S △AB 1C =12×2×2×sin π3=32,S △ABC =12×2×2=2,求解得d =233,故C 正确.对D :D 0,0,0 ,A 12,0,2 ,DE =0,2,1 ,A 1H=0,1,-2 DE ·A 1H =2-2=0,则DE ⊥A 1H ,所以DE ⊥A 1H ,故D 正确.故选:ACD .3(2023·贵州·一模)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M ,N ,P 分别为棱AA 1,CC 1,AD 的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的轨迹围成图形的面积为.【答案】33【分析】根据题意找出点Q 的轨迹围成图形为正六边形PENFGM 即可求解.【详解】如图,取CD ,B 1C 1,A 1B 1的中点分别为EFG ,则点Q 的轨迹围成图形为正六边形PENFGM ,且边长为面对角线的一半,即2,所以点Q 的轨迹围成图形的面积为6×122×2 2-222=33,故答案为:3 3.4(2023·宁波联考)正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 满足BP =λBC+μ-→BB 1(λ,μ∈R ),则下列说法正确的有()A.若λ+μ=1,则A 1P ⊥AD 1B.若λ+μ=1,则三棱锥A 1-PDC 1的体积为定值C.若点P 总满足PA ⊥BD 1,则动点P 的轨迹是一条直线D.若点P 到点A 的距离为3,则动点P 的轨迹是一个面积为π的圆【答案】ABC【解析】对于A ,因为BP =λBC +μ-→BB 1(λ,μ∈R )且λ+μ=1,由向量基本定理可知,点B 1,C ,P 共线,如图,连接AD1,A 1C ,BC 1,B 1C ,在正方体ABCD -A 1B 1C 1D 1中,B 1C ⊥BC 1,A 1B 1⊥平面BB 1C 1C ,因为BC 1⊂平面BB 1C 1C ,所以A 1B 1⊥BC 1,又B 1C ∩A 1B 1=B 1,所以BC 1⊥平面A 1B 1C ,在BC 1上任取一点P ,连接A 1P ,则A 1P ⊂平面A 1B 1C ,所以BC 1⊥A 1P ,在正方体ABCD -A 1B 1C 1D 1中,因为AB ∥D1C 1,且AB =D 1C 1,所以四边形ABC 1D 1为平行四边形,所以AD 1∥BC 1,则AD 1⊥A 1P ,故选项A 正确;对于B ,如图,连接A 1C 1,C 1D ,A 1D ,B 1C ,因为BP =λBC+μ-→BB 1(λ,μ∈R )且λ+μ=1,由向量基本定理可知点B 1,C ,P 共线,即点P 在直线B 1C 上,在正方体ABCD -A 1B 1C 1D 1中,因为A 1B 1∥DC ,且A 1B 1=DC ,所以四边形A 1B 1CD 为平行四边形,所以A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,BC 1⊄平面A 1C 1D ,所以B 1C ∥平面A 1C 1D ,则直线B 1C 上任意一点到平面A 1C 1D 的距离相等,又因为△A 1C 1D 的面积为一定值,所以三棱锥A 1-PDC 1的体积为定值,故选项B 正确;对于C ,如图,连接AC ,BD ,AB1,BD 1,B 1C ,B 1D 1,在正方体ABCD -A 1B 1C 1D 1中,AC ⊥BD ,BB 1⊥平面ABCD ,因为AC ⊂平面ABCD ,所以BB 1⊥AC ,又BB 1∩BD =B ,所以AC ⊥平面BB 1D 1D ,BD 1⊂平面BB 1D 1D ,所以AC ⊥BD 1,同理AB 1⊥BD 1,又AB 1∩AC =A ,所以BD 1⊥平面AB 1C ,因为点P 满足BP =λBC +μ-→BB 1(λ,μ∈R ),所以点P 在侧面BB 1C 1C 所在的平面上运动,且PA ⊥BD 1,所以动点P 的轨迹就是直线B 1C ,故选项C 正确;对于D ,因为点P 到点A 的距离为3,所以点P 的轨迹是以A 为球心,3为半径的球面与平面BB 1C 1C 的交线,即点P 的轨迹为小圆,设小圆半径为r ,因为球心A 到平面BB 1C 1C 的距离为1,则r =(3)2-1=2,所以小圆的面积S =πr 2=2π,故选项D 错误考点二:折叠、展开问题规律方法 画好折叠、展开前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.1(2024·河南·模拟预测)为体现市民参与城市建设、共建共享公园城市的热情,同时搭建城市共建共享平台,彰显城市的发展温度,某市在中心公园开放长椅赠送点位,接受市民赠送的休闲长椅.其中观景草坪上一架长椅因其造型简单别致,颇受人们喜欢(如图1).已知AB 和CD 是圆O 的两条互相垂直的直径,将平面ABC 沿AB 翻折至平面ABC ,使得平面ABC ⊥平面ABD (如图2)此时直线AB 与平面C BD 所成角的正弦值为()A.13B.33C.22D.32【答案】B【分析】根据给定条件,建立空间直角坐标系,利用空间向量求出线面角的正弦值.【详解】依题意,OC ⊥AB ,OD ⊥AB ,而平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,又OC ⊂平面ABC ,OD ⊂平面ABD ,则OC ⊥平面ABD ,OD ⊥OC ,因此直线OD ,OB ,OC 两两垂直,以点O 为原点,直线OD ,OB ,OC 分别为x ,y ,z 轴建立空间直角坐标系,令圆半径OD =1,则O (0,0,0),D (1,0,0),B (0,1,0),C (0,0,1),OB =(0,1,0),BC=(0,-1,1),BD =(1,-1,0),设平面C BD 的一个法向量n =(x ,y ,z ),则n ⋅BC=-y +z =0n ⋅BD=x -y =0,令y =1,得n =(1,1,1),设直线AB 与平面C BD 所成的角为θ,则sin θ=|cos ‹n ,OB ›|=|n ⋅OB ||n ||OB |=11×3=33,所以直线AB 与平面C BD 所成角的正弦值为33.故选:B2(22-23高三上·浙江·开学考试)如图,矩形ABCD 中,AD =2,AB =3,AE =2EB,将△ADE 沿直线DE 翻折成△A 1DE ,若M 为线段A 1C 的点,满足CM =2MA 1,则在△ADE 翻折过程中(点A 1不在平面DEBC 内),下面四个选项中正确的是()A.BM ⎳平面A 1DEB.点M 在某个圆上运动C.存在某个位置,使DE ⊥A 1CD.