高中数学必修2《空间中直线与直线之间的位置关系》教案

合集下载

高中数学必修二《空间中直线与直线的位置关系》优秀教学设计

高中数学必修二《空间中直线与直线的位置关系》优秀教学设计

课题空间中直线与直线的位置关系(第一课时)教学目标知识与技能:(1)掌握直线与平面之间的三种位置关系;(2)会判断两直线的异面关系,初步理解异面直线的衬托画法;(3)初步理解与运用公理4 解决问题。

过程与方法:(1)让学生在学习过程中不断归纳整理所学知识;(2)通过学习经历异面直线的概念的形成过程,借助平面的衬托,体会异面直线的直观画法;(3)借助长方体的模型,发现与感知平行线的传递性。

情感、态度与价值观:(1)让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣;(2)增强动态意识,培养学生观察、对比、分析的思维,通过平移转化渗透数学中的化归与辩证唯物主义思想;(3)把问题交给学生解决,让学生自主发现问题与解决问题,养成独立思考的习惯。

学情分析学生通过前面知识的学习,已经具备了一定的空间意识和空间想象能力,对空间数学的学习有一定的好奇与兴趣,能够积极参与研究,但在分析推理能力、空间想象能力方面有所欠缺,合作交流的意识也不够强,要均衡发展,各个方面的学习都有待加强,即使是在简单的计算问题上也不容马虎。

教学重难点重点:异面直线概念的理解,掌握并会应用平行线的传递性;难点:对异面直线的理解与求法。

教学方法策略采用问题驱动、实例分析、合作探究等方式组织教学活动。

问题——自主、合作——探究教学活动过程活动一【导入】温故知新师:同学们,上节课我们学习了平面的有关知识,那现在大家来齐背一下公理1至3.生:(背诵)【设计意图:检查学生对旧知的掌握情况,为新课作铺垫。

】师:其实除了上节课,早在初中的时候我们已经接触过平面了。

那大家是否还记得,同一平面内的两条直线有几种位置关系?它们分别有几个公共点?生:相交和平行。

相交的两条直线有一个公共点,平行的没有公共点。

【设计意图:唤起学生的记忆,让学生体会到知识的连续性。

】师:既然在平面里两条直线的位置关系只有这两种,那也就是说,平面内不平行的两条直线就一定会?生:相交。

高中数学 (2.1.2 空间中直线与直线之间的位置关系)示范教案 新人教A版必修2.doc

高中数学 (2.1.2 空间中直线与直线之间的位置关系)示范教案 新人教A版必修2.doc

2.1.2 空间中直线与直线之间的位置关系整体设计教学分析空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念.三维目标1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系.2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用.3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.重点难点两直线异面的判定方法,以及两异面直线所成角的求法.课时安排1课时教学过程导入新课思路1.(情境导入)在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样.教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系.思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?图1推进新课新知探究提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理?⑥什么叫做两异面直线所成的角?⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:⎪⎩⎪⎨⎧⎩⎨⎧.,:;,:;,:没有公共点不同在任何一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线 ③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.图2④组织学生思考:长方体ABCD —A′B′C′D′中,如图1,BB′∥AA′,DD′∥AA′,BB′与DD′平行吗? 通过观察得出结论:BB′与DD′平行. 再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行. 符号表示为:a∥b,b∥c ⇒a∥c.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. ⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?生:可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a 、b ,在空间中任取一点O ,过点O 分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.图3针对这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O 有无限制条件? 答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O 取在a 或b 上(如图3).图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a 、b 相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).图5应用示例思路1例1 如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.图6求证:四边形EFGH 是平行四边形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH∥BD,且EH=BD 21. 同理,FG∥BD,且FG=BD 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形. 变式训练1.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD. 求证:四边形EFGH 是菱形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH∥BD,且EH=BD 21. 同理,FG∥BD,EF∥AC,且FG=BD 21,EF=AC 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形.因为AC=BD,所以EF=EH. 所以四边形EFGH 为菱形.2.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD ,AC⊥BD. 求证:四边形EFGH 是正方形.证明:连接EH ,因为EH 是△ABD 的中位线, 所以EH∥BD,且EH=BD 21. 同理,FG∥BD,EF∥AC,且FG=BD 21,EF=AC 21. 所以EH∥FG,且EH=FG.所以四边形EFGH 为平行四边形.因为AC=BD ,所以EF=EH.因为FG∥BD,EF∥AC,所以∠FEH 为两异面直线AC 与BD 所成的角.又因为AC⊥BD,所以EF⊥EH. 所以四边形EFGH 为正方形.点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法. 例2 如图7,已知正方体ABCD —A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.变式训练如图8,已知正方体ABCD—A′B′C′D′.图8(1)求异面直线BC′与A′B′所成的角的度数;(2)求异面直线CD′和BC′所成的角的度数.解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角,∵BC′⊥C′D′,∴异面直线BC′与A′B′所成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C是异面直线CD′和BC′所成的角,∵△AD′C是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为60°.点评:“平移法”是求两异面直线所成角的基本方法.思路2例1 在长方体ABCD—A1B1C1D1中,E、F分别是棱AA1和棱CC1的中点.求证:EB1∥DF,ED∥B1F.活动:学生先思考或讨论,然后再回答,教师点拨、提示并及时评价学生.证明:如图9,设G是DD1的中点,分别连接EG,GC1.图9∵EG A1D1,B1C1A1D1,∴EG B1C1.四边形EB1C1G是平行四边形,∴EB1GC1.同理可证DF GC1,∴EB1DF.∴四边形EB1FD是平行四边形.∴ED∥B1F.变式训练如图10,在正方体ABCD—A1B1C1D1中,E、F分别是AA1、AB的中点,试判断下列各对线段所在直线的位置关系:图10(1)AB 与CC 1; (2)A 1B 1与DC ; (3)A 1C 与D 1B ; (4)DC 与BD 1; (5)D 1E 与CF. 解:(1)∵C∈平面ABCD ,AB ⊂平面ABCD ,又C ∉AB ,C 1∉平面ABCD,∴AB 与CC 1异面. (2)∵A 1B 1∥AB,AB∥DC,∴A 1B 1∥DC.(3)∵A 1D 1∥B 1C 1,B 1C 1∥BC,∴A 1D 1∥BC,则A 1、B 、C 、D 1在同一平面内. ∴A 1C 与D 1B 相交.(4)∵B∈平面ABCD ,DC ⊂平面ABCD ,又B ∉DC ,D 1∉平面ABCD,∴DC 与BD 1异面. (5)如图10,CF 与DA 的延长线交于G ,连接D 1G , ∵AF∥DC,F 为AB 中点,∴A 为DG 的中点. 又AE∥DD 1,∴GD 1过AA 1的中点E.∴直线D 1E 与CF 相交.点评:两条直线平行,在空间中不管它们的位置如何,看上去都平行(或重合).两条直线相交,总可以找到它们的交点.作图时用实点标出.两条直线异面,有时看上去像平行(如图中的EB 与A 1C ),有时看上去像相交(如图中的DC 与D 1B ).所以要仔细观察,培养空间想象能力,尤其要学会两条直线异面判定的方法.例2 如图11,点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=22AD ,求异面直线AD 和BC 所成的角.图11解:设G 是AC 中点,连接EG 、FG.因E 、F 分别是AB 、CD 中点,故EG∥BC 且EG=BC 21,FG∥AD,且FG=AD 21.由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为所求. 由BC=AD 知EG=GF=AD 21,又EF=22AD,由勾股定理可得∠EGF=90°.点评:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角.通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系. 变式训练设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB=212,CD=24,且HG·HE·sin∠EHG=312,求AB 和CD 所成的角.解:如图12,由三角形中位线的性质知,HG∥AB,HE∥CD,图12∴∠EHG 就是异面直线AB 和CD 所成的角. 由题意可知EFGH 是平行四边形,HG=2621=AB ,HE=3221=CD ,∴HG·HE·sin∠EHG=612sin∠EHG. ∴612sin∠EHG=312. ∴sin∠EHG=22.故∠EHG=45°. ∴AB 和CD 所成的角为45°. 知能训练如图13,表示一个正方体表面的一种展开图,图中的四条线段AB 、CD 、EF 和GH 在原正方体中相互异面的有对____________.图13答案:三 拓展提升图14是一个正方体的展开图,在原正方体中,有下列命题:图14①AB 与CD 所在直线垂直;②CD 与EF 所在直线平行;③AB 与MN 所在直线成60°角;④MN 与EF 所在直线异面.其中正确命题的序号是( )A.①③B.①④C.②③D.③④ 答案:D 课堂小结本节学习了空间两直线的三种位置关系:平行、相交、异面,其中异面关系是重点和难点. 为了准确理解两异面直线所成角的概念,我们学习了公理4和等角定理. 作业课本习题2.1 A 组3、4.设计感想空间中直线与直线的位置关系是立体几何的基础,本节通过空间模型让学生直观感受两直线的位置关系,进一步培养学生的空间想象能力.两直线的异面关系是本节的重点和难点,本节选用大量典型题目训练学生求两异面直线所成的角,使学生熟练掌握直线与直线的位置关系.另外,本节加强了三种语言的相互转换,因此这是一节值得期待的精彩课例.。

