三角函数、解三角形中的实际应用问题

合集下载

如何应用三角函数解决实际问题

如何应用三角函数解决实际问题

如何应用三角函数解决实际问题三角函数是数学中的重要概念,广泛应用于解决实际问题中。

本文将介绍如何应用三角函数解决实际问题,并提供相关的例子进行说明。

一、三角函数简介三角函数包括正弦函数、余弦函数和正切函数,分别用sin、cos和tan表示。

这些函数可以描述直角三角形中各个角的关系。

例如,在一个直角三角形中,对于一个给定的角度Θ,sinΘ等于对边与斜边的比值,cosΘ等于临边与斜边的比值,tanΘ等于对边与临边的比值。

二、应用实例:测量高楼高度假设我们想要测量一座高楼的高度,但我们无法直接得到高楼的实际高度。

这时,我们可以利用三角函数来解决这个问题。

首先,在离高楼一定距离的地方A站立,测量与地平线之间的角度α。

然后,远离高楼一段距离B站立,再次测量与地平线之间的角度β。

由于我们可以测得AB之间的距离,我们可以根据三角函数的性质得到高楼的高度H。

首先,我们可以推导出以下公式:tanα = H/ABtanβ = H/(AB+d)其中,H表示高楼的高度,AB表示A点到高楼的距离,d表示A点到B点的距离。

将上述两式联立解方程,可以得到高楼的高度H:H = AB*(tanβ - tanα)/(1 + tanα*tanβ)通过测量角度α和β以及距离AB和d,我们可以应用这个公式计算高楼的高度H。

三、应用实例:测量不可达距离三角函数还可以用来解决测量不可达距离的问题。

假设我们要测量两座高楼之间的距离,但由于某些原因,我们无法直接测量这个距离。

这时,我们可以利用三角函数来解决这个问题。

假设我们站在第一座高楼的顶部A点,测量与水平线的角度α。

然后移动到第二座高楼的顶部B点,测量与水平线的角度β。

由于我们可以测得AB之间的水平距离d,以及A点到底部的垂直高度h1和B点到底部的垂直高度h2,我们可以根据三角函数的性质得到两座高楼之间的距离D。

首先,我们可以推导出以下公式:tanα = h1/dtanβ = h2/d将上述两式联立解方程,可以得到两座高楼之间的距离D:D = (h1-h2)/((1+tanα*tanβ)/tanα-tanβ)通过测量角度α和β以及距离d和垂直高度h1、h2,我们可以应用这个公式计算两座高楼之间的距离D。

三角函数应用题

三角函数应用题

三角函数应用题在数学中,三角函数是一类描述角和三角形之间关系的函数。

它们在几何、物理、工程等领域中都有广泛的应用。

今天我们就来看几个关于三角函数的实际应用题。

题目一:船长测量船到岸边的距离某船长在海上航行,他利用望远镜测量船到岸边的距离为450米,角度为30°。

请帮助船长计算船实际距离岸边的距离。

解题思路:根据三角函数中正弦函数的定义,正弦函数是对边与斜边的比值。

设实际距离为x,则sin30°=450/x,解得x=450/sin30°≈900米。

题目二:高楼顶部的钢丝张力某座高楼的屋顶有一根斜着的钢丝,已知钢丝与地面的夹角为60°,钢丝的长度为200米。

求钢丝的张力。

解题思路:根据三角函数中余弦函数的定义,余弦函数是邻边与斜边的比值。

设钢丝张力为T,则cos60°=邻边/200,解得邻边=200cos60°≈100米。

再根据正弦函数的定义,sin60°=钢丝张力/200,解得钢丝张力=200sin60°≈173.21牛顿。

题目三:天文测距天文学家利用角度差测量两颗星星间的距离,已知两颗星星的距离为400光年,夹角为20°。

根据此信息,求两颗星星间的实际距离。

解题思路:根据正切函数的定义,切线函数是对边与邻边的比值。

设实际距离为d,则tan20°=400/d,解得d=400/tan20°≈1152.32光年。

通过以上几个实际应用题,我们可以看到三角函数在解决各种实际问题中的重要性和实用性。

希望大家在学习三角函数的过程中能够灵活运用,将数学知识与实际应用相结合,更好地理解和掌握相关知识。

三角函数不仅仅是一堆抽象的公式,更是与我们的生活息息相关的数学工具。

愿大家在学习中取得更好的成绩!。

应用三角函数解决实际问题

应用三角函数解决实际问题

应用三角函数解决实际问题三角函数是数学中重要的概念之一,它与三角形的边长和角度之间的关系密切相关。

在实际生活中,我们可以利用三角函数解决各种实际问题,例如测量高楼的高度、计算船只与灯塔之间的距离等。

本文将通过几个具体的例子,详细介绍如何应用三角函数解决实际问题。

一、测量高楼的高度假设我们想要测量一座高楼的高度,但是无法直接测量。

此时,我们可以利用三角函数中的正切函数来解决这个问题。

我们可以站在离这座高楼较远的地方,仰望其顶部,并找到一个合适的角度。

然后,通过测量自己所站位置与地面的距离,以及仰望高楼时的角度,利用正切函数可以计算出高楼的高度。

例如,假设我们站在离高楼的位置为100米的地方,仰望高楼的角度为30度。

我们可以利用三角函数中的正切函数,根据公式tan(角度) = 高楼高度 / 100,计算出高楼的高度为100 * tan(30度) = 57.74米。

因此,高楼的高度约为57.74米。

二、计算船只与灯塔之间的距离假设我们在海上驾驶一艘船,远处有一座灯塔,我们想要知道船只与灯塔的距离。

此时,我们可以利用三角函数中的正弦函数来解决这个问题。

我们可以站在船只上,观察灯塔并记录下观察的角度。

然后,通过测量船只与海平面的高度,以及观察灯塔时的角度,利用正弦函数可以计算出船只与灯塔的距离。

例如,假设船只与海平面的高度为10米,我们观察灯塔的角度为45度。

我们可以利用三角函数中的正弦函数,根据公式sin(角度) = 灯塔的高度 / 距离,计算出船只与灯塔的距离为10 / sin(45度) = 14.14米。

因此,船只与灯塔的距离约为14.14米。

三、求解三角形的边长在一些实际问题中,给定三角形的某些角度和边长,我们需要求解其他未知边长。

这时,可以利用三角函数中的正弦、余弦、正切等函数来解决。

例如,已知一个直角三角形的直角边长分别为3和4,我们需要求解斜边的长度。

根据勾股定理,我们知道斜边的长度可以通过勾股定理计算得出:斜边的平方等于两个直角边平方和。

三角函数如何利用三角函数解决实际问题

三角函数如何利用三角函数解决实际问题

三角函数如何利用三角函数解决实际问题三角函数是数学中重要的概念,它在解决实际问题中起着重要的作用。

本文将介绍三角函数如何利用三角函数解决实际问题,包括三角函数的定义、常见的三角函数及其应用以及如何使用三角函数解决实际问题等方面。

一、三角函数概述三角函数用于描述三角形中角与边之间的关系,常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)以及它们的倒数函数。

这些函数在解决实际问题中具有广泛的应用。

二、三角函数的定义1. 正弦函数(sin):在直角三角形中,正弦函数定义为对边与斜边之比。

即sinθ = 对边/斜边。

2. 余弦函数(cos):在直角三角形中,余弦函数定义为邻边与斜边之比。

即cosθ = 邻边/斜边。

3. 正切函数(tan):在直角三角形中,正切函数定义为对边与邻边之比。

即tanθ = 对边/邻边。

三、常见三角函数的应用1. 几何应用:三角函数常用于解决与角度有关的几何问题,如计算三角形的边长、面积等。

通过利用三角函数的定义,可以快速求解出未知的几何信息。

2. 物理应用:三角函数在物理学中也有广泛的应用,例如在力学中,可以通过正弦函数和余弦函数来描述物体的运动状态和受力情况。

3. 工程应用:三角函数在工程领域中也有重要的应用,如测量高楼的高度、计算斜面的倾斜角度等。

工程师可以利用三角函数进行测量和设计,提高工程的准确性和效率。

四、如何使用三角函数解决实际问题1. 问题分析:首先,需要清楚地了解实际问题的背景和要求,明确所求解的未知量是什么,然后将问题转化为三角形中的几何关系。

2. 寻找已知量:根据问题描述,确定已知的相关量,包括已知的边长、角度等。

3. 应用三角函数:根据已知和未知的关系,选择适当的三角函数进行计算。

根据问题的特点选用正弦、余弦或正切函数来求解未知量。

4. 计算求解:根据三角函数的定义,将已知量代入公式中,解方程计算出未知量的数值解。

5. 检验答案:求解出未知量后,可以通过几何关系重新计算已知量,检验答案是否合理。

浅谈生活中三角函数的应用

浅谈生活中三角函数的应用

浅谈生活中三角函数的应用三角函数是高中数学中的一个重要内容,它的应用范围十分广泛。

在生活中,我们可以通过三角函数解决很多实际问题。

本文将从生活中的实际问题出发,探讨一些三角函数的应用。

一、直角三角形中的应用在我们的日常生活中,我们常常会遇到一些直角三角形的问题,这时候运用三角函数就可以很好地解决这些问题。

例如,在测量一幢建筑物的高度时,我们可以站在建筑物的脚下,用一个角度计算器或手动计算,利用正切函数求出建筑物的高度。

此外,在导航和地图制作中也需要使用三角函数,计算一个地点的方向和距离。

二、正弦函数和余弦函数在单摆和波浪问题中的应用单摆和波浪问题都是涉及周期性运动的问题。

单摆就是一个质量挂在一根不可伸缩细线上的系统(一般为一个球、钩、挂钩、网)的系统。

当摆动时,其振幅和周期都与线的长度和重力有关。

正弦函数和余弦函数可以描述单摆的运动,这些函数可以计算出时间、挥动的幅度、运动的速度、周期和频率等信息。

同样的,波浪问题也涉及到周期性运动。

在物理学、电子工程等领域中都有波浪的应用。

正弦函数和余弦函数可以描述波浪的运动。

例如,我们可以用正弦函数描述海浪的形状、大小、行程和速度等。

三角函数在工程学中有广泛的应用,尤其是在机械工程和电气工程中。

在机械工程中,三角函数可以描述某些运动的曲线。

例如,在一个滑轮系统中,我们可以用正弦函数计算曲线的形状和弧度。

在电气工程中,三角函数可以用于计算交流电压和电流的频率、幅度和相位等信息。

四、三角函数在金融学和计量经济学中的应用金融学和计量经济学中有很多统计分析技术,而其中很多方法都涉及到三角函数的应用。

例如,利用正弦函数和余弦函数可以描述经济周期的波动,用它们可以统计股票和商品价格的变化。

此外,金融学和计量经济学也可以用三角函数来解决一些风险分析问题和预测市场行为的问题。

综上所述,三角函数在生活中的应用是非常广泛的。

它们可以被应用于很多领域,从机械工程到金融学、从物理学到导航、甚至于日常生活中的建筑测量和旅游规划等。

三角函数与解三角形的综合应用(解析版)