线段BA 1的长的取值范围是5,3【答案】ABD【分析】由已知,选项A ,在DC 上取一点N ,令CN =2ND ,可通过面面平行的判定定理证明平面BMN ∥平面ADE ,从而证明BM ∥平面A 1DE ;选项B ,可通过∠A 1DE =∠MNB =π4,NM =43,EB =22,借助余弦定理可知BM 为定值,从而确定M 点的轨迹;选项C ,可先假设DE ⊥A 1C 成立,然后借助线面垂直的判定定理和性质定理得到DE ⊥CH ,然后在△DHC 中,利用勾股定理验证是否满足,即可做出判断;选项D ,可通过点A 1运行轨迹,分别找出最大值和最小值点,然后求解即可做出判断.【详解】如上图所示,在DC 上取一点N ,令CN =2ND,连接NB ,在矩形ABCD 中,AB =CD 且AB ∥CD ,又因为AE =2EB ,CN =2ND,所以EB =ND 且EB ∥ND ,所以四边形EBND 为平行四边形,所以NB ∥ED ,又因为NB ⊄平面ADE ,DE ⊂平面ADE ,所以NB ∥平面ADE ,又因为CN =2ND ,CM =2MA 1,所以NM ∥A 1D ,又因为NM ⊄平面ADE ,DA 1⊂平面ADE ,所以NM ∥平面ADE ,又因为NM ∩NB =N 且NM 、NB ⊂平面BMN ,所以平面BMN ∥平面ADE ,又因为MB ⊂平面BMN ,所以BM ∥平面A 1DE ,选项A 正确;由NB ∥ED ,NM ∥A 1D ,AD =AE =2,可得∠A 1DE =∠MNB =π4,由CN =2ND ,CM =2MA 1 可知,NM =23A 1D =43,而EB =ND =22,由余弦定理可知,BM 为定值,而B 为定点,故M 在以B 为圆心,BM 为半径的圆上运动,故选项B 正确;取ED 的中点H ,连接HA 1、HC ,在△A 1DE 中,AD =AE =2,所以DE ⊥A 1H ,假设DE ⊥A 1C 成立,A 1H 、A 1C ⊂平面A 1HC ,所以DE ⊥平面A 1HC ,又因为CH ⊂平面A 1HC ,所以DE ⊥CH ,而,在△DHC 中,DH =2,DC =3,CH =5,所以∠DHC ≠π2,故DE ⊥CH 不成立,所以假设不成立,该选项C 错误;在DC 上取一点A 2,令DA 2 =2A 2C,在△ADE 翻折过程中, 线段BA 1的最大值是A 1与A 点重合,此时BA 1=3,线段BA 1的最小值是A 1与A 2点重合,此时BA 1=5,又因为点A 1不在平面DEBC 内,所以线段BA 1的长的取值范围是5,3 ,选项D 正确;故选:ABD3(2024高三·全国·专题练习)如图1,在等边△ABC 中,点D 、E 分别为边AB 、AC 上的动点且满足DE ⎳BC ,记DEBC=λ.将△ADE 沿DE 翻折到△MDE 的位置,使得平面MDE ⊥平面DECB ,连接MB ,MC ,如图2,N 为MC 的中点.(1)当EN ⎳平面MBD 时,求λ的值.(2)随着λ的值的变化,二面角B -MD -E 的大小是否改变?若是,请说明理由;若不是,请求出二面角B -MD -E 的正弦值.【答案】(1)λ=12(2)不是,255【分析】(1)取MB 的中点为P ,连接DP ,PN ,推出NP ∥BC ,证明NEDP 为平行四边形,利用比例关系求解即可.(2)取DE 的中点O ,如图建立空间直角坐标系,求出平面BMD 的法向量,平面EMD 的法向量,利用空间向量的数量积求解二面角的余弦函数值然后求解即可.【详解】(1)如图,取MB 的中点P ,连接DP ,PN .因为N 为MC 的中点,所以NP ⎳BC ,NP =12BC .又DE ⎳BC ,所以NP ⎳DE ,即N ,P ,D ,E 四点共面.因为EN ⎳平面MBD ,EN ⊂平面NEDP ,平面NEDP ∩平面MBD =DP ,所以EN ⎳DP ,即四边形NEDP 为平行四边形,所以NP =DE ,即DE =12BC ,所以λ=12.(2)取ED 的中点O ,连接MO ,则MO ⊥DE .因为平面MDE ⊥平面DECB ,平面MDE ∩平面DECB =DE ,MO ⊂平面MDE ,所以MO ⊥平面DECB .如图,建立空间直角坐标系,不妨设BC =2,则M 0,0,3λ ,D λ,0,0 ,B 1,31-λ ,0 ,所以MD =λ,0,-3λ ,DB =1-λ,31-λ ,0 .设平面MBD 的一个法向量为m=(x ,y ,z ),则MD ⋅m=λx -3λz =0,DB ⋅m =1-λ x +31-λ y =0,即x =3z ,x =-3y , 令x =3,所以m =3,-1,1 .由题意可知n=(0,1,0)为平面MDE 的一个法向量.设二面角B -MD -E 的平面角为θ,则cos θ =cos m ,n =m ⋅n m n =55,因此sin θ=1-cos 2θ=255,所以二面角B -MD -E 的正弦值为255.4(2023·邵阳模拟)如图所示,在矩形ABCD 中,AB =3,AD =1,AF ⊥平面ABCD ,且AF =3,点E 为线段CD (除端点外)上的动点,沿直线AE 将△DAE 翻折到△D ′AE ,则下列说法中正确的是()A.当点E 固定在线段CD 的某位置时,点D ′的运动轨迹为球面B.存在点E ,使AB ⊥平面D ′AEC.点A 到平面BCF 的距离为32D.异面直线EF 与BC 所成角的余弦值的取值范围是1313,1010【答案】 D【解析】选项A ,当点E 固定在线段CD 的某位置时,线段AE 的长度为定值,AD ′⊥D ′E ,过D ′作D ′H ⊥AE 于点H ,H 为定点,D ′H 的长度为定值,且D ′H 在过点H 与AE 垂直的平面内,故D ′的轨迹是以H 为圆心,D ′H 为半径的圆,故A 错误;选项B ,无论E 在CD (端点除外)的哪个位置,AB 均不与AE 垂直,故AB 不与平面AD ′E 垂直,故B 错误;选项C ,以AB ,AD ,AF分别为x ,y ,z 轴的方向建立如图所示的空间直角坐标系,则A (0,0,0),F (0,0,3),B (3,0,0),C (3,1,0).BC =(0,1,0),BF =(-3,0,3),AB =(3,0,0),设平面BCF 的法向量为n =(x ,y ,z ),则n ·BC=y =0,n ·BF =-3x +3z =0, 取n =(3,0,1),则点A 到平面BCF 的距离d =n ·ABn=32,故C 错误;选项D ,设E (3λ,1,0),λ∈(0,1),BC=(0,1,0),EF=-3λ,-1,3 ,设EF 与BC 所成的角为θ,则cos θ=EF ·BCEF BC=13λ2+10∈1313,1010 ,故D 正确.考点三:最值、范围问题规律方法 在动态变化过程中产生的体积最大、距离最大(小)、角的范围等问题,常用的解题思路是(1)直观判断:在变化过程中判断点、线、面在何位置时,所求的量有相应最大、最小值.