人教A版高中数学必修2《空间中直线与直线之间的位置关系》教案

人教A版高中数学必修2《空间中直线与直线之间的位置关系》教案

广东省中学青年数学教师优秀课评比参赛课例——教案课题:《2.1.2空间中直线与直线之间的位置关系》授课老师:潮州市湘桥区南春中学郑珠珠教材:普通高中课程标准实验教科书人教A版数学必修21、教学目标(1)知识目标:掌握空间中两条直线的位置关系,理解异面直线的概念;以公理4和等角定理为基础,理解异面直线所成的角的概念及其初步应用。

(2)能力目标:通过研究空间中两直线的位置关系以及异面直线所成的角,培养学生的空间想象力、观察能力和分析问题的能力。

(3)情感目标:让学生体验从具体到抽象的学习规律,在探究活动中增强学生的合作意识和动手能力,激发学生的学习兴趣。

2、教学重点、难点重点:(1)空间中两条直线之间的位置关系;(2)异面直线及其所成角的概念。

难点:理解异面直线所成的角的概念及其初步应用。

3、教学方法与手段本节课应该始终贯彻“以学生为主体,以教师为主导,以观察、探究为主线”的教学理念,坚持具体与抽象相结合的原则,采用“启发式”、“讨论式”等教学方法,并充分利用多媒体和实物模型辅助教学,化静为动,进一步培养学生的空间想象力和观察能力,并在动手、讨论的过程中培养学生合作、探究的能力。

4、教学过程(一)创设情境,提出问题1、思考:同一平面内两直线有几种位置关系?学生:相交、平行。

老师:那么空间中的两条直线呢?引出本节课的课题:2.1.2空间中直线与直线之间的位置关系2、让学生观察两个生活实例,直观感知异面直线不平行、不相交的特征:(1)天安门广场上旗杆所在直线与长安街所在直线,既不平行,也不相交;(2)立交桥上下两层桥面所在直线,既不平行,也不相交。

(二)启发引导,构建概念1、让学生观察长方体模型(如图),发现:C C既不平行也不相交。

直线'A B与直线'学生在几何模型中进一步体会异面直线不平行、不相交的特征,从而构建:【异面直线的概念】不同在任何一个平面内的两条直线叫做异面直线。

注1:对“任何”这个词的理解。

.2.1.2空间中直线与直线之间的位置关系教案 新人教A版必修2

.2.1.2空间中直线与直线之间的位置关系教案 新人教A版必修2

课题:2.2.1.2空间中直线与直线之间的位置关系课型:新授课一、教学目标:1、知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。

2、过程与方法(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。

3、情感与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。

二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理。

难点:异面直线所成角的计算。

三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。

2、教学用具:投影仪、投影片、长方体模型、三角板四、教学思想(一)创设情景、导入课题1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。

在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗?共面直线生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

空间直线与直线的位置关系(教案)

空间直线与直线的位置关系(教案)

For personal use only in study and research; not for commercial use课题: 2.1.2 空间中直线与直线之间的位置关系桓台一中数学组尹朔教材版本:新课标:人教版A版《数学必修2》设计思想:空间中直线与直线的位置关系是学生在已经学习了平面的基本概念的基础上进行学习的。

在立体几何初步的内容中,位置关系主要包括直线与直线的位置关系、直线与平面的位置关系、平面与平面的位置关系。

而空间中直线与直线的位置关系是以上各种位置关系中最重要、最基本的一种,是我们研究的重点。

其中,等角定理解决了角在空间中的平移问题,在平移变换下角的大小不变,它是两条异面直线所成角的依据,也是以后学习研究二面角几角有关内容的理论依据,它提供了一个研究角之间关系的重要方法。

教材在编写时注意从平面到空间的变化,通过观察实物,直观感知,抽象概括出定义及定理培养学生的观察能力和分析问题的能力,通过联系和比较,理解定义、定理,以利于正确的进行运用。

教材分析:直线与直线问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。

通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。

教学目标:1、知识与技能(1).掌握异面直线的定义,会用异面直线的定义判断两直线的位置关系。

(2).会用平面衬托来画异面直线。

(3).掌握并会应用平行公理和等角定理。

(4).会用异面直线所成的角的定义找出或作出异面直线所成的角,会在直角三角形中求简单异面直线所成的角。

2、过程与方法(1)自主合作探究、师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断探究归纳整理所学知识。

3、情感态度与价值观(1).让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。

(2).增强动态意识,培养学生观察、对比、分析的思维,通过平移转化渗透数学中的化归及辩证唯物主义思想。

高中数学 2.1.2空间直线与直线之间的位置关系精品教案

高中数学 2.1.2空间直线与直线之间的位置关系精品教案

第二课时空间中直线与直线之间的位置关系(一)教学目标1.知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角公理;(5)异面直线所成角的定义、范围及应用。