 三角函数与解三角形的综合应用(解析版)

专题05 三角函数与解三角形的综合应用【例1】(三种三角函数间的综合)已知函数()sin()4f x x π=π+和函数()cos()4g x x π=π+在区间57[,]44-上的图象交于A ,B ,C 三点,则△ABC 的面积是A B C D 【答案】C 由已知,得sin()cos()44x x πππ+=π+,即tan()14x ππ+=,所以44x k πππ+=π+,即x k =(Z k ∈),又57[,]44x ∈-,所以1x =-,0,1.于是两函数图象的交点为(1,A -,B ,(1,2C -,则△ABC 的面积为12(222⨯⨯+=【例2】(三角函数性质的综合)已知函数f (x )=sin⁡(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,f (x )的图象向左平移π3个单位后所得图象对应的函数为偶函数,则f (x +π12)+f (x −π6)的最大值为 A .√2 B .√3 C .1D .2【答案】A 因为函数f (x )=sin⁡(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,所以ω=2,f (x )=sin⁡(2x +φ),且其图象向左平移π3个单位后得到的f (x )=sin⁡(2x +2π3+φ)为偶函数,则2π3+φ=π2+kπ,k ∈Z ,又因为|φ|<π2,所以φ=−π6,f (x )=sin⁡(2x −π6),则f (x +π12)+f (x −π6)=sin2x +sin (2x −π2)=sin2x −cos2x =√2sin⁡(2x −π4)≤√2.故选A . 【例3】(三角函数型图象问题)函数cos ()2([π,π])xf x x =∈-的图象大致为A .B .C .D .【答案】C []cos()cos π,π,()22()()x x x f x f x f x -∈--===∴,为偶函数,则图象关于y 轴对称,排除A 、D ,把πx =代入得1(π)20.5f -==,故图象过点(π0.5),,C 选项适合,故选C . 【例4】(三角函数与平面几何的综合)已知函数()cos (0)f x x x ωωω=+>. (1)若2ω=,把函数()f x 的图象的横坐标伸长到原来的2倍,纵坐标不变,再向右平移π3个单位后得到函数()g x 的图象,求()g x 在区间ππ[,]22-上的值域; (2)若函数()f x 的图象上有如图所示的,,A B C 三点,且满足AB BC ⊥,求ω的值.【解析】()cos f x x x ωω=+1cos )22x x ωω=+π2sin()6x ω=+. (1)若2ω=,则π()2sin(2)6f x x =+,把函数()f x 的图象的横坐标伸长到原来的2倍,纵坐标不变,得到函数π2sin()6y x =+的图象,再向右平移π3个单位后得到函数π()2sin()6g x x =-的图象.由ππ22x -≤≤,得2πππ363x -≤-≤,所以π1sin()6x -≤-≤所以π22sin()6x -≤-≤()g x 在区间ππ[,]22-上的值域为[-. (2)由图知点B 是函数()f x 图象的最高点,设0(,2)B x ,函数()f x 的最小正周期为, 则003(,0),(,0)44T T A x C x -+,所以(,2)4T AB =,3(,2)4T BC =-,因为AB BC ⊥, 所以234016T AB BC ⋅=-=,解得264,3T T ==2π2π8T ω===.【例5】(三角函数与解三角形的综合)已知2()cos 2cos 1f x x x x =-+. (1)求函数()f x 的单调递增区间;T(2)ABC △中,角,,A B C 的对边分别为,,a b c ,若()2f A =,且3b =,ABC △的面积S =,求a .【解析】(1)2()cos 2cos 1f x x x x =-+2cos 2x x =-2(sin 2cos sin cos 2)66x x ππ=- 2sin(2)6x π=-. 由222262k x k ππππ-≤-≤π+(k ∈Z ),解得63k x k πππ-≤≤π+(k ∈Z ).故函数()f x 的单调递增区间为[,]63k k πππ-π+(k ∈Z ).(2)由()2f A =,即2sin(2)26A π-=,得sin(2)16A π-=. 所以2262A k ππ-=π+(k ∈Z ),解得3A k π=π+(k ∈Z ). 因为(0,)A ∈π,所以3A π=.由已知ABC △的面积11sin 3sin 603322S bc A c ==⨯⨯⨯=4c =.由余弦定理可得2222cos a b c bc A =+-2234234cos60=+-⨯⨯13=. 所以a =【例6】(三角恒等变换与解三角形的综合)已知ABC △中,,,a b c 分别为角,,A B C 所对的边,且4a =,5b c +=B ,则ABC △的面积为A B C D 【答案】C 根据两角和的正切公式有()()tan tan tan 1tan tan A B A B A B +=+-,依题意有()tan A B +=故2ππ,33A B C +==.由余弦定理得222π2cos 3c a b ab =+-,即22164c b b =+-,联立5b c +=,解得32b =,故面积为13π4sin 223⋅⋅⋅=. 【例7】(解三角形与向量的综合)已知在ABC △中,角,,A B C 的对边分别为,,a b c ,向量()cos ,cos C C =-n ,且12⋅=-m n .(1)求角C 的大小; (2,求ABC △的面积.【解析】(1)由已知得21cos cos 2C C C =-,由倍角公式和降幂公式得1cos 212,sin 21226C C C +π⎛⎫=-∴-= ⎪⎝⎭. ()0,,C ∈π2,62C C πππ∴-=∴=.(2解得b =或b =当b =时,11sin 322ABC S ab C ==⨯⨯=△当b =时,11sin 22ABC S ab C ==⨯⨯=△.综上所述,3ABC S =△或ABC S =△.【例8】(三角函数与向量、函数与方程的综合)已知向量2,1),(cos ,cos 1)x x x ωωω==+m n ,设函数()f x b =⋅+m n .(1)若函数()f x 的图象关于直线6x π=对称,且[0,3]ω∈时,求函数()f x 的单调增区间; (2)在(1)的条件下,当[0,]12x 7π∈时,函数()f x 有且只有一个零点,求实数b 的取值范围.【解析】2()cos cos 1f x b x x x b ωωω=⋅+=+++m n1332cos 2sin(2)2262x x b x b ωωωπ=+++=+++. (1)∵函数()f x 的图象关于直线6x π=对称, ∴2,662k k ωπππ⋅+=π+∈Z ,解得31,k k ω=+∈Z , ∵[0,3]ω∈, ∴1ω=,∴3()sin(2)62f x x b π=+++,由222,262k x k k ππππ-≤+≤π+∈Z ,得2,366k x k k ππππ-≤+≤π+∈Z ,所以函数()f x 的单调增区间为[,],36k k k πππ-π+∈Z .(2)由(1)知3()sin(2)62f x x b π=+++,∵[0,]12x 7π∈,∴2[,]663x ππ4π+∈,∴2[,]662x πππ+∈,即[0,]6x π∈时,函数()f x 单调递增; 2[,]623x ππ4π+∈,即[,]612x π7π∈时,函数()f x 单调递减.又(0)()3f f π=,∴当()0()312f f π7π>≥或()06f π=时()f x 有且只有一个零点.即32022b b +>≥-++或3102b ++=,所以满足条件的5({}2b ∈--.备考指南(1)在解决已知三角函数()sin()f x A x ωϕ=+的图象关于某条直线0x x =(或某点0(,0)x )对称的问题时,常用的解决方法是将横坐标代入原式中,让其等于正弦函数的对称轴(或对称中心),即0ππ2x k ωϕ+=+(或0πx k ωϕ+=),k ∈Z ,再解出参数即可;(2)在解决已知函数()()f x g x b =+的零点个数求参数,或者讨论函数的零点个数问题时,常用分离参数的方法,将问题转化为()g x b =-,画出()g x 的图象,通过对直线y b =-进行上下平移,从而得到参数b 的取值范围或零点个数的不同情况.【例9】(三角函数与导数的综合)已知函数()y f x =对任意的ππ(,)22x ∈-满足()cos ()sin f x x f x x '+0>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是A ππ()()34f -<-B ππ()()34f <C .π(0)2()3f f >D .π(0)()4f >【答案】A 【解析】令()()()()()()()()22cos cos cos sin ,cos cos cos f x f x x f x x f x x f x x g x g xxx x'''-+'===则,由对任意的ππ(,)22x ∈-满足()cos ()sin 0f x x f x x '+>可得()0g x '>,所以函数()x g 在ππ,22⎛⎫- ⎪⎝⎭上为增函数,所以ππ34g g ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,即ππ34ππcos cos 34f f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ππ34f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,故选A .考点三 平面几何中的解三角形问题【例10】△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin 2sin cos A C B C +=. (1)求B 的大小;(2)若3a =,且AC边上的中线长为2,求△ABC 的面积. 【解析】(1)由△ABC 中πA B C ++=可得()sin sin A B C =+, 因为2sin sin 2sin cos A C B C +=,所以()2sin 2sin cos sin 0B C B C C +-+=,即2cos sin sin 0B C C +=,即()sin 2cos 10C B +=, 因为0π,sin 0C C <<≠, 所以2cos 10B +=,12πcos ,23B B =-=. (2)由2π3B =得, ,① 在△ABC 中,取中点,连接.所以在△CBD 中,222cos 2BC CD BD C BC CD+-=⋅=221944b a ab+-, ② 把①代入②,化简得,解得,或(舍去), 所以.所以△ABC 的面积112πsin 35sin 223S ac B ==⨯⨯⨯=. 222239b a c ac c c =++=++AC D BD 23100c c --=5c =2c =-5c =备考指南几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.考点四 三角函数的应用问题【例11】(解三角形的应用)某观察站C 与两灯塔A ,B 的距离分别为a 米和b 米,测得灯塔A 在观察站C 北偏西60︒,灯塔B 在观察站C 北偏东60︒,则两灯塔A ,B 间的距离为AB 米CD【答案】C【解析】依题意,作出示意图(图略),因为6060120ACB ∠=︒+︒=︒,AC a =,BC b =,所以由余弦C .【例12】(三角函数、解三角形的应用)如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中π,,2AB a B BC =∠==.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道MN ,且两边是两个关于走道MN 对称的三角形(AMN △和A MN '△).现考虑绿地最大化原则,要求点M 与点,A B 均不重合,A '落在边BC 上且不与端点,B C 重合,设AMN θ∠=.(1)若π3θ=,求此时公共绿地的面积; (2)为方便小区居民的行走,设计时要求,AN A N '的长度最短,求此时绿地公共走道MN 的长度. 【解析】(1)由图得:ππ23BMA θ∠=-=', ∴1122BM A M AM ='=, 又BM AM a AB +==,∴32AM a =, ∴23AM a =,∴公共绿地的面积2221π422sin 239AMN S S AM a ==⋅⋅⋅==△. (2)由图得:()cos π2AM A M AB a θ+-=='且AM A M =', ∴()21cos π21cos 22sin a a a AM A M θθθ====+--',在AMN △中,由正弦定理可得:πsin sin π3AN AMθθ=⎛⎫-- ⎪⎝⎭,∴sin 2π2πsin 2sin sin 33AM aAN θθθθ==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭, 记2π2π2π2sin sin 2sin sin cos cos sin 333t θθθθθ⎛⎫⎛⎫=-=⋅-⎪ ⎪⎝⎭⎝⎭21cos 2π1cos sin sin 2sin 22262θθθθθθ-⎛⎫=+=+=-+ ⎪⎝⎭, 又ππ,42θ⎛⎫∈ ⎪⎝⎭, ∴ππ262θ-=, ∴π3θ=时,t 取最大,AN 最短,则此时23MN AM a ==.能力突破1.已知命题p :函数()sin f x x x =图象的一条对称轴是7π6x =;命题(): cos cos cos q αβαβαβ∀∈-≥-R ,,,则下列命题中的真命题为 A .()p q ⌝∧ B .()p q ∧⌝ C .()p q ⌝∨D .()p q ⌝∨【答案】B【解析】7π7π7π7ππ:sin2sin 266663p f ⎛⎫⎛⎫==+=- ⎪ ⎪⎝⎭⎝⎭,∴p 为真命题. :q 当2π,παβ==时,παβ-=,()cos 1αβ-=-,cos cos 2αβ-=,∴()cos cos cos αβαβ-<-,∴q 为假命题,∴()p q ∧⌝为真命题.