(2)函数思想:通过建系或引入变量,把这类动态问题转化为目标函数,从而利用代数方法求目标函数的最值.1(多选)(2023·鞍山模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 是线段BC 1上的动点,则下列结论正确的是()A.四面体PA 1D 1A 的体积为定值B.AP +PC 的最小值为22C.A 1P ∥平面ACD 1D.直线A 1P 与AC 所成的角的取值范围是0,π3【答案】ACD【解析】对于A ,由正方体可得平面DAA 1D 1∥平面BCC 1B 1,且B ,P ∈平面BCC 1B 1,所以点B 到平面DAA 1D 1的距离等于点P 到平面DAA 1D 1的距离,所以四面体PA 1D 1A 的体积V P -A 1D 1A =VB -A 1D 1A =13S △A 1D 1A ×1=13×12×1×1×1=16,所以四面体PA 1D 1A 的体积为定值,故A 正确;对于B ,当P 与B 重合时,AP +PC =AB +BC =2<22,所以AP +PC 的最小值不为22,故B 错误;对于C ,连接A 1C 1,A 1B ,由正方体可得AA 1=CC 1,AA 1∥CC 1,所以四边形AA 1C 1C 是平行四边形,所以AC ∥A 1C 1,因为AC ⊂平面ACD 1,A 1C 1⊄平面ACD 1,所以A 1C 1∥平面ACD 1,同理可得BC 1∥平面ACD 1因为A 1C 1∩BC 1=C 1,A 1C 1,BC 1⊂平面A 1C 1B ,所以平面A 1C 1B ∥平面ACD 1,因为A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,故C 正确;对于D ,因为AC ∥A 1C 1,所以∠PA 1C 1(或其补角)为直线A 1P 与AC 所成的角,由图可得当P 与B 重合时,此时∠PA 1C 1最大为π3,当P 与C 1重合时,此时∠PA 1C 1最小为0,所以直线A 1P 与AC 所成的角的取值范围是0,π3,故D 正确.2(2023·青岛模拟)三面角是立体几何的基本概念之一,而三面角余弦定理是解决三面角问题的重要依据.三面角P -ABC 是由有公共端点P 且不共面的三条射线PA ,PB ,PC 以及相邻两射线间的平面部分所组成的图形,设∠APC =α,∠BPC =β,∠APB =γ,二面角A -PC -B 为θ,由三面角余弦定理得cos θ=cos γ-cos α·cos βsin α·sin β.在三棱锥P -ABC 中,PA =6,∠APC =60°,∠BPC =45°,∠APB =90°,PB +PC=6,则三棱锥P -ABC 体积的最大值为()A.2724B.274C.92D.94【答案】C【解析】如图所示,作BD 垂直于CP 于点D ,设点B 在平面APC 中的射影为M ,连接BM ,MD ,由题意得V P -ABC =13·S △APC·BM .设二面角A -PC -B 为θ,则cos θ=0-12×2232×22=-33,θ∈(0,π),∴sin ∠BDM =63,BM =BD ·sin ∠BDM =63BD =63·PB ·sin ∠BPC =33·PB ,S △APC =12·PA ·PC ·sin ∠APC =332·PC ,∴V P -ABC =13·S △APC ·BM =12·PB ·PC =12·PB (6-PB )=-12PB 2+3PB=-12(PB -3)2+92,当PB =3时,V P -ABC 的最大值为92.3(23-24高三下·北京·开学考试)正方体ABCD -A 1B 1C 1D 1的棱长为1,动点M 在线段CC 1上,动点P 在平面A 1B 1C 1D 1上,且AP ⊥平面MBD 1.线段AP 长度的取值范围是()A.1,2B.62,3 C.62,2 D.62+∞ 【答案】C【分析】根据题意,建立空间直角坐标系,结合空间向量的坐标运算,代入计算,即可得到结果.【详解】以D 为坐标原点,以DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系,设P a ,b ,1 ,M 0,1,t 0≤t ≤1 ,则A 1,0,0 ,B 1,1,0 ,D 10,0,1 ,则AP =a -1,b ,1 ,BD 1 =-1,-1,1 ,MD 1=0,-1,1-t ,因为AP ⊥平面MBD 1,所以AP ⊥BD 1,AP ⊥MD 1,即AP ⋅BD 1=1-a -b +1=0AP ⋅MD 1 =-b +1-t =0 ,解得a =t +1b =1-t ,所以AP =t ,1-t ,1 ,所以AP =t 2+1-t 2+1=2t -12 2+32,又0≤t ≤1,所以当t =12时,即M 是CC 1的中点时,AP 取得最小值62,当t =0或1,即M 与点C 或C 1重合时,AP取得最大值2,所以线段AP 长度的取值范围为62,2.故选:C4(2023·黑龙江哈尔滨·三模)已知四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD ,点E 是线段PB 上的动点,则直线DE 与平面PBC 所成角的最大值为()A.π6B.π4C.π3D.π2【答案】C【分析】根据题意,建立空间直角坐标系,结合空间向量的坐标运算即可得到结果.【详解】由题意,因为ABCD 为正方形,且PD ⊥底面ABCD ,以D 为原点,DA ,DC ,DP 所在直线分别为x ,y ,z 轴,建立如图所示空间直角坐标系,设PD =AD =1,则D 0,0,0 ,B 1,1,0 ,C 0,1,0 ,P 0,0,1 ,所以PB =1,1,-1 ,PC =0,1,-1 ,设PE =λPB ,λ∈0,1 ,则PE =λ,λ,-λ ,所以E λ,λ,1-λ ,即DE =λ,λ,1-λ ,设平面PBC 的法向量为n=x ,y ,z ,则n ⋅PB=x +y -z =0n ⋅PC=y -z =0,解得x =0,y =z ,取y =z =1,所以平面PBC 的一个法向量为n=0,1,1 ,设直线DE 与平面PBC 所成角为θ,则sin θ=cos <n ,DE> =n ⋅DEn DE =12×2λ2+1-λ2=12×3λ-132+23,因为y =sin θ,θ∈0,π2单调递增,所以当λ=13时,sin θ=32最大,此时θ=π3,即直线DE 与平面PBC 所成角的最大值为π3.故选:C强化训练一、单选题1(2023·云南保山·二模)已知正方体ABCD -A 1B 1C 1D 1,Q 为上底面A 1B 1C 1D 1所在平面内的动点,当直线DQ 与DA 1的所成角为45°时,点Q 的轨迹为()A.圆B.直线C.抛物线D.椭圆【答案】C【分析】建系,利用空间向量结合线线夹角分析运算.