2.过程与方法让学生在学习过程中不断归纳整理所学知识.3.情感、态度与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.(二)教学重点、难点重点:1、异面直线的概念; 2、公理4及等角定理.难点:异面直线所成角的计算.(三)教学方法师生的共同讨论与讲授法相结合;教学过程教学内容师生互动设计意图新课导入问题:在同一平面内,两条直线有几种位置关系?空间的两条直线还有没有其他位置关系?师投影问题,学生讨论回答生1:在同一平面内,两条直线的位置关系有:平行与相交.生2:空间的两条直线除平行与相交外还有其他位置关系,如教室里的电灯线与墙角线……师(肯定):这种位置关系我们把它称为异面直线,这节课我们要讨论的是空间中直线与直线的位置关系.以旧导新培养学生知识的系统性和学生学习的积极性.探索新知1.空间的两条直线位置关系:共面直线异面直线:不同在任何一个平面内,没有公共点.师:根据刚才的分析,空间的两条直线的位置关系有以下三种:①相交直线—有且仅有一个公共点②平行直线—在同一平面内,没有公共点.③异面直线—不同在任何一个平面内,没有公共点.随堂练习:现在大家思考一下这三种位置关系可不可以进行分类生:按两条直线是否共面可以将三种位置关系分成两类:一类是平行直线和相交直培养学生分类的能力,加深学生对空间的一条直相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点如图所示P50-16是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH 这四条线段所在直线是异面直线的有对.答案:4对,分别是HG与EF,AB与CD,AB与EF,AB与HG. 线,它们是共面直线.一类是异面直线,它们不同在任何一个平面内.师(肯定)所以异面直线的特征可说成“既不平行,也不相交”那么“不同在任何一个平面内”是否可改为“不在一个平面内呢”学生讨论发现不能去掉“任何”师:“不同在任何一个平面内”可以理解为“不存在一个平面,使两异面直线在该平面内”线位置关系的理解(1)公理4,平行于同一条直线的两条直线互相平行(2)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补例2 如图所示,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.证明:连接BD,因为EH是△ABD的中位线,所以EH∥BD,且12EH BD=.同理FG∥BD,且12FG BD=.因为EH∥FG,且EH = FG,所以四边形EFGH为平行四边形.师:现在请大家看一看我们的教室,找一下有无不在同一平面内的三条直线两两平行的.师:我们把上述规律作为本章的第4个公理.公理4:平行于同一条直线的两条直线互相平行.师:现在请大家思考公理4是否可以推广,它有什么作用.生:推广空间平行于一条直线的所有直线都互相平行.它可以用来证明两条直线平行.师(肯定)下面我们来看一个例子观察图,在长方体ABCD–A′B′C′D′中,∠ADC与∠A′D′C′,∠ADC与∠A′B′C′的两边分别对应平行,这两组角的大小关系如何?生:从图中可以看出,∠ADC = ∠A′D′C′,∠ADC + ∠A′B′C′=180°师:一般地,有以下定理:……这个定理可以用公理4证明,培养学生观察能力语言表达能力和探索创新的意识.通过分析和引导,培养学生解题能力.是公理4的一个推广,我们把它称为等角定理.师打出投影片让学生尝试作图,在作图的基础上猜想平行的直线并试图证明.师:在图中EH、FG有怎样的特点?它们有直接的联系吗?引导学生找出证明思路.探索新知3.异面直线所成的角(1)异面直线所成角的概念.已知两条异面直线a、b,经过空间任一点O作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(2)异面直线互相垂直如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a、b,记作a⊥b.例 3 如图,已知正方体ABCD–A′B′C′D′.(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪此棱所在的直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与直线BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′为异面直线B′A与CC′的夹角,∠B′BA′= 45°.(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.师讲述异面直线所成的角的定义,然后学生共同对定义进行分析,得出如下结论.①两条异面直线所成角的大小,是由这两条异面直线的相互位置决定的,与点O的位置选取无关;②两条异面直线所成的角(0,]2πθ∈;③因为点O可以任意选取,这就给我们找出两条异面直线所成的角带来了方便,具体运用时,为了简便,我们可以把点O选在两条异面直线的某一条上;④找出两条异面直线所成的角,要作平行移动(作平行线),把两条异面直线所成的角转化为两条相交直线所成的角;⑤当两条异面直线所成的角是直线时,我们就说这两条异面直线互相垂直,异面直线a和b互相垂直,也记作a⊥b;⑥以后我们说两条直线互相垂直,这两条直线可能是相交的,也可能是不相交的,即有共面垂直,也有异面垂直这样两种情形.然后师生共同分析例题加深对平面直线所成角的理解,培养空间想象能图力和转化化归以能力.随堂练习1.填空题:学生独立完成答案:.(1)如图,AA′是长方体的一条棱,长方体中与AA′平行的棱共有条.(2)如果OA∥O′A′,OB ∥O′B′,那么∠AOB和∠A′O′B′ .答案:(1)3条. 分别是BB′,CC′,DD′;(2)相等或互补.2.如图,已知长方体ABCD –A′B′C′D′中,AB=23,AD =23,AA′ =2.(1)BC和A′C′所成的角是多少度?(2)AA′和BC′所成的角是多少度?2.(1)因为BC∥B′C′,所以∠B′C′A′是异面直线A′C′与BC所成的角. 在Rt△A′B′C′中,A′B′=23,B′C′=23,所以∠B′C′A′ = 45°.(2)因为AA′∥BB′,所以∠B′BC′是异面直线AA′和BB′ 所成的角.在Rt△BB′C′中,B′C′= AD =23,BB′= AA′=2,所以BC′= 4,∠B′BC′= 60°.因此,异面直线AA′与BC′所成的角为60°.归纳总结1.空间中两条直线的位置关系.2.平行公理及等角定理.3.异面直线所成的角.学生归纳,教师点评并完善培养学生归纳总结能力,加深学生对知识的掌握,完善学生知识结构.作业 2.1 第二课时习案学生独立完成固化知识提升能力附加例题例1 “a、b为异面直线”是指:①a∩b =∅,且a∥b;②a⊂面α,b⊂面β,且a∩b =∅;③a⊂面α,b⊂面β,且α∩β=∅;④a⊂面α,b⊄面α;⑤不存在面α,使a⊂面α,b⊂面α成立. 上述结论中,正确的是()A .①④⑤正确B .①③④正确C .仅②④正确D .仅①⑤正确【解析】 ①等价于a 和b 既不相交,又不平行,故a 、b 是异面直线;②等价于a 、b 不同在同一平面内,故a 、b 是异面直线.故选D例2 如果异面直线a 与b 所成角为50°,P 为空间一定点,则过点P 与a 、b 所成的角都是30°的直线有且仅有条.【解析】如图所示,过定点P 作a 、b 的平行线a ′、b ′,因a 、b 成50°角,∴a ′与b ′也成50°角.过P 作∠A ′PB ′的平分线,取较小的角有∠A ′PO =∠B ′PO = 25°. ∵∠APA ′>A ′PO ,∴过P 作直线l 与a ′、b ′成30°角的直线有2条.例3 空间四边形ABCD ,已知AD =1,BD =3,且AD ⊥BC ,对角线BD =132,AC =32,求AC 和BD 所成的角。

人教A版高中数学必修二空间中直线与直线之间的位置关系教案(1)

人教A版高中数学必修二空间中直线与直线之间的位置关系教案(1)

§2.1.2 空间中直线与直线之间的位置关系一、教学目标:1、知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。

2、过程与方法(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。

3、情感与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。

二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理。

难点:异面直线所成角的计算。

三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。

2、教学用具:投影仪、投影片、长方体模型、三角板四、教学思想(一)创设情景、导入课题1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。

在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',共面直线BB'与DD'平行吗?生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

《空间中直线与直线之间的位置关系》教学设计

《空间中直线与直线之间的位置关系》教学设计

● 创新整合点在学生发现探索阶段,通过计算机演示学生可能的各种解答方案;通过计算机动画,将一个复杂抽象的空间几何问题转化为一个简单有趣的活动;通过活动调动学生的积极性去发现问题的本质,理解本节课“空间问题平面化”的思想精髓。

在练习中用几何画板来分析各种解法,既快捷又准确,通过变化直线的颜色可以起到区别和强调的作用,同时也将正确答案显示在屏幕上,便于学生检查和矫正。

在处理教学重难点时,采用合作探究的方法,通过“各自发表见解—综合讨论,归纳成文—展示成果”的过程,培养学生的合作探究能力。

在整个教学过程中,笔者合理地应用了电子白板的聚光灯、拉幕、遮盖、拖拽、超链接等技术,提高了教学的有效性。

● 教材分析本节课是数学必修2第二章2.1.2“空间中直线与直线之间的位置关系”第一课时的内容。

鉴于本节课的重要性,安排了两个课时教学,本节课是第一课时。

主要学习内容有两个:一是异面直线的概念,二是异面直线的夹角。

本节课是对学生原有的平面知识结构基础的拓展,也为今后学习立体几何知识打下基础,同时,异面直线也是高考考查的热点之一,其重要性不言而喻。

因此,本章知识起到了承上启下的作用。

● 学情分析空间直线的三种位置关系在现实中大量存在,学生已有一定的感性认识。

其中,相交直线和平行直线都是共面直线,学生对它们已经很熟悉,异面直线的概念学生比较生疏,从知识储备的角度来说,学生已经掌握平面内两条直线的位置关系,为探究空间关系打下基础,同时高一学生也具备了一定的探究能力。

● 教学目标知识与技能目标:①理解异面直线的概念;会判断两条直线是否为异面直线;②理解异面直线所成角的概念;会求简单的异面直线所成角的大小。

过程与方法目标:①培养空间想象能力和化归转化能力;②了解科学学习方法和研究方法,增强创新意识和实践能力,训练独立分析问题、解决问题的能力;③经历异面直线概念的形成过程,借助平面的衬托,体会异面直线的直观画法,并能够画出两异面直线的位置关系。