故选B . 2.已知函数()log a f x x =(0a >且1a ≠)和函数π()sin 2g x x =,若()f x 与()g x 两图象只有3个交点,则a 的取值范围是A .19(,1)(1,)52 B .19(0,)(1,)72 C .11(,)(3,9)72D .11(,)(5,9)73【答案】D【解析】作出函数()f x 与()g x 的图象如图所示,当1a >时,()f x 与()g x 两图象只有3个交点,可得59a <<,当01a <<时,()f x 与()g x 两图象只有3个交点,可得1173a <<,所以a 的取值范围是11(,)(5,9)73,故选D .3.存在实数ϕ,使得圆面224x y +≤恰好覆盖函数πsin()y x kϕ=+图象的最高点或最低点共三个,则正数k 的取值范围是___________.【答案】 【解析】由题意,知函数πsin()y x k ϕ=+图象的最高点或最低一定在直线1y =±上,则由2214y x y =±⎧⎨+≤⎩,得x ≤≤2π2πT k k==,2T T ≤,解得正数k的取值范围为.4.在△ABC 中,角A , B , C 所对的边分别为a , b , c ,已知AB ⃗⃗⃗⃗⃗ ∙AC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ ,53sin =A . (1)求C sin 的值;(2)设D 为AC 的中点,若BD 的长为√1532,求△ABC 的面积.【解析】(1)由AB AC BA BC ⋅=⋅得()0AB AC BC ⋅+=, 即22()()||||0AC BC AC BC AC BC -⋅+=-=, 故|AC⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |, 从而A B =,A 与B 都是锐角, 则cosA =√1−sin 2A =45.sinC =sin (A +B )=sin2A =2sinAcosA =2425,即sinC =2425. (2)由(1),得cosC =cos (π−2A )=−cos2A =2sin 2A −1=−725, 设BC =AC =x ,在BCD △中,由余弦定理得BD 2=CD 2+BC 2−2CD ∙BC ∙cosC =x 24+x 2−2×x 22×(−725)=1534,解得x =5,则S ∆ABC =12×5×5×2425=12.5π. (1)求函数()f x 的解析式,并写出()f x 的最小正周期; (2,若在[]0,πx ∈内,方程2[12()]3()20a g x ag x -+-=有且仅有两解,求a 的取值范围.【解析】(1,∴πT =,∴2ω=.()f x 图象上,∴ππ2π32k ϕ+=+, π最小正周期πT =.(2 ∴原方程可化为()213sin 2sin 2a x x +-=,则0a ≠. ∵[]0,πx ∈,∴[]sin 0,1x ∈,213sin 2sin 0x x +->,∴2221732sin 3sin 12sin 84x x x a ⎛⎫=-++=-- ⎪⎝⎭,令sin t x =,则[]0,1t ∈,作出()2173284f t t ⎛⎫=-- ⎪⎝⎭及2y a =的图象,当21a ≤2<或2178a =时,两图象在[]0,1内有且仅有一解,即方程221732sin 84x a ⎛⎫=-- ⎪⎝⎭在[]0,π内有且仅有两解,此时a 的取值范围为16|12 17a a a ⎧⎫<≤=⎨⎬⎩⎭或. 高考通关1.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是A. 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B. 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C. 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ D. 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ 【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n ︒︒=⨯,每条边长为302sin n︒, 所以,单位圆的内接正6n 边形的周长为3012sin n n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A.【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.2.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示. 3.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.4.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】D【解析】①若()f x 在[0,2π]上有5个零点,可画出大致图象,由图1可知,()f x 在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,()f x 在(0,2π)有且仅有2个或3个极小值点.故②错误;π所以结论正确的有①③④.故本题正确答案为D.【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 5.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值, 所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω, 因为0>ω,所以当0k =时,ω取最小值为23.【名师点睛】本题主要考查三角函数的图象和性质,考查考生的逻辑推理能力以及运算求解能力,考查的核心素养是逻辑推理、数学运算.6.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的图象与性质,考查数形结合思想和考生的运算求解能力,考查的核心素养是数学运算.7.(2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC的面积是______,cos ∠BDC =_______.【答案】24【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==∴1sin 22△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD cos BDC ∠=.8.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,AB =1AC =,由勾股定理得2BC ==,同理得BD =BF BD ∴==在ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos30132112CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF 中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-. 【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.9.(2017江苏)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan x =. 又x ∈[0,π], 所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为x ∈[0,π], 所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,f (x )取到最大值3;当π6x +=π,即5π6x =时,f (x )取到最小值-10.(2018新课标Ⅰ理)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =,求BC .【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以sin 5ADB ∠=.由题设知,90ADB ∠<︒,所以cos ADB ∠==(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.11.(2018北京理)在△ABC 中,a =7,b =8,cos B =–17. (1)求∠A ;(2)求AC 边上的高.【解析】(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B .由正弦定理得sin sin a b A B =⇒7sin A ,∴sin A . ∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,sin C =sin (A +B )=sin A cos B +sin B cos A 11()72-+.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7∴AC .12.(2018上海)设常数R a ∈,函数()2sin22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若π14f ⎛⎫= ⎪⎝⎭,求方程()1f x =[]ππ-,上的解.【答案】(1)0a =;(2)5π24x =-或19π24x =或13π11π2424x x 或==-.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a 的值,再根据三角形函数的性质即可求出.【详解】(1)∵()2sin22cos f x a x x =+,∴()2sin22cos f x a x x -=-+,∵()f x 为偶函数,∴()()f x f x -=,∴22sin22cos sin22cos a x x a x x -+=+,∴2sin20a x =,∴0a =;(2)∵π14f ⎛⎫= ⎪⎝⎭,∴2ππsin 2cos 1124a a ⎛⎫+=+= ⎪⎝⎭,∴a =∴()2π2cos cos212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,∵()1f x =∴π2sin 2116x ⎛⎫++= ⎪⎝⎭,∴πsin 262x ⎛⎫+=- ⎪⎝⎭, ∴ππ22π64x k +=-+,或π52π2πZ 64x k k +=+∈,, ∴5ππ24x k =-+,或13ππZ 24x k k =+∈,,∵[]ππx ∈-,, ∴5π24x =-或19π24x =或13π11π2424x x 或==-【点睛】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.13.【2020年高考全国II 卷理数】ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,② 由①,②得1cos 2A =-.因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin ACABBCB C A ===从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+14.【2020年高考浙江】在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .已知2sin 0b A =.(Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.【解析】(Ⅰ)由正弦定理得2sin sin B A A =,故sin B =, 由题意得π3B =. (Ⅰ)由πA BC ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-+得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.15.【2020年高考全国Ⅱ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形. 【解析】(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=. 所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -=.由(1)知23B C π+=,所以2sin sin()33B B ππ--=.即11sin 22B B =,1sin()32B π-=. 由于03B 2π<<,故2B π=.从而ABC △是直角三角形. 【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.16.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A C a b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2)(82. 【解析】(1)由题设及正弦定理得sin sin sin sin 2A C AB A +=. 因为sin A ≠0,所以sin sin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B =. 因为cos 02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,ABC S <<△. 因此,△ABC面积的取值范围是82⎛ ⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题.。