【详解】以点D 为原点,DA ,DC ,DD 1为x ,y ,z 的正方向,建立空间直角坐标系,设正方体棱长为1,则D 0,0,0 ,A 11,0,1 ,设Q x ,y ,1 ,可得DQ =x ,y ,1 ,DA 1 =1,0,1 ,因为直线DQ 与DA 1的所成角为45°,则cos45°=DQ ⋅DA 1 DQ ⋅DA 1=x +1x 2+y 2+1×2=22,化简可得y 2=2x ,所以点Q 的轨迹为抛物线.故选:C .2(2023·全国·三模)在平面直角坐标系中,P 为圆x 2+y 2=16上的动点,定点A -3,2 .现将y 轴左侧半圆所在坐标平面沿y 轴翻折,与y 轴右侧半圆所在平面成2π3的二面角,使点A 翻折至A ,P 仍在右侧半圆和折起的左侧半圆上运动,则A ,P 两点间距离的取值范围是()A.13,35B.4-13,7C.4-13,35D.13,7【答案】B【分析】设A 所在平面为α,圆的另一半所在平面为β,若P ∈α,则P ,A ,O 三点共线时,以及P 在圆的下端点时,分别取到A ,P 两点间距离的最值;若P ∈β,设P 4cos α,4sin α ,利用两点间的距离公式结合A 到β的距离,以及三角函数的有界性取到最值,进而得出答案.【详解】设A 所在平面为α,圆的另一半所在平面为β,若P ∈α,则P ,A ,O 三点共线时,PA 有最小值P 1A =R -OA =4-13;当P 在圆的下端点时,取到最大值P 2A =-3-02+2+4 2=32+62=35,即PA ∈4-13,35 ;若P ∈β,设P 4cos α,4sin α ,A 在β上的投影为距离为A 1,则A 到β面距离为AA 1 =-3 sin π3=332,又A 到y 轴的距离为3,∴A 1到y 轴的距离为9-274=32,而A 1到x 轴的距离为2,则PA =32+4cos α2+2-4sin α 2+3322=29+2035cos α-45sin α =29+20sin φ-α ,其中α∈-π2,π2 ,sin φ=35,cos φ=45,故PA min =13,当且仅当α=-π2时成立;PAmax =7,当且仅当α=φ-π2时成立;即PA ∈13,7 ;综上可得,PA∈4-13,7 ,故选:B3(2024·全国·模拟预测)如图,已知矩形ABCD 中,E 为线段CD 上一动点(不含端点),记∠AED =α,现将△ADE 沿直线AE 翻折到△APE 的位置,记直线CP 与直线AE 所成的角为β,则()A.cos α>cos βB.cos α<cos βC.cos α>sin βD.sin α<cos β【答案】B【分析】利用空间向量夹角余弦公式和向量数量积公式得到cos β=CE+EPcos αCP,由三角形三边关系得到cos β>cos α,求出答案.【详解】AB 选项,cos β=CP ⋅EA CP ⋅EA =CE +EP⋅EA CP ⋅EA =CE ⋅EA +EP ⋅EA CP ⋅EA=CE ⋅EA cos α+EP ⋅EA cos α CP ⋅EA =CE +EP ⋅EA cos αCP ⋅EA =CE +EP cos αCP,因为CE +EP >CP ,所以CE +EPCP>1,所以cos β>cos α,A 错误,B 正确;由于y =cos x 在x ∈0,π2上单调递减,故β<α,不确定cos α,sin β和sin α,cos β的大小关系,CD 错误.故选:B .4(2023·上海宝山·二模)在空间直角坐标系O -xyz 中,已知定点A 2,1,0 ,B 0,2,0 和动点C 0,t ,t +2 t ≥0 .若△OAC 的面积为S ,以O ,A ,B ,C 为顶点的锥体的体积为V ,则VS的最大值为()A.2155 B.155 C.4155 D.455【答案】C【分析】由已知OA =2,1,0 ,0B =0,2,0 ,OC =0,t ,t +2 ,设直线OA 的单位方向向量为u ,根据空间向量公式求出C 到直线OA 的距离,得到△OAC 的面积为S ,根据锥体体积公式得到以O ,A ,B ,C 为顶点的锥体的体积为V ,利用分离常数法和基本不等式求解即可得到最大值.【详解】由已知OA =2,1,0 ,0B =0,2,0 ,OC=0,t ,t +2 ,设直线OA 的单位方向向量为u ,则u =255,55,0,所以C 到直线OA 的距离h =OC 2-OC ⋅u 2=t 2+t +2 2-t 25=9t 2+20t +205,所以S =12×5×9t 2+20t +205=9t 2+20t +202,V =13S △OAB ⋅t +2 =13×12×2×2×t +2 =2t +2 3,则V S =2t +239t 2+20t +202=43⋅t +229t 2+20t +20=49⋅9t 2+36t +369t 2+20t +20=49⋅9t 2+20t +20+16t +169t 2+20t +20=49⋅1+16⋅t +19t 2+20t +20,令m =t +1m ≥1 ,则t =m -1,所以t +19t 2+20t +20=m 9m -1 2+20m -1 +20=m 9m 2+2m +9=19m +9m +2≤129m ⋅9m +2=120,当且仅当9m =9m即m =1时等号成立,所以V S≤49×1+16×120=4515,即V S的最大值为4515.故选:C .5(23-24高三上·河北衡水·阶段练习)正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=3,O 为BC 的中点,M 为棱B 1C 1上的动点,N 为棱AM 上的动点,且MN MO =MOMA ,则线段MN 长度的取值范围为()A.364,7 B.62,477C.34,477D.3,6【答案】B【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱ABC -A 1B 1C 中,O 为BC 的中点,取B 1C 1中点Q ,连接OQ ,如图,以O 为原点,OC ,OA ,OQ 为x ,y ,z 轴建立空间直角坐标系,则O 0,0,0 ,A 0,3,0 ,B 1-1,0,3 ,C 11,0,3 ,因为M 是棱B 1C 1上一动点,设M a ,0,3 ,且a ∈[-1,1],所以OM ⋅OA=a ,0,3 ⋅0,3,0 =0,则OA ⊥OM ,因为ON ⊥AM ,且MN MO =MOMA 所以在直角三角形OMA 中可得:△OMN ~△AMO即MN =MO 2MA=a 2+3a 2+3 2+3 2=a 2+3a 2+6,于是令t =a 2+6,t ∈6,7 ,所以a 2+3a 2+6=t 2-3t =t -3t ,t ∈6,7 ,又符合函数y =t -3t 为增增符合,所以在t ∈6,7 上为增函数,所以当t =6时,t -3tmin =6-36=62,即线段MN 长度的最小值为62,当t =7时,t -3tmax=7-37=477,即线段MN 长度的最大值为477,故选:B .【点睛】关键点睛:1.