人教课标版高中数学必修2《空间中直线与直线之间的位置关系(第1课时)》教学设计

人教课标版高中数学必修2《空间中直线与直线之间的位置关系(第1课时)》教学设计

2.1 空间点、直线、平面之间的位置关系2.1.2 空间直线与直线之间的位置关系(一)一、教学目标(一)核心素养增强动态意识,培养观察、对比、分析的思维,通过平移转化渗透数学中的化归及辩证唯物主义思想.(二)学习目标1.正确理解异面直线的定义;2.会判断空间两条直线的位置关系;3.掌握平行公理及空间等角定理的内容和应用;4.会求异面直线所成角的大小.(三)学习重点1.异面直线的判定.2.求异面直线所成角的大小.(四)学习难点1.异面直线的判定.2.求异面直线所成角的大小.二、教学设计(一)课前设计1.预习任务(预习教材第44至47页,找出疑惑之处)2.预习自测问题1:下列说法正确的个数是()(1)某平面内的一条直线和与这个平面平行的直线是异面直线.(2)空间中没有公共点的两条直线是异面直线.(3)若两条直线和第三条直线所成的角相等则这两条直线必平行.(4)若一条直线垂直于两条平行直线中的一条,则它一定与另一条直线垂直.A.1个B.2个C.3个D.4个解析:(1)中两直线可能平行,也可能异面,故(1)不正确;(2)中两直线可能平行,故(2)不正确;(3)中两直线可能相交,也可能异面,故(3)不正确;由异面直线所成角定义知(4)正确.【答案】A问题2:如图所示,已知正方体1111D C B A ABCD 中,F E ,分别是1,AA AD 的中点.(1)直线1AB 和1CC 所成的角为 ;(2)直线1AB 和EF 所成的角为 .解析:(1)因为BB 1∥CC 1,所以∠AB 1B 即为异面直线AB 1与CC 1所成的角, ∠AB 1B=45°.(2)连接B 1C,易得EF ∥B 1C,所以∠AB 1C 即为直线AB 1和EF 所成的角. 连接AC,则△AB 1C 为正三角形,所以∠AB 1C=60°.【答案】(1) 45(2) 60(二)课堂设计1.知识回顾复习1:平面的特点是______、_______、_______.【答案】平的;平面是可以无限延展的;平面没有厚薄之分.复习2:平面性质(三公理)公理1___________________________________;公理2___________________________________;公理3___________________________________.【答案】公理 1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.问题探究探究1:异面直线及直线间的位置关系问题:平面内两条直线要么平行要么相交(重合不考虑),空间两条直线呢?观察:如图在长方体中,直线A B'与CC'的位置关系如何?结论:直线A B'与CC'既不相交,也不平行.新知1:像直线A B'与CC'这样不同在任何一个平面内的两条直线叫做异面直线(skew lines).试试:请在上图的长方体中,再找出3对异面直线.问题:作图时,怎样才能表示两条直线是异面的?新知2:异面直线的画法有如下几种(,a b异面):试试:请你归纳出空间直线的位置关系.探究2:平行公理及空间等角定理问题:平面内若两条直线都和第三条直线平行,则这两条直线互相平行,空间是否有类似规律?观察:如图2-1,在长方体中,直线C D ''∥A B '',AB ∥A B '',那么直线AB 与C D ''平行吗?图2-1新知3:公理4 (平行公理)平行于同一条直线的两条直线互相平行.问题:平面上,如果一个角的两边与另一个角的两边分别平行,则这两个角相等或者互补,空间是否有类似结论?观察:在图2-1中,ADC ∠与A D C '''∠,ADC ∠与A B C '''∠的两边分别对应平行,这两组角的大小关系如何?新知4:定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 探究3:异面直线所成的角已知异面直线b a ,,经过空间中任一点O 作直线a ' ∥a ,b ' ∥b ,把a ' 与b ' 所成的锐角(或直角)叫异面直线a 与b 所成的角(夹角). 范围:]2,0(πθ∈.思考:两条异面直线所成角的大小是否随空间任意点O 位置的不同而改变? 点O 可任选,一般取特殊位置,如线段的中点或端点.●活动② 互动交流,初步实践若c b a 、、是空间3条直线,a ∥b ,a 与c 相交,则b 与c 的位置关系是( )A .异面B .相交C .平行D .异面或相交【知识点】直线的位置关系.【数学思想】数形结合与分类讨论的思想.【解题过程】若b 与c 平行,因为a ∥b ,所以a 与c 平行与已知条件矛盾,容易画出异面或相交的情形.【思路点拨】通过直观的模型解决问题.【答案】D●活动③ 巩固基础,检查反馈【设计意图】巩固检查对异面直线的理解与认识.例1 如下图所示正方体1111D C B A ABCD -中,N M ,分别是1111,C B B A 的中点.问:(1)AM 和CN 是否是异面直线?说明理由.(2)B D 1和1CC 是否是异面直线?说明理由.【知识点】异面直线的判定.【数学思想】数形结合的思想.【解题过程】(1)不是异面直线.理由:N M 、 分别是1111C B B A 、的中点. ∴11C A MN ∥又∵11ACC A 为平行四边形.∴AC ∥11C A ,得到MN ∥AC ,∴AM 和CN 不是异面直线.(2)是异面直线.证明如下:假设B D 1和1CC 在同一个平面1DCC 内,则1DCC B ∈,1DCC C ∈D CC BC 1⊂∴,D D CC B 11∈∴,这与1111D C B A ABCD -是正方体相矛盾.∴假设不成立,故B D 1和1CC 是异面直线.【思路点拨】利用定义与反证法.【答案】已证.同类训练 如图是一个正方体的展开图,如果将它还原为正方体,那么GH EF CD AB ,,,这四条线段所在的直线是异面直线的有 对.【知识点】异面直线的判定.【数学思想】数形结合的思想.【解题过程】如图:AB 与CD ,AB 与GH ,EF 与GH【思路点拨】平面与空间的相互转化.【答案】3对●活动④ 强化提升,灵活应用例 2 如图,在三棱锥BCD A -中,G F E 、、分别是AD BC AB 、、的中点, 120=∠GEF ,则BD 和AC 所成角的度数为 .【知识点】异面直线成的角.【数学思想】数形结合的思想.【解题过程】依题意知,EG ∥BD,EF ∥AC,所以∠GEF 所成的角或其补角即为异面直线AC 与BD 所成的角,又∠GEF=120°,所以异面直线BD 与AC 所成的角为60°.【思路点拨】通过平行线找到成的角.【答案】 60小结:求异面直线所成的角一般要有四个步骤:(1)作图:作出所求的角及题中涉及的有关图形等;(2)证明:证明所给图形是符合题设要求的;(3)计算:一般是利用解三角形计算得出结果.(4)结论.简记为“作(或找)——证——算——答”.同类训练 在正方体1111ABCD A B C D 中,H G F E ,,,分别为1111,,,C B BB AB AA 的中点,则异面直线EF 与GH 所成的角等于________.【知识点】异面直线成的角.【数学思想】数形结合的思想.【解题过程】连接1A B 、1BC 、11A C ,由于EF ∥A 1B ,GH ∥BC 1,所以A 1B 与BC 1所成的角即为EF 与GH 所成的角,由于△A 1BC 1为正三角形,所以A 1B 与BC 1所成的角为 60,即异面直线EF 与GH 所成的角为 60.【思路点拨】通过平行线找到成的角.【答案】 60例3.空间四边形ABCD 中,H G F E 、、、分别是DA CD BC AB 、、、的中点, 求证:四边形EFGH 是平行四边形.【知识点】平行公理的应用.【数学思想】数形结合的思想.【解题过程】连接BD ,因为EH 是三角形ABD 的中位线,所以EH ∥BD ,且BD EH 21=;同理FG ∥BD ,且BD FG 21=;所以EH ∥FG ,且EH FG =,所以四边形EFGH 为平行四边形.【思路点拨】通过平行公理产生边与边的关系.【答案】已证.探究:如果再加上条件BD AC =,那么四边形EFGH 是什么图形?(菱形) 拓展:若BD AC ⊥,则四边形EFGH 又是什么图形?(矩形)3.课堂总结知识梳理(1)异面直线的定义、夹角的定义及求法.(2)空间直线的位置关系.(3)平行公理及空间等角定理.重难点归纳(1)空间直线的位置关系判定.(2)平行公理及空间等角定理.(3)求异面直线所成角的大小.(三)课后作业基础型 自主突破1.下列四个命题中错误的是( )A .若直线a 、b 互相平行,则直线a 、b 可以确定一个平面B .若四点不共面,则这四点中任意三点都不共线C .若两条直线没有公共点,则这两条直线是异面直线D .