三角函数的应用解三角形

三角函数的应用解三角形

三角函数的应用解三角形三角函数是数学中的一个重要概念,广泛应用于解决各种与三角形相关的问题。

通过运用三角函数的知识,我们可以准确地计算并解决各类三角形相关的数学题。

本文将介绍三角函数的应用,并举例说明如何利用三角函数来解决三角形问题。

1. 正弦函数的应用正弦函数是三角函数中最常用的函数之一,它在解决三角形问题中具有重要作用。

我们知道,在一个任意三角形ABC中,正弦函数的定义为:sinA = 边BC/边AC,sinB = 边AC/边BC,sinC = 边AB/边AC。

根据这个定义,我们可以通过已知的边长和角度来求解未知的边长或角度。

举个例子,假设我们已知三角形ABC中的角A和边BC的长度,我们需要求解边AC和角B的值。

根据正弦函数的定义,我们可以列出以下方程:sinA = 边BC/边AC通过移项和替换公式,我们可以得到:边AC = 边BC/sinA角B = 180° - 角A - 角C通过以上公式,我们可以根据已知条件计算出边AC和角B的值,从而解决三角形问题。

2. 余弦函数的应用余弦函数也是三角函数中常用的函数之一,它在解决三角形问题中同样具有重要作用。

在一个任意三角形ABC中,余弦函数的定义为:cosA = 边BC/边AC,cosB = 边AC/边BC,cosC = 边AB/边AC。

同样地,我们可以通过已知的边长和角度来求解未知的边长或角度。

举个例子,假设我们已知三角形ABC中的角A和边AC的长度,我们需要求解边BC和角C的值。

根据余弦函数的定义,我们可以列出以下方程:cosA = 边BC/边AC通过移项和替换公式,我们可以得到:边BC = 边AC * cosA角C = 180° - 角A - 角B通过以上公式,我们可以根据已知条件计算出边BC和角C的值,从而解决三角形问题。

3. 正切函数的应用正切函数是三角函数中另一个常用的函数,它同样可以应用于解决三角形问题。

在一个任意三角形ABC中,正切函数的定义为:tanA = 边BC/边AC,tanB = 边AC/边BC,tanC = 边AB/边AC。

解直角三角形在实际生活中的应用

解直角三角形在实际生活中的应用

解直角三角形在实际生活中的应用山东 李浩明在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.下面举例说明,供大家参考.一、航空问题例1.(2008年桂林市)汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图1).求A 、B1.414 1.732==)分析:要求A 、B 两个村庄间的距离,由题意知AB =PB ,在Rt △PBC 中,可求得60PBC ∠=︒,又因为PC =450,所以可通过解直角三角形求得PB.解:根据题意得:30A ∠=︒,60PBC ∠=︒,所以6030APB ∠=︒-︒,所以A P B A ∠=∠,所以AB =PB .在Rt BCP ∆中,90,60C PBC ∠=︒∠=︒,PC =450,所以PB=450sin 60==︒.所以520AB PB ==≈(米) 答:A 、B 两个村庄间的距离为520米. 二、测量问题例2.(2008年湛江市)如图2所示,课外活动中,小明在离旗杆AB 10米的C 处,QB CP A 45060︒30︒图1用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .分析:要求AB 的高,由题意知可知CD=BE ,先在Rt △ADE 中求出AE 的长,再利用AB=BE +AE 求出AB 的长.解:在Rt △ADE 中,tan ∠ADE =DEAE. ∵DE =10,∠ADE =40︒.∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4. ∴AB =AE +EB =AE +DC =8.4 1.59.9+=.答:旗杆AB 的高为9.9米. 三、建桥问题例4.(2008年河南)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.一直BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据: 1.412≈,sin37°≈0.60,cos37°≈0.80). 分析:要求现在比原来少走多少路程,就需要计算两条路线路程之差,如图构造平行四边形DCBG ,将两条路线路程之差转化为AD DG AG +-,作高线DH ,将△ADG 转化为两个直角三角形,先在在Rt DGH △中求DH 、GH ,再在Rt ADH △中求AD 、AH,此题即可得解.解:如图,过点D 作DH AB ⊥于H ,DG CB ∥交AB 于G .DC AB ∥,∴四边形DCBG 为平行四边形.∴DC GB =,11GD BC ==.∴两条路线路程之差为AD DG AG +-. 在Rt DGH △中,sin37110.60 6.60DH DG =⋅≈⨯=, cos37110.808.80GH DG =⋅⨯≈≈.在Rt ADH △中,1.41 6.609.31AD =⨯≈≈.6.60AH DH =≈.∴(9.3111)(6.608.80)AD DG AG +-=+-+≈即现在从A 地到B 地可比原来少走约4.9km . 四、图案设计问题例4.(2008年上海市)“创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图4所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.分析:要求圆O 的半径r 的值,需在直角三角形ODH 中来解决,而已知的条件太少,需要先在直角三角形CEH 中,根据条件5CE =、坡面CE 的坡度1:0.75i =求出EH 、CH ,然后在直角三角形ODH 中利用勾股定理列出方程,从而求出r 的值.解:由已知OCDE ⊥,垂足为点H ,则90CHE ∠=.图41:0.75i =,43CH EH ∴=. 在Rt HEC △中,222EH CH EC +=.设4CH k =,3(0)EH k k =>,又5CE =,得222(3)(4)5k k +=,解得1k =.∴3EH =,4CH =.∴7DH DE EH =+=,7OD OA AD r =+=+,4OH OC CH r =+=+. 在Rt ODH △中,222OH DH OD +=,∴222(4)7(7)r r ++=+. 解得83r =.航海中的安全问题船只在海上航行,特别要注意安全问题,这就需要运用数学知识进行有关的计算,以确保船只航行的安全性.请看下面两例.例1 (深圳市)如图1,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.分析:问题的关键是弄清方位角的概念,过点C 作CD ⊥AB 于D ,然后通过解直角三角形求出CD 的长,通过列方程解决几何问题也是一种常用方法.解:由已知,得AB=24×21=12,∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,所以∠C=30°,所以∠C=∠CAB ,所以CB=AB=12.在Rt △CBD 中,sin ∠CBD=CB CD ,所以CD=CB ·sin ∠CBD=12×3623=.∵936> 所以货船继续向正东方向行驶无触礁危险.例2 如图2,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向上,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?分析:先将实际问题转化为解直角三角形的问题.可有如下两种方法求解. 解法一:如图3,过点B 作BM ⊥AH 于M ,则BM//AF.所以∠ABM=∠BAF=30°. 在Rt △BAM 中,AM=21AB=5,BM=35. 过点C 作CN ⊥AH 于点N ,交BD 于K. 在Rt △BCK 中,∠CBK=90°-60°=30°. 设CK=x ,则BK=3x.在Rt △CAN 中,因为∠CAN=90°-45°=45°,所以AN=NC.所以AM+MN=CK+KN. 又NM=BK ,BM=KN ,所以x+35=5+3x.解得x=5. 因为5>4.8,所以渔船没有进入养殖场的危险.解法二:如图4,过点C 作CE ⊥BD 于E.所以CE//GB//FA. 所以∠BCE=∠GBC=60°,∠BCA=∠FAC=45°. 所以∠BCA=∠BCE-∠ACE=60°-45°=15°. 又∠BAC=∠FAC-∠FAB=45°-30°=15°,D图2图3图4所以∠BCA=∠BAC.所以BC=AB=10.在Rt △BCE 中,CE=BC ·cos ∠BCE=BC ·cos60°=10×21=5. 也5>4.8,所以渔船没有进入养殖场的危险.实际中的仰角和俯角问题在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.计算原理:视线、水平线、物体的高构成直角三角形,已知仰角、俯角和另一边,利用解直角的知识就可以求出物体的高度.梳理总结:⑴仰角和俯角是指视线相对于水平线而言的,不同位置的仰角和俯角是不同的;可巧记为“上仰下俯”.在测量物体的高度时,要善于将实际问题抽象为数学问题.⑵在测量山的高度时,要用“化曲为直”的原则把曲的山坡“化整为零地分成一些小段,把每一小段山坡长近似地看作直的,测出仰角求出每一小段山坡对应的高,再把每部分高加起来,就得到这座山的高度.例1 (成都)如图2,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角α为30︒,测得乙楼底部B 点的俯角β为60︒,求甲乙两栋高楼各有多高?(计算过程和结果都不取近似值.分析:过点C 作CE ⊥AB 于点E, 在Rt △BCE 和Rt △ACE 中, BE 和AE 可用含CE(即为水平距离)的式子表示出来,从而求得两楼的高.解:作CE ⊥AB 于点E,∵CE ∥DB,CD ∥AB,且∠CDB=090,∴四边形BECD 是矩形. ∴CD=BE,CE=BD.图 1 E图2在Rt △BCE 中, ∠β=060,CE=BD=90米. ∵,tan CEBE=β∴BE=CE 39060tan 90tan 0=⨯=⋅β(米). ∴CD=BE=390(米).在Rt △ACE 中, ∠α=030,CE=90米. ∵ ,tan CEAE=α∴AE=CE 330339030tan 90tan 0=⨯=⨯=⋅α(米). ∴AB=AE+BE=3120390330=+(米). 答:甲楼高为390米,乙楼高为3120米.反思:仰角和俯角问题是解直角三角形中的常见题型,作辅助线构造直角三角形(一般同时得到两个直角三角形)并解之是解决这类问题的常用方法.例2 (乐山)如图3,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB .要求:⑴画出测量示意图;⑵写出测量步骤(测量数据用字母表示); ⑶根据(2)中的数据计算AB .分析:要测量底步不能到达的物体的高度,要转化为双直角三角形问题,测量方案如图2,计算的关键是求 AE,可设AE=x,则在Rt △AGF 和 Rt △AEF 中, 利用三角函数可得αtan x HE =,βtan x EF = ,再根据HE-FE=CD=m 建立方程即可. 解:(1)测量图案(示意图)如图4所示(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角AHE α=∠;第二步:沿CB 前进到点D ,用皮尺量出C D ,之间的距离CD m =;AB图3AE F H CDB图4第三步:在点D 安装测角仪,测得此时树尖A 的仰角AFE β=∠; 第四步:用皮尺测出测角仪的高h . (3)计算: 令AE=x,则,tan HE x =α得αtan x HE =,又,tan EF x =β得βtan xEF =, ∵HE-FE=HF=CD=m, ∴,tan tan m xx =-βα 解得αββαtan tan tan tan -⋅=m x ,∴AB=.tan tan tan tan h m +-⋅αββα反思:在多个直角三角形中一定要认真分析各条线段之间的关系(包括三角函数关系、相等关系),运用方程求解,有时可起到事半功倍之效.快乐套餐:1.(泰安)如图5,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示)2.(安徽)如图6,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(1.73,计算结果保留整数)ABCD图5第19题图EDCB A450600图6参考答案:1. (300 .2. ∵AB=8,BE=15,∴AE=23,在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan60°=CD=CE-DE=23≈2.95≈3.即这块广告牌的高度约为3米.。