找到△OMN ~△AMO ,再利用函数单调性求出最值.2.建系,设出动点M a ,0,3 ,利用空间向量法求出ON ⊥AM ,再结合线线关系求线段MN 的表达式,利用函数求最值即可.6(23-24高三下·山西·阶段练习)在棱长为4的正方体ABCD -A 1B 1C 1D 1中,E 是CD 的中点,F 是CC 1上的动点,则三棱锥A -DEF 外接球半径的最小值为()A.3B.23C.13D.15【答案】C【分析】取AE 的中点G ,根据题意分析可知:三棱锥A -DEF 外接球的球心O 在过G 垂直于平面ABCD 的直线上,设GO =n ,CF =m ∈0,4 ,建系,结合空间两点距离公式可得n =m 2+4m,进而利用基本不等式运算求解.【详解】连接AE ,取AE 的中点G ,可知G 为△ADE 的外心,过G 作平面ABCD 的垂线,可知三棱锥A -DEF 外接球的球心O 在该垂线上,设GO =n ,CF =m ∈0,4 ,以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系,则D 0,0,0 ,A 4,0,0 ,E 0,2,0 ,G 2,1,0 ,O 2,1,n ,F 0,4,m ,因为OD =OF ,即4+1+n 2=4+9+m -n 2,整理得n =m 2+4m≥2m 2⋅4m =22,当且仅当m 2=4m,即m =22时,等号成立,所以三棱锥A -DEF 外接球半径的最小值为4+1+8=13.故选:C .【点睛】关键点点睛:根据题意分析可知三棱锥A -DEF 外接球的球心O 在过G 垂直于平面ABCD 的直线上,再以空间直角坐标系为依托,分析求解.7(2023·陕西咸阳·模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则以下不正确的是()A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45o 的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是5【答案】D【分析】由底面正方形ADD 1A 1的面积不变,点P 到平面AA 1D 1D 的距离不变,可判定A 正确;以D 为原点,建立空间直角坐标系,设P (x ,2-x ,0),则D 1P =(x ,2-x ,-2),A 1C 1=(-2,2,0),结合向量的夹角公式,可判定B 正确;由直线AP 与平面ABCD 所成的角为45°,作PM ⊥平面ABCD ,得到点P 的轨迹,可判定C 正确;设P (m ,m ,0),求得平面CB 1D 1的一个法向量为n=(1,-1,-1),得到FP =2(x -1)2+6,可判定D 错误.【详解】对于A 中:底面正方形ADD 1A 1的面积不变,点P 到平面AA 1D 1D 的距离为正方体棱长,所以四棱锥P -AA 1D 1D 的体积不变,所以A 选项正确;对于B 中:以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴和z 轴,建立空间直角坐标系,可得A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),设P (x ,2-x ,0),0≤x ≤2,则D 1P =(x ,2-x ,-2),A 1C 1 =(-2,2,0),设直线D 1P 与A 1C 1所成角为θ,则cos θ=cos D 1P ,A 1C 1 =D 1P ⋅A 1C 1D 1P A 1C 1 =x -1(x -1)2+3,因为0≤x -1 ≤1,当x -1 =0时,可得cos θ=0,所以θ=π2;当0<x -1 ≤1时,cos θ=x -1(x -1)2+3=11+3x -12≤12,所以π3≤θ<π2,所以异面直线D 1P 与A 1C 1所成角的取值范围是π3,π2,所以B 正确;对于C 中:因为直线AP 与平面ABCD 所成的角为45°,若点P 在平面DCC 1D 1和平面BCC 1B 1内,因为∠B 1AB =45°,∠D 1AD =45°最大,不成立;在平面ADD 1A 1内,点P 的轨迹是AD 1=22;在平面ABB 1A 1内,点P 的轨迹是AB 1=22;在平面A 1B 1C 1D 1时,作PM ⊥平面ABCD ,如图所示,因为∠PAM =45°,所以PM =AM ,又因为PM =AB ,所以AM =AB ,所以A 1P =AB ,所以点P 的轨迹是以A 1点为圆心,以2为半径的四分之一圆,所以点P 的轨迹的长度为14×2π×2=π,综上,点P 的轨迹的总长度为π+42,所以C 正确;对于D 中,由B 1(2,2,2),D 1(0,0,2),C (0,2,0),F (2,1,2),设P (m ,n ,0),0≤m ≤2,0≤n ≤2,则CB 1 =(2,0,2),CD 1 =(0,-2,2),FP=(m -2,n -1,-2)设平面CB 1D 1的一个法向量为n=(a ,b ,c ),则n ⋅CD 1=-2b +c =0n ⋅CB 1=2a +2c =0,取a =1,可得b =-1,c =-1,所以n=(1,-1,-1),因为PF ⎳平面B 1CD ,所以FP ⋅n=(m -2)-(n -1)+2=0,可得n =m +1,所以FP=(m -2)2+(n -1)2+4=2m 2-4m +8=2(m -1)2+6≥6,当x =1时,等号成立,所以D 错误.故选:D .【点睛】方法点拨:对于立体几何的综合问题的解答方法:(1)、立体几何中的动态问题主要包括:空间动点轨迹的判断,求解轨迹的长度及动角的范围等问题;(2)、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;(3)、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;(4)、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在.8(2023·吉林长春·模拟预测)四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥CD,2AB =BC=CD,BC⊥CD,侧面A1ABB1为正方形,设点O为四棱锥A1-CC1DD外接球的球心,E为DD1上的动点,则直线AE与OB所成的最小角的正弦值为()A.55B.255C.265D.15【答案】D【分析】建立空间直角坐标系,确定各点坐标,设球心O1,h,1 2,根据OA=OC得到h=34,设E2,0,a,根据向量的夹角公式结合二次函数性质计算最值得到答案.【详解】如图所示:以CD,CB,CC1分别为x,y,z轴建立空间直角坐标系,设AB=1,则A1,2,0,C0,0,0,B0,2,0,球心O在平面CDD1C1的投影坐标为1,0,1 2,则设球心O1,h,12,则OA =OC ,即1-12+h -2 2+122=12+h 2+122,解得h =34,则O 1,34,12.