两条异面直线不可能垂直于同一个平面【知识点】平行、共线、异面直线等相关命题判断.【数学思想】分类讨论的思想.【解题过程】若两条直线没有公共点,则这两条直线是异面直线或是平行直线.显然答案C 中的命题错误.故选C .【思路点拨】根据直线的基本位置关系进行判断.【答案】C2.在正方体1111D C B A ABCD -中,B A 1与C B 1所在直线所成角的大小是( )A .30︒B .45︒C .60︒D .90︒【知识点】异面直线所成的角.【数学思想】数形结合的思想.【解题过程】连接1D C ,则11A B D C ,连接11B D ,易证11B CD ∠就是B A 1与C B 1所在直线所成角,由于11B CD 是等边三角形,因此1160B CD ∠=︒,故选C.【思路点拨】根据异面直线所成的角定义找到这个平面角.【答案】C3. c,是空间中的三条直线,下面给出四个命题:a,b①若a∥b,b∥c,则a∥c;②若a与b相交,b与c相交,则a与c相交;③若a⊂平面α,b⊂平面β,则a、b一定是异面直线;④若a、b与c成等角,则a∥b.上述命题中正确的命题是(只填序号).【知识点】点线面的位置关系.【数学思想】数形结合的思想.【解题过程】①中,由公理4知,正确;②中,a与c可相交、可平行、可异面,错误;③中,a、b可能平行、相交、异面,故错;④中,a、b可能平行、相交、异面,故错. 【思路点拨】找模型,数形结合.【答案】①4.如图是正方体的平面展开图,在这个正方体中,①BM与ED平行;②CN与BE是异面直线;60角;③CN与BM成④DM与BN是异面直线.以上四个命题中,正确命题的序号是()A.①②③B.②④C.③④D.②③④【知识点】异面直线的判定与所成的角.【数学思想】数形结合的思想.【解题过程】由题意画出正方体的图形如图:显然①②不正确;③CN 与BM 成60°角,即∠ANC=60°,正确;④正确, 故选C.【思路点拨】平面图形还原为空间图形.【答案】C5.如图,已知正方体D C B A ABCD ''''-.(1)哪些棱所在直线与直线A B '是异面直线?(2)直线A B '和C C '的夹角是多少?(3)哪些棱所在直线与直线A A '垂直?【知识点】异面直线的基本知识.【数学思想】数形结合的思想.【解题过程】(1)由异面直线的定义可知,棱AD 、DC 、CC'、DD'、D'C 、'B'C'所在直线分别与BA'是异面直线.(2)由BB'∥CC'可知,∠B'BA'是异面直线BA'和CC'的夹角,∠B'BA'=45°,所以直线BA'和CC'的夹角为45°.(3)直线A D D C C B B A DA CD BC AB ''''''''、、、、、、、分别与直线AA'垂直.【思路点拨】根据异面直线所成的基本知识与方法.【答案】(1)C B C D D D C C DC AD ''''''、、、、、;(2) 45;(3)A D D C C B B A DA CD BC AB ''''''''、、、、、、、.能力型 师生共研6.已知三棱锥BCD A -中,CD AB =,且直线AB 与CD 成60角,点N M ,分别是AD BC ,的中点,求直线AB 和MN 所成的角.【知识点】异面直线所成的角.【数学思想】数形结合的思想.【解题过程】如图,取AC 的中点P ,连接PM ,PN ,因为点M ,N 分别是BC ,AD 的中点,所以PM ∥AB ,且PM =12AB ;PN ∥CD ,且PN =12CD ,所以∠MPN (或其补角)为AB 与CD 所成的角.所以∠PMN (或其补角)为AB 与MN 所成的角.因为直线AB 与CD 成60°角,所以∠MPN =60°或∠MPN =120°.又因为AB =CD ,所以PM =PN.①若∠MPN =60°,则△PMN 是等边三角形,所以∠PMN =60°,即AB 与MN 所成的角为60°.②若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°,即AB 与MN 所成的角为30°.综上可知:AB 与MN 所成角为60°或30°.【思路点拨】根据异面直线所成的角定义找到这个平面角.【答案】60或 30. 探究型 多维突破7.如下图所示,点S R Q P 、、、分别在正方体的4条棱上,且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是________.【知识点】平行、共线、异面直线等相关命题判断.【数学思想】分类讨论与数形结合的思想.【解题过程】显然①②平行,④相交,③异面.【思路点拨】根据直线的基本位置关系进行判断.【答案】③自助餐1.如下图所示是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为( )A.相交B.平行C.异面而且垂直D.异面但不垂直【知识点】直线的位置关系.【数学思想】数形结合的思想.【解题过程】平面图形还原为空间图形,容易观察得出选D.【思路点拨】平面图形还原为空间图形.【答案】D2.下列命题:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.其中正确的结论有( )A .1个B .2个C .3个D .4个【知识点】等角定理,公理4的理解与应用.【数学思想】数形结合的思想.【解题过程】由等角定理知道①错误,②③正确;由公理4知道④正确,选C .【思路点拨】找点线面的关系.【答案】C3.已知正方体1111D C B A ABCD -中,E 为11D C 的中点,则异面直线AE 与11B A 所成的角的余弦值为________.【知识点】异面直线成的角.【数学思想】数形结合的思想.【解题过程】显然1AED ∠为异面直线AE 与11B A 所成的角(或补角),容易求得余弦值为31. 【思路点拨】先找,后证,最后算.【答案】31 4.在正方体1111D C B A ABCD -中,F E ,分别是11,BC AB 的中点,则以下结论:①EF 与1CC 垂直;②EF 与BD 垂直;③EF 与11C A 异面;④EF 与1AD 异面,其中不成立的序号是________.【知识点】直线的位置关系.【数学思想】数形结合的思想.【解题过程】连结A 1B ,在△A 1BC 1中,EF ∥A 1C 1,所以①,②,④正确,③错.【思路点拨】找点线面的关系.【答案】③5.在三棱锥A BCD -中,2==BC AD ,F E 、分别是CD AB 、的中点,2=EF ,则异面直线AD 与BC 所成的角为________.【知识点】异面直线所成角.【数学思想】数形结合的思想.【解题过程】取AC 中点P ,连接PF PE 、.则ABC ∆中,PE ∥BC 且121==BC PE ,ACD ∆中,PF ∥AD 且121==AD PF ,所以EPF ∠为所求.EPF ∆中,2,1===EF PF PE ,所以︒=∠90EPF .【思路点拨】先找,后证,最后算.【答案】︒906.正方体1111D C B A ABCD -中.(1)求AC 与D A 1所成角的大小;(2)若F E 、分别为AD AB 、的中点,求11C A 与EF 所成角的大小.【知识点】异面直线所成角.【数学思想】数形结合的思想.【解题过程】(1)如图所示,连接B 1C ,由ABCD -A 1B 1C 1D 1是正方体,易知A 1D ∥B 1C ,从而B 1C 与AC 所成的角就是AC 与A 1D 所成的角. ∵AB 1=AC =B 1C ,∴∠B 1CA =60°.即A 1D 与AC 所成的角为60°.(2)如图所示,连接AC 、BD ,在正方体1111D C B A ABCD -中,AC ⊥BD ,AC ∥A 1C 1,∵E 、F 分别为AB 、AD 的中点,∴EF ∥BD ,∴EF ⊥AC . ∴EF ⊥A 1C 1. 即A 1C 1与EF 所成的角为90°.【思路点拨】先找,后证,最后算.【答案】(1)︒60;(2) 907.长方体1111D C B A ABCD -中,21==AB AA ,1=AD ,求异面直线11C A 与1BD 所成角的余弦值.【知识点】异面直线所成的角.【数学思想】数形结合的思想.【解题过程】设11C A 与11D B 交于O ,取1BB 中点E ,连接OE ,因为OE //B D 1,所以OE C 1∠或其补角就是异面直线11C A 与1BD 所成的角或其补角.在OE C 1∆中,1111522OC A C ==,221113221222OE BD ==++=, 22221111112C E B C B E =+=+=, 所以222222111153()()(2)522cos 2553222OC OE C E C OE OC OE +-+-∠===⋅⨯⨯,所以异面直线11C A 与1BD 所成的角的余弦值为55.【思路点拨】根据异面直线所成的角定义找到这个平面角.【答案】55。