三角函数的应用

三角函数的应用

三角函数的应用
三角函数是数学中的一种基本函数,广泛应用于各种数学问题中。

本文将介绍三角函数在几何、物理、工程等领域中的应用。

几何应用
1. 求角度:可以利用正弦、余弦和正切函数来求解三角形的角度。

例如,已知三角形两条边的长度,可以通过正切函数求得其夹角。

2. 求边长:三角函数可以用于计算三角形中未知边长的长度。

例如,已知一个角度和与之相邻的一边的长度,则可以通过正弦或余弦函数计算出另外两条边的长度。

3. 解决三角形的面积问题:三角函数可以帮助计算不规则三角形的面积。

例如,可以通过正弦公式求出三角形面积。

物理应用
1. 物体运动的计算:正弦和余弦函数可以用来描述物体在水平
方向和垂直方向的运动。

2. 振动和波动:三角函数也被广泛运用于描述振动和波动现象。

例如,正弦函数可以描述声波的传播,余弦函数可以描述气体分子
在空气中的振动。

工程应用
1. 静力学:三角函数可以用来解决物体在平衡状态下的问题。

例如,可以通过正弦和余弦函数计算某个角度对应的平衡点位置。

2. 电学:三角函数可以用来描述交流电路的行为。

例如,可以
利用正弦函数描述电流和电压的周期变化。

综上所述,三角函数在几何、物理、工程等领域都有广泛的应用,是数学中的一种基本工具。

掌握三角函数的应用可以帮助我们
更好地理解和解决各种实际问题。

解直角三角形经典题型应用题

解直角三角形经典题型应用题

解直角三角形经典题型应用题1. 一个田径运动员越过一根高度为2米的木板,如果他离地面的水平距离是3米,那么他的起跳点距离木板底部的高度是多少?解:设起跳点距离木板底部的高度为x,则根据勾股定理,得到:$x^2 + 3^2 = 2^2$化简得:$x^2 = 2^2 - 3^2 = -5$由于x是高度,因此应该为正数。

但是由于方程无解,因此无法解出起跳点距离木板底部的高度。

这个结果告诉我们,如果要跨越一个木板,距离不能太远,否则就无法起跳!2. 一个人看到一个高楼,测得距离为50米,角度为30度,那么这个高楼的高度是多少?解:设高楼的高度为h,根据三角函数,得到:$tan(30) = \frac{h}{50}$化简得:$h = 50\times tan(30) = 50 \times \frac{1}{\sqrt{3}} \approx28.87$因此,这个高楼的高度约为28.87米。

3. 一个人站在一座桥上,看到一条河流在他的正下方流过,测得桥与河面的垂直距离为20米,角度为45度,那么河宽是多少?解:设河宽为w,根据三角函数,得到:$tan(45) = \frac{w}{20}$化简得:$w = 20\times tan(45) = 20$因此,河宽为20米。

4. 在一个矩形田地中,角A的顶点和角B的底点均在田地边界上,角A的角度为30度,角B的角度为60度,且田地的长宽比为3:2,那么田地的面积是多少?解:假设田地的长为3x,宽为2x,则田地的面积为6x²。

又根据三角函数,得到:$tan(30) = \frac{3x}{y}$$tan(60) = \frac{2x}{y}$化简得:$x = y\times tan(30) = y\cdot\frac{1}{\sqrt{3}}$ $x = y\times tan(60) = y\cdot\sqrt{3}$解得:$y = 6\sqrt{3}$因此,田地的面积为6x² = 1080平方米。

高三复习:三角函数模型及解三角形应用举例(含解析答案)

高三复习:三角函数模型及解三角形应用举例(含解析答案)

§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?题型二测量角度问题例2如图,在海岸A处发现北偏东45°方向,距A处(3-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.题型三利用三角函数模型求最值例3如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中y>x>0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少?变式如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面间的距离为h.(1)求h与θ间关系的函数解析式;(2)设从OA开始转动,经过t秒后到达OB,求h与t之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.2.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 3.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.4.8三角函数模型及解三角形应用举例作业1.如图为一半径是3m的水轮,水轮的圆心O距离水面2m.已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间x(s)满足函数关系y=A sin(ωx+φ)+2(ω>0,A>0),则ω=________,A=________.2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.3.如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30m,并在点C处测得塔顶A的仰角为60°,求塔高AB.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°,距离为10nmile的C处,并测得渔船正沿方位角为105°的方向,以10nmile/h的速度向某小岛B靠拢,我海军舰艇立即以103nmile/h的速度前去营救,求舰艇的航向和靠近渔船所需的时间.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示); (2)当t 最小时,C 点应设计在AB 的什么位置?6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? (1)答案 30+30 3解析 在△P AB 中,∠P AB =30°,∠APB =15°,AB =60,sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=22×32-22×12=6-24,由正弦定理得PB sin30°=ABsin15°,∴PB =12×606-24=30(6+2),∴树的高度为PB ·sin45°=30(6+2)×22=(30+303)m.(2)解 ①在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1040m.②假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.③由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在⎣⎡⎦⎤125043,62514(单位:m/min)范围内. 题型二 测量角度问题例2 如图,在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.思维点拨 设缉私船t 小时后在D 处追上走私船,确定出三角形,先利用余弦定理求出BC ,再利用正弦定理求出时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =103t (海里),BD =10t (海里),在△ABC 中,由余弦定理,有 BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =(3-1)2+22-2(3-1)·2·cos120°=6. ∴BC =6(海里).又∵BC sin ∠BAC =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BAC BC =2·sin120°6=22,∴∠ABC =45°,∴B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin120°103t =12.∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴D =30°,∴BD =BC ,即10t = 6. ∴t =610小时≈15(分钟). ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟. 思维升华 测量角度问题的一般步骤(1)在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离; (2)用正弦定理或余弦定理解三角形;(3)将解得的结果转化为实际问题的解.题型三 利用三角函数模型求最值例3 如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中y >x >0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少? 思维点拨 由题图可得:x =cos θ,y =sin θ.列出面积函数后,利用三角函数性质求解,注意θ的范围. 解 (1)设S 为十字形的面积,则S =2xy -x 2=2sin θcos θ-cos 2θ (π4<θ<π2);(2)S =2sin θcos θ-cos 2θ=sin2θ-12cos2θ-12=52sin(2θ-φ)-12,其中tan φ=12, 当sin(2θ-φ)=1,即2θ-φ=π2时,S 最大.所以,当θ=π4+φ2(tan φ=12)时,S 最大,最大值为5-12.思维升华 三角函数作为一类特殊的函数,可利用其本身的值域来求函数的最值.变式 如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为h . (1)求h 与θ间关系的函数解析式; (2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的平面直角坐标系,则以Ox为始边,OB 为终边的角为θ-π2,故点B 的坐标为(4.8cos(θ-π2),4.8sin(θ-π2)), ∴h =5.6+4.8sin ⎝⎛⎭⎫θ-π2. (2)点A 在圆上转动的角速度是π30弧度/秒,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin ⎝⎛⎭⎫π30t -π2,t ∈[0,+∞).到达最高点时,h =10.4米.由sin ⎝⎛⎭⎫π30t -π2=1,得π30t -π2=π2,∴t =30秒, ∴缆车到达最高点时,用的最少时间为30秒.课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.答案 π2解析 ∵S =1-12×1×sin α-12×1×cos α-12(1-cos α)(1-sin α)=12-12sin αcos α =12-14sin2α. ∴当α=π2时,S 取到最大值.3.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 答案 3或2 3解析 如图所示,设此人从A 出发,则AB =x ,BC =3,AC =3,∠ABC =30°, 由余弦定理得(3)2=x 2+32-2x ·3·cos30°,整理,得x 2-33x +6=0,解得x =3或2 3.4.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.答案 2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos120°=2800,所以BC =207. 由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos30°-sin ∠ACB sin30°=2114.4.8 三角函数模型及解三角形应用举例作业1.如图为一半径是3m 的水轮,水轮的圆心O 距离水面2m .已知水轮每分钟旋转4圈,水轮上的点P 到水面的距离y (m)与时间x (s)满足函数关系y =A sin(ωx +φ)+2(ω>0,A >0),则ω=________,A =________.答案 2π153 解析 每分钟转4圈,每圈所需时间T =604=15. 又T =2πω=15,∴ω=2π15,A =3. 2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.答案 203米、4033米 解析 如图,依题意有甲楼的高度为AB =20·tan60°=203(米),又CM=DB =20(米),∠CAM =60°,所以AM =CM ·1tan60°=2033(米),故乙楼的高度为CD =203-2033=4033(米). 3.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30m ,并在点C 处测得塔顶A 的仰角为60°,求塔高AB .解 在△BCD 中,∠CBD =180°-15°-30°=135°,由正弦定理,得BC sin ∠BDC =CD sin ∠CBD,所以BC =30sin30°sin135°=15 2 (m). 在Rt △ABC 中,AB =BC ·tan ∠ACB =152tan60°=15 6 (m).所以塔高AB 为156m.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角为45°,距离为10nmile 的C 处,并测得渔船正沿方位角为105°的方向,以10nmile/h 的速度向某小岛B 靠拢,我海军舰艇立即以103nmile/h 的速度前去营救,求舰艇的航向和靠近渔船所需的时间.解 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t .在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BC ·cos120°,可得:(103t )2=102+(10t )2-2×10×10t cos120°.整理得:2t 2-t -1=0,解得t =1或t =-12(舍去). 所以舰艇需1小时靠近渔船,此时AB =103,BC =10. 在△ABC 中,由正弦定理得:BC sin ∠CAB =AB sin120°, 所以sin ∠CAB =BC ·sin120°AB =10×32103=12. 所以∠CAB =30°.所以舰艇航行的方位角为75°.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示);(2)当t 最小时,C 点应设计在AB 的什么位置?解 (1)在△BCD 中,∵∠BCD =θ,∠B =π3,BD =l , ∴BC =l sin (2π3-θ)sin θ,CD =3l 2sin θ, ∴AC =AB -BC =l -l sin (2π3-θ)sin θ, 则t =AC 3v +CD v =l 3v -l sin (2π3-θ)3v sin θ+3l 2v sin θ(π3<θ<2π3). (2)t =l 6v (1-3cos θsin θ)+3l 2v sin θ=l 6v +3l 6v ·3-cos θsin θ. 令m (θ)=3-cos θsin θ,θ∈(π3,2π3),则m ′(θ)=1-3cos θsin 2θ. 令m ′(θ)=0,得cos θ=13,设cos θ0=13,θ0∈(π3,2π3), 则θ∈(π3,θ0)时,m ′(θ)<0;当θ∈(θ0,2π3)时,m ′(θ)>0,∴当cos θ=13时,m (θ)取得最小值22,此时BC =6+48l . 故当BC =6+48l 时货物运行时间最短. 6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.规范解答解 (1)设相遇时小艇的航行距离为S 海里, 则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900(t -13)2+300.[4分] 故当t =13时,S min =103,v =10313=30 3.[6分] 即小艇以303海里/小时的速度航行,相遇小艇的航行距离最小.[7分](2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t2.[9分] ∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.[10分] 又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.[12分] 此时,在△OAB 中,有OA =OB =AB =20.故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[14分]。