设E 2,0,a ,a ∈0,1 ,EA =-1,2,-a ,OB =-1,54,-12,cos EA ,OB=EA ⋅OB EA ⋅OB =1+52+12a a 2+5⋅355=72+12a a 2+5⋅354=14+2a 35×a 2+5设7+a =t ,则a =7-t ,t ∈7,8 ,则14+2a 35×a 2+5=2t35×t 2-14t +54=235×541t-7542+554,当t =547时,有最大值为235×554=265,此时直线AE 与OB 所成的角最小,对应的正弦值为1-2652=15.故选:D【点睛】关键点睛:本题考查了立体几何中的异面直线夹角问题,外接球问题,意在考查学生的计算能力,空间想象能力和综合应用能力,其中建立空间直角坐标系可以简化运算,是解题的关键.二、多选题9(23-24高三下·江苏苏州·开学考试)在正方体ABCD -A 1B 1C 1D 1中,点M 为棱AB 上的动点,则()A.平面ABC 1D 1⊥平面A 1DMB.平面BCD 1⎳平面A 1DMC.A 1M 与BC 1所成角的取值范围为π4,π3D.A 1M 与平面ABC 1D 1所成角的取值范围为π6,π4【答案】ACD【分析】由面面垂直的判定定理可判断A 选项;取点M 与点B 重合,可判断B 选项;以点D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可判断CD 选项.【详解】对于A 选项,因为四边形AA 1D 1D 为正方形,则A 1D ⊥AD 1,在正方体ABCD -A 1B 1C 1D 1中,AB ⊥平面AA 1D 1D ,A 1D ⊂平面AA 1D 1D ,则A 1D ⊥AB ,因为AB ∩AD 1=A ,AB 、AD 1⊂平面ABC 1D 1,所以,A 1D ⊥平面ABC 1D 1,因为A 1D ⊂平面A 1DM ,故平面ABC 1D 1⊥平面A 1DM ,A 对;对于B 选项,当点M 与点B 重合时,平面BCD 1与平面A 1DM 有公共点,B 错;对于CD 选项,以点D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,不妨设正方体的棱长为1,则A 1,0,0 、B 1,1,0 、C 0,1,0 、D 0,0,0 、A 11,0,1 、B 11,1,1 、C 10,1,1 、D 10,0,1 ,设点M 1,m ,0 ,其中0≤m ≤1,A 1M =0,m ,-1 ,BC 1 =-1,0,1 ,所以,cos A 1M ,BC 1 =A 1M ⋅BC 1A 1M ⋅BC 1 =12m 2+1 ∈12,22 ,设A 1M 与BC 1所成角为α,其中0≤α≤π2,则12≤cos α≤22,可得π4≤α≤π3,所以,A 1M 与BC 1所成角的取值范围为π4,π3,C 对;对于D 选项,由A 选项可知,平面ABC 1D 1的一个法向量为DA 1 =1,0,1 ,则cos A 1M ,DA 1 =A 1M ⋅DA 1A 1M ⋅DA 1 =12m 2+1 ∈12,22 ,设A 1M 与平面ABC 1D 1所成角为β,则0≤β≤π2,则12≤sin β≤22,可得π6≤β≤π4,所以,A 1M 与平面ABC 1D 1所成角的取值范围为π6,π4,D 对.故选:ACD .10(2023·全国·模拟预测)如图①,四边形ABCD 是两个直角三角形拼接而成,AB =1,BD =2,∠ABD =∠C =90°,∠BDC =45°.现沿着BD 进行翻折,使平面ABD ⊥平面BCD ,连接AC ,得到三棱锥A -BCD (如图②),则下列选项中正确的是()A.平面ABC ⊥平面ACDB.二面角B -AD -C 的大小为60°C.异面直线AD 与BC 所成角的余弦值为33D.三棱锥A -BCD 外接球的表面积为π【答案】ABC【分析】A 选项,面面垂直⇒线面垂直⇒CD ⊥平面ABC ⇒平面ABD ⊥平面ACD ;B 、C 选项,建立空间直角坐标系,利用直线方向向量和平面法向量求解;D 选项,三棱锥的外接球,寻求斜边中点(球心位置).【详解】A 项,平面ABD ⊥平面BCD ,交线为BD ,AB ⊥BD ,AB ⊂平面ABD ,所以AB ⊥平面BCD ,因为CD ⊂平面BCD ,所以AB ⊥CD .又BC ⊥CD ,且AB ∩BC =B ,所以CD ⊥平面ABC .因为CD ⊂平面ACD ,所以平面ABC ⊥平面ACD ,选项A 正确.C 选项,以B 为原点,过B 在平面BCD 内作BD 的垂线为x 轴,直线BD 为y 轴,直线AB 为z 轴,建立空间直角坐标系,则B 0,0,0 ,A 0,0,1 ,C 22,22,0,D 0,2,0 ,则AC =22,22,-1 ,AD =0,2,-1 ,BC =22,22,0.易知平面ABD 的一个法向量为n 1=1,0,0 .设平面ACD 的法向量为n2=x ,y ,z ,则n 2⋅AC =0,n 1⋅AD=0, 即22x +22y -z =0,2y -z =0,取z =2,则x =1,y =1,则n 2=1,1,2 ,由图可知二面角B -AD -C 为锐角,则二面角B -AD -C 的余弦值为cos n 1,n 2=n 1⋅n 2 n 1 n 2 =11×2=12,即二面角B -AD -C 的大小为60°,选项B 正确;cos AD ,BC =AD ⋅BCAD BC =0,2,-1 ⋅22,22,0 3×1=33,选项C 正确;D 项,取AD 的中点N ,因为△ABD 与△ACD 都是直角三角形,所以点N 到A ,B ,C ,D 的距离相等,即为三棱锥A -BCD 外接球的球心,球半径为32,则三棱锥A -BCD 外接球的表面积为4π×322=3π,选项D 错误.故选:ABC .11(2023·全国·模拟预测)如图1,矩形B 1BCC 1由正方形B 1BAA 1与A 1ACC 1拼接而成.现将图形沿A 1A 对折成直二面角,如图2.点P (不与B 1,C 重合)是线段B 1C 上的一个动点,点E 在线段AB 上,点F 在线段A 1C 1上,且满足PE ⊥AB ,PF ⊥A 1C 1,则()。
2025数学大一轮复习讲义苏教版 第七章 立体几何中的动态、轨迹问题
![2025数学大一轮复习讲义苏教版 第七章 立体几何中的动态、轨迹问题](https://img.taocdn.com/s3/m/11da6d526d85ec3a87c24028915f804d2a16871a.png)
∴平面A1BD∥平面GHN, 又∵点M在四边形EFGH上及其内部运动, MN∥平面A1BD, 则点M在线段GH上运动,即满足条件,
又 GH= 22a,则点 M 轨迹的长度是
2a 2.