高中数学第二章2.1.2空间中直线与直线之间的位置关系教案新人教A版必修2

高中数学第二章2.1.2空间中直线与直线之间的位置关系教案新人教A版必修2

黑龙江省大庆外国语学校高一数学必修二第二章《2.1.2 空间中直线与直线之间的位置关系》教案【教学目标】(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培育学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的概念、范围及应用。

【教学重难点】重点:一、异面直线的概念;二、公理4及等角定理。

难点:异面直线所成角的计算。

【教学进程】(一)创设情景、导入课题问题1:在平面几何中,两直线的位置关系如何?问题2:没有公共点的直线必然平行吗?问题3:没有公共点的两直线必然在同一平面内吗?一、通过身旁诸多实物,引导学生思考、举例和彼此交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

二、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)教学新课一、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

思考:如图所示:正方体的棱所在的直线中,与直线AB异面的有哪些?二、教师再次强调异面直线不共面的特点,介绍异面直线的作图,如下图:3、(1)师:在同一平面内,若是两条直线都与第三条直线平行,那么这两条直线彼此平行。

在空间中,是不是有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中, BB'∥AA',DD'∥AA', BB'与DD'平行吗?生:平行。

再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线彼此平行。

符号表示为:设a、b、c是三条共面直线直线a∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

例1空间四边形 ABCD中,别离是的中点求证:四边形EFGH是平行四边形证明:连接BD因为EH是△ABD的中位线,所以EH∥BD且EH=21B D同理FG∥BD且FG=21BD因为EH∥FG且EH=FG所以四边形 EFGH是平行四边形点评:例2的讲解让学生掌握了公理4的运用变式:在例1中若是加上条件AC=BD,那么四边形EFGH是什么图形?4、组织学生思考教材P46的思考题让学生观察、思考:∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边别离对应平行,这两组角的大小关系如何?生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800教师画出更具一般性的图形,师生一路归纳出如下定理等角定理:空间中若是两个角的两边别离对应平行,那么这两个角相等或互补。

高中数学人教B版必修二同步教案:空间中直线与直线之间的位置关系

高中数学人教B版必修二同步教案:空间中直线与直线之间的位置关系

人教B 版 数学 必修2:空间中直线与直线之间的位置关系一、教学目标:1、知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。

2、过程与方法(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。

3、情感与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。

二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理。

难点:异面直线所成角的计算。

三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。

2、教学用具:投影仪、投影片、长方体模型、三角板四、教学思想(一)创设情景、导入课题1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。

在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗?共面直线生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

高中数学人教版必修2 2.1.2 空间直线与直线之间的位置关系 教案(系列二)

高中数学人教版必修2 2.1.2 空间直线与直线之间的位置关系 教案(系列二)

珍贵文档2.1.2 空间中直线与直线的位置关系姓名: ;班级: 1探究导航[知识要点]1.两条直线的位置关系;2.平行线间的传递性(公理4);3.空间的等角定理;4.异面直线所成的角(或夹角);5.空间两条直线互相垂直.[学习要求]1.了解空间中两条直线的位置关系;2.掌握公理4及等角定理3.理解异面直线的概念;4掌握异面直线所成角的求法. 2记忆和理解教材新知知识点一:空间两条直线的位置关系 [提出问题]问题1:在同一平面内,两条直线有怎样的位置关系? 问题2:若把立交桥抽象成一条直线,它们是否在同一平面内?有何特征?问题3:观察一下,日光灯管所在的直线与黑板的左右两侧所在直线,是否也具有类似的特征? [导入新知] 1.异面直线(1)定义:不同在 的两条直线. (2)异面直线的画法2.空间两条直线的位置关系空间两条直线的位置关系有且只有三种. (1)若从公共点的数目分,可以分为: ① 只有一个公共点—— ;② 没有公共点(2)若从平面的基本性质分,可以分为:① 在同一平面内② 不同在任何一个平面内—— ; 思考:若βα⊂⊂b a ,,那么a 与b 一定是异面直线吗?知识点二:平行公理及等角定理 [提出问题]1.同一平面内,若两条直线都与第三条直线平行,那么这两条直线互相平行. 问题:空间中是否有类似规律? 2.观察下图中的AOB ∠与B O A '''∠问题1:这两个对应的两条边之间有什么样的位置关系?问题2:测量一下,这两个角的大小关系如何?[导入新知]1.平行公理(公理4)(1)文字表述:平行于同一直线的两条直线,这一性质叫做空间.符号表述:⇒⎭⎬⎫cbba////.2.等角定理:空间中如果两个角的两边分别,那么这两个角或.3.异面直线所成的角(1)定义:已知两条异面直线ba,,经过空间任意一点O作直线bbaa//,//'',我们把a'与b'所成的(或)叫做异面直线a与b所成的角(或夹角).(2)异面直线所成的角θ的取值范围:.(3)当=θ时,异面直线a与b垂直,记作:.3突破常考题型题型一:两条直线位置关系的判定[例1]如图,正方体ABCD-A1B1C1D1,判断下列直线的位置关系:①直线A1B与直线D1C的位置关系是;②直线A1B与直线B1C的位置关系是;③直线D1D与直线D1C的位置关系是;④直线AB与直线B1C的位置关系是.[活学活用]如图,正方体ABCD-A1B1C1D1中,M,N分别是A1B1和B1C1的中点,问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.题型二:平行公理及等角定理的应用[例2]在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是CD和AD的中点.(1)求证:四边形MN A1C1是梯形;(2)求证:111CADDNM∠=∠珍贵文档[活学活用]已知如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.题型三:两异面直线所成的角[例3]如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD的中点,求异面直线CD1,EF所成角的大小.[活学活用]已知正方体ABCD-A1B1C1D1.(1)哪些棱所在的直线与直线BA1是异面直线?(2)直线BA1和CC1的夹角是多少?(3)哪些棱所在的直线与直线AA1垂直?珍贵文档珍贵文档4应用落实体验 [随堂即时演练]1.如图,是长方体的一条棱,这个长方体中与AA 1平行和异面的棱的条数是( )A .6,4B .3,4C .5,,8D .8,42.已知如图,长方体ABCD-A 1B 1C 1D 1中,2321===AA AD AB ,.BC 和A 1C 1以及BC 1和AB 1所成的角分别是( )A .6045, B .4545, C .9060, D .6030, 3.如果B O OB A O OA ''''//,//,那么AOB ∠和B O A '''∠ .4.已知b a ,是异面直线,直线c //直线a ,那么c 与b 的位置关系 .5.如图所示,空间四边形ABCD 中,AB=CD ,CD AB ⊥, E ,F 分别为BC ,AD 的中点,求EF 和AB 所成的角.5课时跟踪检测A 组基础达标1.空间两个角βα,,且α与β的两边对应平行,60=α,则β为( )A . 60B . 120C . 30D . 60或 120 2.给出下列四个命题:①若b a ,是异面直线,c b ,是异面直线,则c a ,异面; ②若直线b a ,相交,c b ,相交,则c a ,相交; ③若b a //,则b a ,与c 所成的角相等; ④若c b b a ⊥⊥,,则c a //. 其中真命题的个数是( )A .4B .3C .2D .13.空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是( )A.梯形B.矩形C.平行四边形D.正方形4.在空间四边形ABCD中,AB,BC,CD的中点分别是P,Q,R,且352===PRQRPQ,,,那么异面直线AC和BD所成的角是()A.90B.60C.45D.305.在三棱锥A—BCD中,E,F,G分别是AB,AC,BD的中点,若AD与BC所成的角是60,那么FEG∠为()A.60B.30C.120D.60或1206.如图,将无盖的正方体纸盒展开,直线AB,CD,在原正方体的位置关系是()A.平行B.相交且垂直C.异面D.相交成607.如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形是.8.已知ba,为不垂直的异面直线,α是一个平面,则ba,在α上的射影有可能的是()①两条平行的直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在以上结论中,正确的是(写出所有正确的结论的编号)9.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别AA1,CC1是的中点.求证:1EDBF//且1EDBF=10.在正方体ABCD-A1B1C1D1中,求(1)AA1与B1C所成的角;(2)A1B与B1C所成的角.珍贵文档珍贵文档B 能力提升11.如图,在空间四边形ABCD 中,两条对边3==CD AB ,E ,F 分别是另外两条对边AD ,BC 上的点,且521===EF FC BF ED AE ,,求AB 和CD 所成的角的大小.。

新人教A版必修2高中数学学案教案: 2.1.2 空间中直线与直线之间的位置关系

新人教A版必修2高中数学学案教案: 2.1.2 空间中直线与直线之间的位置关系

数学 2.1.2 空间中直线与直线之间的位置关系教案新人教A版必修2一、教学目标:1、知识与技能:了解空间中两条直线的位置关系;理解异面直线的概念、画法,培养学生的空间想象能力;理解并掌握公理4、等角定理。