28章 锐角三角函数专题 解直角三角形实际应用的基本模型初中数学模型

28章 锐角三角函数专题 解直角三角形实际应用的基本模型初中数学模型

(2)“母子”型 模型 已知三角形中的两角(∠1 和∠2)及其中一边, 模型分 在三角形外边作高 BC,构造两个直角三角形求 析 解,以高 BC 为桥梁是解题的关键
3.(成都中考)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极 落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面 的高度.如图,已知测倾器的高度为 1.6 米,在测点 A 处安置测倾器,测得点 M 的 仰角∠MBC=33°,在与点 A 相距 3.5 米的测点 D 处安置测倾器,测得点 M 的仰角 ∠MEC=45°(点 A,D 与 N 在一条直线上),求电池板离地面的高度 MN 的长.(结 果精确到 1 米,参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65)
ME x+25 5 公楼 AB 的高度约为 20 米
(2)一般梯形模型 模型
模型 过较短的底 AD 作梯形的两条高 AE 和 DF,构造一个长方 分析 形和两个直角三角形,分别解两个直角三角形再加减求解
7.某轮滑特色学校准备建立一个如图①的轮滑技巧设施,从侧面看如图②,横 截面为梯形,高 1 米,AD 长为 2 米,坡道 AB 的坡度为 1∶1.5,DC 的坡度为 1∶2.
+40 3 .∴小山 BC 的高度为(10+40 3 )米
模型二:四边形模型 (1)直角梯形模型
模型
模型 过较短的底 AB 作直角梯形的高 BE,构造一个矩形和一
分析
个直角三角形,先解直角三角形再加减求解
6.如图,某办公楼 AB 的后面有一建筑物 CD,当光线与地面的夹角是 22°时, 办公楼在建筑物的墙上留下高 2 米的影子 CE,而当光线与地面夹角是 45°时,办公 楼顶 A 在地面上的影子 F 与墙角 C 有 25 米的距离(点 B,F,C 在一条直线上).求办 公楼 AB 的高度.(参考数据:sin 22°≈25 ,cos 22°≈1156 ,tan 22°≈25 )

高中数学三角函数的应用举例讲解

高中数学三角函数的应用举例讲解

高中数学三角函数的应用举例讲解在高中数学学习中,三角函数是一个重要的知识点,也是一个较为复杂的内容。

它不仅在数学中有广泛的应用,还与许多实际问题密切相关。

本文将通过几个具体的例子,来讲解三角函数的应用,并重点突出解题技巧和使用指导。

例一:角度的度数转化在解决实际问题时,有时我们需要将弧度制的角度转化为度数制。

例如,一辆车以每小时60公里的速度行驶,求其每分钟的速度。

这个问题涉及到角速度的概念,而角速度的单位通常是弧度/秒。

因此,我们需要将每小时60公里转化为弧度/秒。

解题思路:1. 首先,将速度单位转化为弧度/小时。

由于1小时等于60分钟,而一圈的周长是2π,所以速度转化为弧度/小时的公式是:60公里/小时 × 1000米/公里 × 1小时/60分钟 × 1圈/2π千米。

2. 接下来,将弧度/小时转化为弧度/秒。

由于1小时等于3600秒,所以速度转化为弧度/秒的公式是:弧度/小时 × 1小时/3600秒。

通过以上步骤,我们可以得到每分钟的速度,从而解决了这个问题。

例二:三角函数的几何应用三角函数在几何中的应用非常广泛,例如求解三角形的面积、边长等问题。

下面以求解三角形面积为例进行讲解。

问题描述:已知一个三角形的两边长分别为a和b,夹角为θ,求解该三角形的面积。

解题思路:1. 首先,根据三角形面积的公式S=1/2absinθ,我们可以得到三角形的面积公式。

2. 其次,根据已知条件,将a、b和θ代入公式中,即可求得三角形的面积。

通过以上步骤,我们可以解决这个问题,并得到三角形的面积。

例三:三角函数在物理中的应用三角函数在物理中的应用也非常广泛,例如在运动学中的速度、加速度等问题中,常常会涉及到三角函数的运算。

问题描述:一个物体以初速度v0沿着直线做匀速直线运动,经过时间t后,它的速度变为v,求解物体的加速度。

解题思路:1. 首先,根据匀速直线运动的公式v=v0+at,我们可以得到物体的速度公式。

三角函数在三角形中的应用

三角函数在三角形中的应用

三角函数在三角形中的应用三角函数是高中数学知识中比较重要的一部分。

在实际生活和工作中,三角函数有着广泛的应用。

其中,应用最为广泛的场景之一就是三角形中。

在三角形中,三角函数可以帮助我们求解各种角度、边长以及面积等问题。

接下来,就来看看三角形中三角函数的应用。

1. 正弦定理正弦定理是求解三角形中边长的公式之一。

它的表述方式比较简单,即:对角线等于对应正弦值两倍半径。

其中,对角线就是三角形中某个角的对边,半径就是三角形中这个角对应的圆的半径。

正弦定理可以表示为:a/sinA = b/sinB = c/sinC其中,a、b、c分别为三角形中任意两条边的长度,A、B、C 为任意两个角度的角度值。

正弦定理的应用场景非常广泛。

比如,当我们知道三角形的三个角度以及其中一个角对应的边长时,可以利用正弦定理求出其它两个边长。

2. 余弦定理与正弦定理相似,余弦定理也是一种求解三角形边长的公式。

不过,它的表述方式与正弦定理略有不同,即:对角线平方等于两条相邻边平方的和减去两倍的乘积。

余弦定理可以表示为:cosA = (b² + c² - a²)/2bccosB = (c² + a² - b²)/2cacosC = (a² + b² - c²)/2ab其中,a、b、c分别为三角形中任意两条边的长度,A、B、C 为任意两个角度的角度值。