思维升华
动点轨迹的判断一般根据线面平行、线面垂直的判定定理和性质定理, 结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向 量的坐标运算求出动点的轨迹方程.
2π 则在此过程中动点M形成的轨迹长度为___8___.
如 图 , 设 AC 的 中 点 为 M0 , △ADE 沿 DE 翻 折 90°,此时平面A′DE⊥平面ABCD,取CD中 点P,CE中点Q,PQ中点N, 连接PQ,MP,MQ,MN,M0P,M0Q,M0N. MP=M0P=12AD=12,MQ=M0Q=12AE=12,PQ=12DE= 22,△MPQ 和△M0PQ 是等腰直角三角形,
且在旋转过程中保持形状大小不变,故动点 M 的 轨迹是以 N 为圆心,12PQ 为半径的一段圆弧, 又 MP∥A′D , MP ⊄ 平 面 A′DE , A′D ⊂ 平 面 A′DE , ∴MP∥ 平 面 A′DE , 同 理 MQ∥ 平面A′DE, 又∵MP∩MQ=M,∴平面MPQ∥平面A′DE, 又平面A′DE⊥平面ABCD,
由线面垂直的性质可得平面SBD∥平面EFG, 又由面面平行的性质可得EG∥SB,GF∥SD,EF∥BD, 又E是边BC的中点,故EG,GF,EF分别为△SBC, △SDC,△BCD的中位线. 由题意 BD=2 2,SB=SD= 22+2= 6, 故 EG+EF+GF=12×( 6+ 6+2 2)= 6+ 2. 即动点 P 的轨迹的周长为 6+ 2.
题型二 距离、角度有关的动态轨迹问题
例2 已知长方体ABCD-A1B1C1D1的外接球的表面积为5π,AA1=2,点
(高中段)精研细磨重难点——立体几何中的动态问题(自主品悟)
![(高中段)精研细磨重难点——立体几何中的动态问题(自主品悟)](https://img.taocdn.com/s3/m/01d4ec03aef8941ea66e05c9.png)
[反思领悟] 本题通过对点的轨迹的探索,考查了线面平行,实现了解析几何问题与 立体几何的交汇.解决此类问题的方法一般是将空间问题平面化,同时要结 合常见曲线的定义,探索轨迹类型.
三、“动态”中研究“变量”——“翻折问题”
[例3] 如图1,四边形ABCD中,AB=AD=CD=1,BD= 2 ,BD⊥CD.
所以在后面的投影的面积为S后=1×1=1,在上面的投影面积S上=D ′ 1E ′ 1×1=DE×1=DE,在左面的投影面积S左=B′2E′2×1=CE×1=CE. 所以四边形D1FBE在该正方体有公共顶点的三个面上的正投影的面积之和为S =S后+S上+S左=1+DE+CE=1+CD=2.故选D. 答案:D
=2cos
α 2
,S△ABC=
1 2
×2×2sin α=2sin α.
因为D′O⊥平面ABC,
所以V四面体ABCD′=13S△ABC×D′O
=43sin αcosα2=83sinα2cos2α2
=83sinα21-sin2α20<α2<π2. 设t=sinα2,则0<t<1,V四面体ABCD′=83(t-t3).
设f(t)=83(t-t3),0<t<1,
则f′(t)=83(1-3t2),0<t<1.
所以当0<t< 33时,f′(t)>0,f(t)单调递增;
当 33<t<1时,f′(t)<0,f(t)单调递减.
所以当t=
33时,f(t)取得最大值1627
3 .
所以四面体ABCD′体积的最大值为1627 3.故选A.
4.如图所示,菱形 ABCD 的边长为 2,现将△ACD 沿对角线 AC 折起使平面 ACD′⊥平面 ACB,则此时空间四面体 ABCD′体积的最大值为( )
一道动态立体几何问题解决的7个视角与思考
![一道动态立体几何问题解决的7个视角与思考](https://img.taocdn.com/s3/m/b7210deb6f1aff00bed51e66.png)
角形ꎬ且∠BAC = ∠BCD = 90°ꎬBC = 2ꎬ点 P 是线段
AB 上的动点ꎬ若线段 CD 上存在点 Qꎬ使得异面直
线 PQ 与 AC 成 30°角ꎬ则线段 PA 长度的取值范围
是
.