2、过程与方法:师生的共同讨论与讲授法相结合,让学生在学习过程不断归纳整理所学知识。

3、情感态度与价值观:感受掌握空间两直线关系的必要性,提高学习兴趣。

二、教学重点:异面直线的概念;公理4及等角定理。

难点:异面直线定义的理解。

三、学法指导:阅读教材、思考、交流、概括,较好地完成本节课的教学目标。

四、教学过程(一)创设情景、导入课题问题1:同一平面内的两条直线有几种位置关系?空间中的两条直线呢?问题2:没有公共点的两条直线一定平行吗?问题3:没有公共点的两条直线一定在同一个平面内吗?观察:如图,长方体ABCD-A'B'C'D'中,线段A'B所在的直线与线段C'C所在直线的位置关系如何?举例:举出生活中类似的例子。

(二)讲授新课1、异面直线的定义:不同在任何一个平面内的两条直线。

2、空间两条直线的位置关系:相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

课堂练习1:正方体的棱所在的直线中,与直线A1B异面的有哪些?答案:D1C1,CC1,B1C1,DD1,AD,CD。

课堂练习2:判断下列命题是否正确,若正确,请简述理由;若不正确,请举出反例。

(1)没有公共点的两条直线是异面直线;(2)互不平行的两条直线是异面直线;(3)分别在两个平面内的两条直线一定异面;(4)一个平面内的直线与这个平面外的直线一定异面;(5)分别与两条异面直线都相交的两条直线共面。

(6)分别与两条异面直线都相交的两条直线异面。

答案:(1)~(6)都错,反例略。

异面直线直观图的画法: 异面直线的判定:(1)既不相交也不平行的两条直线是异面直线。

高中数学新课程必修2教案设空间中直线与直线的位置关系

高中数学新课程必修2教案设空间中直线与直线的位置关系

高中数学新课程必修2教案设计 —— 空间中直线与直线的位置关系 大姚县实验中学 董家金一、 预习提纲1、回顾初中的几何知识,弄清平面内直线有几种位置关系?2、阅读课本必修2,44页到46页,弄清楚空间内直线有几种位置关系二、 学习目标1、知识目标(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;2、能力目标(1)让学生在观察中培养自主思考的能力;(2)通过师生的共同讨论培养合作学习的能力。

3、情感与态度让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。

三、学习重点与难点:重点:异面直线的概念及公理4.难点:异面直线的概念的理解。

四、 学习任务了解空间中两条直线的位置关系;理解异面直线的概念、画法,培养学生的空间想象能力; 理解并掌握公理4;五、 学习过程(一)、问题情景问题1:在一个平面内,两直线有哪几种位置关系呢? 问题2、观察长方形(图1)你能发现长方体''''ABCD A B C D 中,以下各组直线之间位置关系如何: (1)''(2)'(3)''(4)''DD CC DD ADDD BB DD A B 、和、和、和、和 (二)、知识储备图11.异面直线问题:什么叫异面直线?我们把不同在任何一个平面内两条直线叫做异面直线2,、空间中直线与直线的位置关系问题:空间中两直线有几种位置关系,怎么判断? 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

3、异面直线的画法(平面衬托法)4、公理4问题:在同一平面内如果两直线都与第三条直线平行,那么这两条直线平行,空间中结论成立吗?公理4:平行于同一条直线的两条直线互相平行。

3、出示标杆题:标杆题:如图,空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,(1)、说出图中直线AB ,BC 分别于那些直线是异面直线(2)、求证:四边形EFGH 是平行四边形4、选用标杆题的依据1、新课标要求:借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:公理4:平行于同一条直线的两条直线平行解说:异面直线式一个很抽象的概念,虽然生活中处处可见。

空间直线与直线的位置关系(教案)

空间直线与直线的位置关系(教案)

空间直线与直线的位置关系一、教学目标1. 让学生理解空间直线与直线之间的位置关系,包括平行、相交和异面。

2. 培养学生运用空间几何知识解决实际问题的能力。

3. 通过对空间直线与直线位置关系的探讨,提高学生的空间想象能力和思维能力。

二、教学重点与难点1. 教学重点:空间直线与直线的位置关系及其判定。

2. 教学难点:异面直线的概念及其判断。

三、教学方法1. 采用讲授法,讲解空间直线与直线的位置关系及其判定方法。

2. 运用案例分析法,分析实际问题中的空间直线与直线的位置关系。

3. 利用多媒体辅助教学,展示空间直线与直线的图形,增强学生的空间想象力。

四、教学准备1. 多媒体教学设备。

2. 教案、PPT课件。

3. 相关案例资料。

五、教学过程1. 导入新课通过一个实际问题,引导学生思考空间直线与直线之间的位置关系。

2. 讲解知识点讲解空间直线与直线的位置关系,包括平行、相交和异面。

3. 案例分析分析实际问题中的空间直线与直线的位置关系,巩固所学知识。

4. 课堂练习布置一些有关空间直线与直线位置关系的练习题,让学生巩固所学知识。

5. 总结与拓展总结本节课的主要内容,提出一些拓展问题,激发学生的学习兴趣。

6. 课后作业布置一些有关空间直线与直线位置关系的作业,巩固所学知识。

六、教学内容与活动1. 教学内容:空间直线与直线的位置关系的判定方法。

运用位置关系解决实际问题。

2. 教学活动:通过实例演示和图形展示,让学生理解并掌握空间直线与直线的位置关系的判定方法。

引导学生运用所学知识解决实际问题,如空间中的线段长度计算、角度计算等。

七、教学评估与反馈1. 教学评估:通过课堂练习和课后作业,评估学生对空间直线与直线位置关系的理解和应用能力。

观察学生在课堂讨论和问题解答中的表现,评估其思维能力和解决问题的能力。

2. 教学反馈:根据学生的练习和作业情况,及时给予反馈,指出学生的错误并提供正确的指导。

在课堂讨论中,鼓励学生提出问题和建议,及时解答学生的疑问。

空间直线与直线的位置关系说课稿

空间直线与直线的位置关系说课稿

空间直线与直线的位置关系说课稿今天我要给大家讲人教社A版高中数学必修2第二章第一节第二课时的内容:《空间中直线与直线之间的位置关系》。

我将按照教学背景分析、教学目标分析、教学重点和难点分析、教学过程、学生活动说明、教学设计说明六个部分向大家介绍。

一、教学背景分析一)教材分析空间中直线与直线的位置关系是立体几何中最基本的位置关系。

它是在平面中两直线的位置关系及平面基本性质的基础上提出来的。

同时,通过画平行线的方式,使两条异面直线移到同一平面的位置上,是研究异面直线所成的角及判定空间平行关系时经常要使用的方法。

因此本节课的内容对知识起到了承上启下的作用。

二)学情分析学生在初中已经研究过相交直线和平行直线的概念,对它们已经很熟悉。

但是,从具体实例抽象出异面直线的概念是非常困难的。

三)教学准备学生需要准备两支铅笔、白纸板,教师需要准备长方体模型、多媒体课件、三角板。

二、教学目标的确定1.通过观察实物,并借助长方体模型,理解异面直线的概念,了解异面直线所成的角。

2.经历异面直线的概念的形成过程,进一步发展空间想象能力,体会将空间问题平面化的思想方法。

3.学生在探究过程中体会数学是有用的,体验数学探究的乐趣。

三、教学重点和难点分析教学重点:异面直线的概念。

教学难点:异面直线的概念及异面直线所成角。

四、教学过程一)概念形成问题1:同一平面内直线与直线的位置关系有几种?请问:空间中直线与直线的位置关系有几种?板书:空间中直线与直线的位置关系1)实例引入:教师展示图片,引导学生观察:运河大桥和运河所在直线的位置关系,齿轮的两轴所在直线的位置关系。

让学生发现,直线与直线存在既不平行又不相交的位置关系。

学生可以举出实例或动手操作来直观感知。

2)观察思考:如图,长方体ABCD-A1B1C1D1中,线段A1B所在直线与线段CC1所在直线的位置关系如何?(是相交吗?还是平行?)老师:异面直线是指不在同一平面内或在两个平面内但不在同一平面内的两条直线。

高中数学 2.1.2空间中直线与直线之间的位置关系教学案 必修2

高中数学 2.1.2空间中直线与直线之间的位置关系教学案 必修2

2.1.2 空间中直线与直线之间的位置关系【教学目标】(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力; (3)理解并掌握公理4; (4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。

【教学重难点】重点:1、异面直线的概念; 2、公理4及等角定理。

难点:异面直线所成角的计算。

【教学过程】(一)创设情景、导入课题问题1: 在平面几何中,两直线的位置关系如何? 问题2:没有公共点的直线一定平行吗?问题3:没有公共点的两直线一定在同一平面内吗? 1、通过身边诸多实物,引导学生思考、举例和相互交流得出 异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题) (二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