余弦定理的应用非常广泛。

比如,在三角形中,当我们知道三边的长度和其中一个角度的角度值时,可以利用余弦定理求出其它两个角度的角度值。

3. 正切函数正切函数是三角函数中最为常见的函数之一。

它的应用也非常广泛,特别是在三角形中。

在三角形中,正切函数可以用来求解两个角度之间的关系,或求解一个角度与其对边长度之间的关系。

具体来讲,当我们知道某个角度的角度值和其对边的长度时,就可以利用正切函数求解另外一个角度的角度值。

2024年高考数学总复习第四章《三角函数解三角形》解三角形的实际应用

2024年高考数学总复习第四章《三角函数解三角形》解三角形的实际应用

2024年高考数学总复习第四章《三角函数、解三角形》§4.7解三角形的实际应用最新考纲能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.测量中的有关几个术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0°≤θ<360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡比坡面与水平面所成二面角的度数叫坡度,θ为坡角;坡面的垂直高度与水平长度之比叫坡比,即i =hl=tan θ概念方法微思考在实际测量问题中有哪几种常见类型,解决这些问题的基本思想是什么?提示实际测量中有高度、距离、角度等问题,基本思想是根据已知条件,构造三角形(建模),利用正弦定理、余弦定理解决问题.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.(×)(2)俯角是铅垂线与视线所成的角,其范围为0,π2.(×)(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.(√)(4)方位角大小的范围是[0,2π),方向角大小的范围一般是0,π2√)题组二教材改编2.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出A ,C 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为________m.答案502解析由正弦定理得AB sin ∠ACB=ACsin B ,又B =30°,∴AB =AC sin ∠ACBsin B=50×2212=502(m).3.如图,在山脚A 测得山顶P 的仰角为30°,沿倾斜角为15°的斜坡向上走a 米到B ,在B处测得山顶P 的仰角为60°,则山高h =______米.答案22a 解析由题图可得∠PAQ =α=30°,∠BAQ =β=15°,在△PAB 中,∠PAB =α-β=15°,又∠PBC =γ=60°,∴∠BPA =(90°-α)-(90°-γ)=γ-α=30°,∴在△PAB 中,a sin 30°=PBsin 15°,∴PB =6-22a ,∴PQ =PC +CQ =PB ·sin γ+a sin β=6-22a ×sin 60°+a sin 15°=22.题组三易错自纠4.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角30°,并测得水平面上的∠BCD =120°,CD =40m ,则电视塔的高度为()A .102mB .20mC .203mD .40m答案D解析设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,由余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =-20(舍去)或x =40.故电视塔的高度为40m.5.在某次测量中,在A 处测得同一半平面方向的B 点的仰角是60°,C 点的俯角是70°,则∠BAC =________.答案130°解析60°+70°=130°.6.海上有A ,B ,C 三个小岛,A ,B 相距53海里,从A 岛望C 和B 成45°视角,从B 岛望C 和A 成75°视角,则B ,C 两岛间的距离是________海里.答案52解析由题意可知∠ACB =60°,由正弦定理得AB sin ∠ACB =BC sin ∠BAC ,即53sin 60°=BCsin 45°,得BC =52.题型一测量距离问题1.(2018·长春检测)江岸边有一炮台高30m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m.答案103解析如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m),在△MON 中,由余弦定理得MN =900+300-2×30×103×32=300=103(m).2.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离为________km.答案64解析∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°,∴∠DAC =60°,∴AC =DC =32km.在△BCD 中,∠DBC =45°,由正弦定理,得BC =DC sin ∠DBC ·sin ∠BDC =32sin 45°·sin 30°=64(km).在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38.∴AB =64km.∴A ,B 两点间的距离为64km.3.如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为3003m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠PAB =90°,∠PAQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________m.答案900解析由已知,得∠QAB =∠PAB -∠PAQ =30°.又∠PBA =∠PBQ =60°,∴∠AQB =30°,∴AB =BQ .又PB 为公共边,∴△PAB ≌△PQB ,∴PQ =PA .在Rt △PAB 中,AP =AB ·tan 60°=900,故PQ =900,∴P ,Q 两点间的距离为900m.思维升华求距离问题的两个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.题型二测量高度问题例1(2018·福州测试)如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°,若山高AD =100m ,汽车从B 点到C 点历时14s ,则这辆汽车的速度约为________m/s.(精确到0.1,参考数据:2≈1.414,5≈2.236)答案22.6解析因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,所以∠BAD =60°,∠CAD =45°,设这辆汽车的速度为v m/s ,则BC =14v ,在Rt △ADB 中,AB =ADcos ∠BAD =AD cos 60°=200.在Rt △ADC 中,AC =AD cos ∠CAD =100cos 45°=100 2.在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC ,所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6m/s.思维升华(1)高度也是两点之间的距离,其解法同测量水平面上两点间距离的方法是类似的,基本思想是把要求的高度(某线段的长度)纳入到一个可解的三角形中.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.跟踪训练1如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,则山高CD =____________.答案h cos αsin βsin (α-β)解析由已知得∠BCA =90°+β,∠ABC =90°-α,∠BAC =α-β,∠CAD =β.在△ABC 中,由正弦定理得AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BC sin (α-β),∴AC =BC cos αsin (α-β)=h cos αsin (α-β).在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β=h cos αsin βsin (α-β).故山高CD 为h cos αsin βsin (α-β).题型三角度问题例2如图所示,一艘巡逻船由南向北行驶,在A 处测得山顶P 在北偏东15°(∠BAC =15°)的方向,匀速向北航行20分钟后到达B 处,测得山顶P 位于北偏东60°的方向,此时测得山顶P 的仰角为60°,已知山高为23千米.(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D 处,问此时山顶位于D 处南偏东多少度的方向?解(1)在△BCP 中,由tan ∠PBC =PCBC,得BC =PCtan ∠PBC =2,在△ABC 中,由正弦定理得BC sin ∠BAC =AB sin ∠BCA,即2sin 15°=ABsin 45°,所以AB =2(3+1),故船的航行速度是每小时6(3+1)千米.(2)在△BCD 中,BD =3+1,BC =2,∠CBD =60°,则由余弦定理得CD =6,在△BCD 中,由正弦定理得CD sin ∠DBC =BCsin ∠CDB,即6sin 60°=2sin ∠CDB ,所以sin ∠CDB =22,所以,山顶位于D 处南偏东45°的方向.思维升华解决测量角度问题的注意事项(1)首先应明确方位角和方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.跟踪训练2如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°的方向上,灯塔B 在观察站C 的南偏东60°的方向上,则灯塔A 在灯塔B 的______的方向上.答案北偏西10°解析由已知得∠ACB =180°-40°-60°=80°,又AC =BC ,∴∠A =∠ABC =50°,60°-50°=10°,∴灯塔A 位于灯塔B 的北偏西10°的方向上.1.(2018·武汉调研)已知A ,B 两地间的距离为10km ,B ,C 两地间的距离为20km ,现测得∠ABC =120°,则A ,C 两地间的距离为()A .10kmB .103kmC .105kmD .107km答案D解析如图所示,由余弦定理可得AC 2=100+400-2×10×20×cos 120°=700,∴AC =107.2.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50m ,山坡对于地平面的坡度为θ,则cos θ等于()A.32B.22C.3-1D.2-1答案C解析在△ABC 中,由正弦定理得AB sin 30°=ACsin 135°,∴AC =100 2.在△ADC 中,AC sin (θ+90°)=CDsin 15°,∴cos θ=sin(θ+90°)=AC ·sin 15°CD=3-1.3.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是()A .102海里B .103海里C .203海里D .202海里答案A解析如图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =10 2.4.如图,两座相距60m 的建筑物AB ,CD 的高度分别为20m ,50m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为()A .30°B .45°C .60°D .75°答案B解析依题意可得AD =2010,AC =305,又CD =50,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=600060002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.5.(2018·郑州质检)如图所示,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于()A .56B .153C .52D .156答案D解析在△BCD 中,∠CBD =180°-15°-30°=135°.由正弦定理得BC sin 30°=CDsin 135°,所以BC =15 2.在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6.故选D.6.(2018·广州模拟)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60m ,则河流的宽度BC 等于()A .240(3+1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m答案C解析如图,∠ACD =30°,∠ABD =75°,AD =60m ,在Rt △ACD 中,CD =AD tan ∠ACD =60tan 30°=603(m),在Rt △ABD 中,BD =AD tan ∠ABD =60tan 75°=602+3=60(2-3)m ,∴BC =CD -BD =603-60(2-3)=120(3-1)m.7.(2018·哈尔滨模拟)如图,某工程中要将一长为100m ,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长________m.答案1002解析设坡底需加长x m ,由正弦定理得100sin 30°=xsin 45°,解得x =100 2.8.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________.答案2114解析在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2800,得BC =207.由正弦定理,得AB sin ∠ACB =BC sin ∠BAC,即sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114.9.(2018·青岛模拟)一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时________海里.答案10解析如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10,在Rt △ABC 中,得AB =5,于是这艘船的速度是50.5=10(海里/时).10.(2018·泉州质检)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为______米.答案507解析如图,连接OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°.由余弦定理得OC 2=1002+1502-2×100×150×cos 60°=17500,解得OC =507.11.如图,在山底A 点处测得山顶仰角∠CAB =45°,沿倾斜角为30°的斜坡走1000米至S 点,又测得山顶仰角∠DSB =75°,则山高BC 为______米.答案1000解析由题图知∠BAS =45°-30°=15°,∠ABS =45°-(90°-∠DSB )=30°,∴∠ASB =135°,在△ABS 中,由正弦定理可得1000sin 30°=AB sin 135°,∴AB =10002,∴BC =AB 2=1000.12.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC=122+202-2×12×20×cos 120°=784,解得BC =28.所以渔船甲的速度为BC 2=14(海里/时).(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°,即sin α=AB sin 120°BC =12×3228=3314.13.如图,在水平地面上有两座直立的相距60m 的铁塔AA 1和BB 1.已知从塔AA 1的底部看塔BB 1顶部的仰角是从塔BB 1的底部看塔AA 1顶部的仰角的2倍,从两塔底部连线中点C 分别看两塔顶部的仰角互为余角,则从塔BB 1的底部看塔AA 1顶部的仰角的正切值为________;塔BB 1的高为________m.答案1345解析设从塔BB 1的底部看塔AA 1顶部的仰角为α,则AA 1=60tan α,BB 1=60tan 2α.∵从两塔底部连线中点C 分别看两塔顶部的仰角互为余角,∴△A 1AC ∽△CBB 1,∴AA 130=30BB 1,∴AA 1·BB 1=900,∴3600tan αtan 2α=900,∴tan α=13,tan 2α=34,则BB 1=60tan 2α=45.14.如图,据气象部门预报,在距离某码头南偏东45°方向600km 处的热带风暴中心正以20km/h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响,求该码头将受到热带风暴影响的时间.解记现在热带风暴中心的位置为点A ,t 小时后热带风暴中心到达B 点位置,在△OAB 中,OA =600,AB =20t ,∠OAB =45°,根据余弦定理得OB 2=6002+400t 2-2×600×20t ×22,令OB 2≤4502,即4t 2-1202t +1575≤0,解得302-152≤t ≤302+152,所以该码头将受到热带风暴影响的时间为302+152-302-152=15(h).15.某舰艇在A 处测得一艘遇险渔船在其北偏东40°的方向距离A 处10海里的C 处,此时得知,该渔船正沿南偏东80°的方向以每小时9海里的速度向一小岛靠近,若舰艇的时速为21海里,求舰艇追上渔船的最短时间.解如图所示,设舰艇追上渔船的最短时间是t 小时,经过t 小时渔船到达B 处,则舰艇也在此时到达B 处.在△ABC 中,∠ACB =40°+80°=120°,CA =10,CB =9t ,AB =21t ,由余弦定理得(21t )2=102+(9t )2-2×10×9t ×cos 120°,即36t 2-9t -10=0,解得t =23或t =-512(舍).所以=23.16.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C ,现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min.在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量得cos A =1213,sin B =6365.(1)问乙出发多少min 后,乙在缆车上与甲的距离最短?(2)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内?解(1)∵cos A =1213,sin B =6365,∴sin A =513,cos B =-1665,∴sin C =sin(A +B )=45,在△ABC 中,由正弦定理AC sin B =AB sin C,得AB =1040m ,设乙出发t min 后,甲、乙距离为d ,由余弦定理得d 2=(130t )2+(100+50t )2-2×130t ×(100+50t )×1213,即d 2=200(37t 2-70t +50)=20037+62537.∵0≤t ≤1040130,即0≤t ≤8,∴当t =3537时,即乙出发3537min 后,乙在缆车上与甲的距离最短.(2)∵sin A =513,∴由正弦定理,得BC sin A =AC sin B ,即BC 513=12606365,∴BC =500m.乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710m 才能到达C .设乙的步行速度为v m/min ,则|500v-71050|≤3,故-3≤500v -71050≤3,解得125043≤v ≤62514.故为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在125043,62514范围内.。