(2017 年 2 月浙江省温州市数学高考模拟试
题第 8 题)
图1
图2
视角 1 从定义出发ꎬ探寻自然的解题方法. 解法 1 如图 2ꎬ过点 P 作 PE∥AC 交 BC 于点 Eꎬ联结 EQꎬCPꎬ则∠EPQ 即为异面直线 PQ 与 AC 所成 的 角ꎬ 即 ∠EPQ = 30°. 由 题 意 可 得 CD ⊥ 面 ABCꎬ∠QCE = ∠QCP = 90°ꎬ BC = CD = 2ꎬ AB =
由 cos
30°
=
| P|→PQ→Q| ������������A|→AC→C| |
=
2 | P→Q |
=
3 2
知
| P→Q | = 2 3 6. 联结 CPꎬ则在 Rt△PCQ 中ꎬ
然的ꎬ数学的解题也应该是自然的. 从基本的定义、
概念出发ꎬ以知识间的联系为脉络ꎬ顺其自然地展
开思考ꎬ是解题最常用的方法.
视角 2 从坐标出发ꎬ探寻动点的本质联系.
解法 2 如图 3ꎬ以 C 为
原点、直线 CD 为 x 轴、直线
CB 为 y 轴、 过 点 C 作 平 面
BCD 的垂线为 z 轴建立空间
2
=
2������ q2 + (1 + λ) 2 + ( λ - 1) 2
q2
2 + 2λ2
+2
=
23 ꎬ
化简得
q2
+ 2λ2
=
2 3
.
由 0≤q≤2ꎬ知
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. ADB
A A’ D O C
解法1. 解法2.
B
例 例 6.(2016 年浙江理科 14)如图,在△ ABC 中,
AB BC 2 , ABC 120 . 若平面 ABC 外的点
P 和线段 AC 上的点 D , 满足 PD DA ,PB BA , 则四面体 PBCD 体积的最大值是 1 .
D C
D’
A
B
解法1.
3:本题根据空间直线所成的角化为平面角,由于 BD ' 是动直线,而 B 是定点, 解法2. 所以考虑过 B 点作差 AC 的平行线 l ,把空间直线关系 化为 BD 与直线 l 所成角. 由翻折关系, 知点 D 在以 AC D 为轴,的圆锥上,所以结合图像,可以马上看出余弦值 D’ 的最大值应该在 D 点落在平面 ABC 上的时候,接下来 的 解 题 关 键 在 于 由 已 知 量 得 出 cos BCA 与 C O A cos DCA 关系,这估计也是本题最意外的地方. 构造圆锥, 由题意中的翻折, 可以联想到圆锥模型, F 如图, 通过运算可知:cos DCA cos BCA
( )
解:
例 3. (2016 年浙江文科 14)如图,已知平面四边形 ABCD , AB BC 3 , CD 1 , 例
AD 5 , ADC 90 ,沿直线 AC 将△ ACD 翻折成△
ACD ' ,则直线 AC 与 BD ' 所成角的余弦的最大值是
见《五三》P176—6
6 . 6
A E E’ F
D O C K B
例5.(2015浙江卷8)
如图,已知 ABC , D 是 AB 的中点,沿直线 CD 将 ACD 折成 ACD ,所成二面角 A CD B 的平 面角为 ,则( )
B
见《五三》P176—1
B. ADB C. ACB D. ACB
P
2
A
D
C
解法1.
B
解法2.
感谢您的聆听!
6 , 6
H B
l
这也是圆锥模型的重要信息. 过点 B 作 l / / AC , 此时, 点 D ' 在圆锥的底面上转动,它在直线 l 上的投影点是不动点 H ,而直线 AC 与 BD ' 所成角 为 D ' BH ,于是 cos D ' BH
BH BH 6 . BD ' BF 6
例例 4. 如图, BAD 60 , 在菱形 ABCD 中, 取 BC 中点 K ,
解法 : 从本质上讲, DEF 绕 BD 旋转形成以圆 O 位底面的两个圆锥 D - O,F - O , 解法3 2.
E ' FK EFE ', E ' OE ,在等腰三角形
E ' OE 和 等 腰 三 角 形 E ' FE 中 , 边 E ' E 共 底 , 腰 FE FE ' OE OE ' ,所以 E ' FE E ' OE ,故.
, 3
解法4 2. 思路 :如图,当△ ABD 绕 BD 旋转的过程中, BE 绕 BD 旋转形成一个以 FD 为轴,
轴截面夹角为 60 的圆锥, 显然由于 FC FD , 所以
2 FC 与该圆锥母线的夹角的范围时 , ,从而异 3 3 面直线 BE 与圆 F 的半径所成角的范围是 , . 3 2
A
H E
D
H’
ቤተ መጻሕፍቲ ባይዱ
F
C
B
例2. 例 (2012 理科 10) 已知矩形 ABCD ,AB 1 ,BC 2 , 将△ ABD 沿矩形对角线 BD
所在直线进行翻折,在翻折过程中, B A. 存在某个位置,使得直线 AC 与直线 BD 垂直 B. 存在某个位置,使得直线 AB 与直线 CD 垂直 C. 存在某个位置,使得直线 AD 与直线 BC 垂直 D. 对任意位置,三直线“ AC 与 BD ” , “ AB 与 CD ” , “ AD 与 BC ”均不垂直 A2 A D A B B C A1 C P Q D
C.
, 3 2
D.
2 , 3 3
A
D E F A C
E D
F
C
B
B
解法 思路 1. 1(特殊值法) :作为一道选择题,需秉持“小题小做”的思想,其中特殊法(特
殊位置, 特殊图形, 特殊点) 是一种非常有效的策略. 对于本题由异面直线所成角的定义知, D 选项是错的, 由于异面直线所成角的范围是 0,
E A F
D
连结 EK , DK ,则将△ ABD 沿 BD 旋转过程中,记二面角 A BD C 的平面角为 . B A. E ' FK B. E ' FK C. E ' DK D. E ' DK
( )
C K B
解法1. 解法 1:特殊法
当 =0 时, EFK 0 , EDK ; 当 =180 时, EFK =180 , EDK ;故答案选 B.
专题
在菱形 ABCD 中,BAD 60 , 线段 AD ,BD 例例 1.(2015 年浙江省高中学业水平 18) 的中点分别为 E , F ,现将 ABD 沿对角线 BD 翻折,则异面直线 BE 与 CF 所成角的取 值范围是( C ) A.
, 6 3
B.
, 6 2
, 另当平面 ABD 与平面 BCD 垂直时, 2
CF 与 BE 垂直, 故答案只能是 B 或 C (排除 A) , 当三角形 ABD 不翻折时 CF 与 BE 成
而当三角形 ABD 翻折时, CF 与 BE 成异面直线,如有比 故 B 选项不成立.
更小的角,则该角定能取到, 3