思考:如图所示:正方体的棱所在的直线中,与直线AB 异面的有哪些? 2、教师再次强调异面直线不共面的特点,介绍异面直线的作图,如下图:3、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。

在空间中,是否有类似的规律?组织学生思考: 长方体ABCD-A'B'C'D'中, BB'∥AA',DD'∥AA', BB'与DD'平行吗? 生:平行。

再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

共面直线=>a ∥c公理4作用:判断空间两条直线平行的依据。

例1空间四边形 ABCD 中,E.F.G.H 分别是AB.BC.CD.DA 的中点 求证:四边形EFGH 是平行四边形 证明:连接BD因为EH 是△ABD 的中位线,所以EH ∥BD 且EH=21BD 同理FG ∥BD 且FG=21BD 因为EH ∥FG 且EH=FG所以四边形 EFGH 是平行四边形点评:例2的讲解让学生掌握了公理4的运用变式:在例1中如果加上条件AC=BD ,那么四边形EFGH 是什么图形? 4、组织学生思考教材P46的思考题 让学生观察、思考:∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何? 生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省中学青年数学教师优秀课评比参赛课例——教案
课题:《2.1.2空间中直线与直线之间的位置关系》
授课老师:潮州市湘桥区南春中学郑珠珠
教材:普通高中课程标准实验教科书人教A版数学必修2
1、教学目标
(1)知识目标:掌握空间中两条直线的位置关系,理解异面直线的概念;
以公理4和等角定理为基础,理解异面直线所成的角的概念及其初步应用。

(2)能力目标:通过研究空间中两直线的位置关系以及异面直线所成的角,培养学生的空间想象力、观察能力和分析问题的能力。

(3)情感目标:让学生体验从具体到抽象的学习规律,在探究活动中增强学生的合作意识和动手能力,激发学生的学习兴趣。

2、教学重点、难点
重点:(1)空间中两条直线之间的位置关系;
(2)异面直线及其所成角的概念。

难点:理解异面直线所成的角的概念及其初步应用。

3、教学方法与手段
本节课应该始终贯彻“以学生为主体,以教师为主导,以观察、探究为主线”的教学理念,坚持具体与抽象相结合的原则,采用“启发式”、“讨论式”等教学方法,并充分利用多媒体和实物模型辅助教学,化静为动,进一步培养学生的空间想象力和观察能力,并在动手、讨论的过程中培养学生合作、探究的能力。

4、教学过程
(一)创设情境,提出问题
1、思考:同一平面内两直线有几种位置关系?
学生:相交、平行。

老师:那么空间中的两条直线呢?
引出本节课的课题:2.1.2空间中直线与直线之间的位置关系
2、让学生观察两个生活实例,直观感知异面直线不平行、不相交的特征:
(1)天安门广场上旗杆所在直线与长安街所在直线,既不平行,也不相交;
(2)立交桥上下两层桥面所在直线,既不平行,也不相交。

(二)启发引导,构建概念
1、让学生观察长方体模型(如图),发现:
直线'A B与直线'
C C既不平行也不相交。

学生在几何模型中进一步体会异面直线不平行、不相交的特征
,从而构建:
【异面直线的概念】不同在任何一个平面内的
两条直线叫做异面直线。

注1:对“任何”这个词的理解。

注2:判别两条直线异面的主要依据 :
两条直线既不相交、又不平行。

2、指导学生作图:
为了表示异面直线不平行且不相交的特点,作图时,常用一个或两个平面衬托(如图):
3、让学生把事先制作好的正方体展开图(如图)复原成正方体,找出,,,AB CD EF GH 所在直线中有几对异面直线。

学生在动手、观察的过程中进一步加深对异面直线的认识,并归纳出:
【空间中直线与直线之间的位置关系】
⎧⎧⎪⎨⎨⎩⎪⎩
相交直线:同一平面内,有且只有一个公共点共面直线平行直线:同一平面内,没有公共点
异面直线:不同在任何一个平面内,没有公共点
(三)课堂练习,巩固双基
异面直线是指( )
A.没有公共点的两条直线
B.平面内的一条直线和平面外的一条直线
C.既不相交,又不平行的两条直线
D.分别在两个不同平面内的两条直线
分析:辨析题通常可以借助我们熟悉的模型(如长方体模型),通过使用反例来解决。

答案:C
(四)讨论探究,发现新知
1、设置疑问:我们知道,在同一平面内,平行于同一条直线的两条直线互相平行。

那么在空间中,是否有类似的规律呢?
让学生观察长方体模型(如图),思考:
'//','//'BB AA AA DD ,那么'//'BB DD 吗? 从而直观感知:
【公理4】空间中平行于同一条直线的两条直线互相平行。

结论:平行线的传递性可以由平面推广到空间。

2、设置疑问:我们知道,在同一平面内,如果两个角的两边分
别对应平行,那么这两个角相等或互补。

那么在空间中,是否有
类似的规律呢?
让学生观察图形,发现:AOB
A O B
∠,
∠与'''
∠的两边分别对应平行,容易看出:
A B C
∠与'''
ADC
ADC ∠'''A D C =∠,ADC ∠0'''180A B C +∠=,从而直观感知:
【等角定理】空间中如果两个角的两边分别对应平行,
那么这两个角相等或互补。

结论:等角定理也可以由平面推广到空间。

3、【异面直线所成的角的概念】已知两条异面直线,a b ,经过空间任一点O 作直线'//,'//a a b b ,我们把'a 与'b 所成的锐角(或直角)叫做异面直线a 与b 所成的角。

若两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

故空间中两条直线互相垂直有相交垂直和异面垂直两种情况。

指导学生作图:在具体图形中找出异面直线所成的角,巩固异面直线所成的角的概念。

结论1:异面直线所成的角的范围:( 0O , 90O ];
结论2:将空间图形问题转化为平面图形问题是解决立体几何问题的基本思路。

(五)知识应用,例题学习
【例2】如图,空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,
BC ,CD ,DA 的中点。

求证:四边形EFGH 是平行四边形。

分析:借助中位线定理,分别在△ABD 和△BCD 中证明EH//BD
且EH=12BD ,FG//BD ,且FG=12
BD ,再由公理4证得EH//FG 。

方式:采用启发式讲解,引导学生进行口答,并向学生渗透将空间图形问题转化为平面图形问题的基本思路。

【例3】如图,已知正方体''''ABCD A B C D -
1)哪些棱所在直线与直线'BA 是异面直线?
2)直线'BA 与'CC 的夹角是多少?
3)哪些棱所在直线与直线'AA 垂直?
分析:第1小题让学生进一步理解异面直线不相交不平行的特征;
第2小题让学生学会寻找异面直线所成的角的方法;第3小题让学生明白空间两直线垂直包括共面垂直和异面垂直两种情况。

方式:采用启发式讲解,引导学生进行口答,对于学生回答过程中出现分析不正确或不严谨的地方我再加以纠正,引导学生形成正确的概念。

(六)初步运用,巩固提高
1、(1)如图,'AA 是长方体的一条棱,长方体中与'AA 平行的棱共有 条;
(2)如果//'',//'',OA O A OB O B 那么AOB ∠和'''A O B ∠ 。

答案:(1)三;(2)相等或互补
2、如图,已知长方体''''ABCD A B C D -中,23,'2AB AD AA ===。

(1)BC 和''A C 所成的角是多少度?
(2)'AA 和'BC 所成的角是多少度?
答案:(1)45O ;(2)60O
(七)反思小结,深化目标
空间中直线与直线之间有且只有三种位置关系:
⎧⎫⎪⎪⎨⎬⎪⎪⎩

1、平行直线 公理4
2、相交直线 等角定理
异面直线所成的角 3、异面直线
(八)课后作业,自主学习 基础题:课本P51 A 组第6题 (公理4的应用)
课本P52 B 组第1题(1)(3) (异面直线及异面直线所成的角的应用) 提高题:课本P52 B 组第1题(2) (异面直线所成的角的应用)
课外探究:课本P47探究 (平面性质向空间推广未必都能得到正确的结论)
【板书设计】
投影区 2.1.2空间中直线与直线之间的位置关系
一、异面直线的概念
二、公理4
三、等角定理
四、异面直线所成的角的概念
作图区
(注:素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与关注!)。

相关文档
最新文档