三角函数的极限计算与应用

三角函数的极限计算与应用

三角函数的极限计算与应用在数学中,三角函数是我们研究三角形和周期性现象的基础工具。

在求解实际问题时,我们常常需要计算三角函数的极限以及应用它们来解决各种数学和物理问题。

本文将探讨三角函数的极限计算方法及其在实践中的应用。

一、三角函数的极限计算1. 正弦函数的极限计算正弦函数的定义域是整个实数集,它具有周期性且在[-1, 1]之间连续变化。

根据正弦函数的定义,我们可以得到以下极限计算公式:lim (x → 0) sin(x) / x = 1lim (x → ∞) sin(x) = 不存在2. 余弦函数的极限计算余弦函数的定义域是整个实数集,它也具有周期性且在[-1, 1]之间连续变化。

根据余弦函数的定义,我们可以得到以下极限计算公式:lim (x → 0) (cos(x) - 1) / x = 0lim (x → ∞) cos(x) = 不存在3. 正切函数的极限计算正切函数的定义域是整个实数集,它的值域为(-∞, ∞)。

根据正切函数的定义,我们可以得到以下极限计算公式:lim (x → 0) tan(x) / x = 1lim (x → ∞) tan(x) = 不存在以上是常见的三角函数极限计算公式,通过这些公式,我们可以在求解数学问题时对三角函数进行有效的近似计算。

二、三角函数的应用1. 三角函数在三角形解析几何中的应用三角函数在解析几何中扮演着重要的角色。

例如,通过正弦定理和余弦定理,可以求解任意三角形的边长和角度。

另外,在解析几何中,我们还常常使用正弦函数来描述点在坐标轴上的投影等问题。

2. 三角函数在物理学中的应用三角函数在物理学中也有广泛的应用。

例如,振动现象的描述涉及正弦函数的周期性和振幅;声波的传播速度和频率之间的关系可通过三角函数进行描述;光的干涉和衍射现象也可以使用三角函数进行分析。

3. 三角函数在信号处理中的应用在数字信号处理中,我们经常使用傅里叶变换和快速傅里叶变换来分析和处理信号。

第五章 第七节 解三角形的实际应用 课件(共43张PPT)

第五章 第七节 解三角形的实际应用  课件(共43张PPT)
易知∠CAB=10°,∠ACB=10°,所以 AB=BC=10 米, 在 Rt△AOB 中,BO=10sin 70°≈9.4(米).故选 C.]
本题以“珠穆朗玛峰”为背景设计试题,考查解三角形等 知识,体现了智育的素养导向.破解此类题的关键是准确获取有效信息,合 理运用获取到的信息画出草图,把所求的问题转化到几何图形中,通过合理 运用平面几何相关知识进行求解.
2 2

所以 θ=π4 ,∠ABC=3θ=34π ,
所以 AC2=16+8-2×4×2
2
×(-
2 2
)=40,
所以 AC=2 10 .]
平面几何中解三角形问题的求解思路 (1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用 正弦、余弦定理求解. (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.
C [函数 f(x)的定义域为 R.
A.50 2 m C.25 2 m
B.50 3 m D.252 2 m
A
[由正弦定理得sin
AB ∠ACB
= sin
AC ∠CBA
,又由题意得∠CBA=30°,
所以 AB=ACsinsin∠∠CBAACB
50× =1
2 2
=50
2
(m).]
2
4.如图所示,已知两座灯塔 A 和 B 与海洋观察站 C 的距离相等,灯塔 A 在观察站 C 的北偏东 40°,灯塔 B 在观察站 C 的南偏东 60°,则灯塔 A 在灯塔 B 的 ________方向.
解析: 如图,设辑私艇在 C 处截住走私船,D 为岛 A 正南方向上一点, 缉私艇的速度为 x 海里/小时,结合题意知 BC=0.5x,AC =5,∠BAC=180°-38°-22°=120°,

高考数学之三角函数和解三角形

高考数学之三角函数和解三角形

高考数学之三角函数和解三角形【知识网络构建】【重点知识整合】一、三角恒等变换与三角函数1.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22sincos 1αα+=;(3)切弦互化:弦的齐次式可化为切; (4)角的替换:2()()ααβαβ=++-, ()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos 2αα+=21cos 2sin2αα-=tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):22sin cos sin()(tan )ba b a b aαααϕϕ+=++=.二、解三角形1.正弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).2.余弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc,另外两个同样.3.面积公式已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则 (1)三角形的面积等于底乘以高的12;(2)S =12ab sin C =12bc sin A =12ac sin B =abc 4R (其中R 为该三角形外接圆的半径);(3)若三角形内切圆的半径是r ,则三角形的面积S =12(a +b +c )r ;(4)若p =a +b +c2,则三角形的面积S =p p -a p -b p -c .【高频考点突破】【变式探究】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35D.45【方法技巧】1.用三角函数定义求三角函数值有时反而更简单;2.同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式的应用条件. 考点二 三角函数的性质 三角函数的单调区间:y =sin x 的递增区间是[2k π-π2,2k π+π2](k ∈Z),递减区间是[2k π+π2,2k π+3π2](k ∈Z); y =cos x 的递增区间是[2k π-π,2k π](k ∈Z),递减区间是[2k π,2k π+π](k ∈Z);y =tan x 的递增区间是(k π-π2,k π+π2)(k ∈Z).例2、已知a =(sin x ,-cos x ),b =(cos x ,3cos x ),函数f (x )=a ·b +32. (1)求f (x )的最小正周期,并求其图像对称中心的坐标; (2)当0≤x ≤π2时,求函数f (x )的值域.【变式探究】已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z) B.[k π,k π+π2](k ∈Z)C .[k π+π6,k π+2π3](k ∈Z) D.[k π-π2,k π](k ∈Z)考点三 函数y =A sin(ωx +φ)的图像及变换 函数y =A sin(ωx +φ)的图像: (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图像变换:y =sin x ―――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)y =sin(ωx +φ)――――――――――→纵坐标变为原来的AA >0倍横坐标不变y =A sin(ωx +φ).例3、已知函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图像经过点(0,1),如图所示.(1)求f 1(x )的表达式;(2)将函数f 1(x )的图像向右平移π4个单位长度得到函数f 2(x )的图像,求y =f 1(x )+f 2(x )的最大值,并求出此时自变量x 的集合.【变式探究】已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图,则f (π24)= ( )A .2+ 3 B. 3 C.33D .2- 3考点四 三角变换及求值 三角函数求值有以下类型:(1)“给角求值”,即在不查表的前提下,通过三角恒等变 换求三角函数式的值;(2)“给值求值”,即给出一些三角函数值,求与之有关的 其他三角函数式的值;(3)“给值求角”,即给出三角函数值,求符合条件的角. 例1、已知函数f (x )=2sin(13x -π6),x ∈R.(1)求f (0)的值;(2)设α,β∈[0,π2],f (3α+π2)=1013,f (3β+2π)=65.求sin(α+β)的值.【变式探究】已知:cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β的值为________. 考点五 正、余弦定理的应用【变式探究】△ABC 中,B =120°,AC =7,AB =5, 则△ABC 的面积为________. 考点 六 解三角形与实际应用问题在实际生活中,测量底部不可到达的建筑物的高度、不可到达的两点的距离及航行中的方位角等问题,都可通过解三角形解决. 例6、如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?【难点探究】难点一 简单的三角恒等变换例1 、(1)若0<α<π2,-π2<β<0,cos (π4+α)=13,cos (π4-β2)=33,则cos (α+β2)=( )A.33 B .-33 C.539 D .-69(2)已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 【点评】 在进行三角恒等变换时,一个重要的技巧是进行角的变换,把求解的角用已知角表示出来,把求解的角的三角函数使用已知的三角函数表示出来,常见的角的变换有,把π2+2α变换成2⎝⎛⎭⎫π4+α,α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·α+β2,α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β等;在进行三角函数化简或者求值时,如果求解目标较为复杂,则首先要变换这个求解目标,使之简化,以便看出如何使用已知条件.难点二 三角函数的图象例2 (1)已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝⎛⎭⎫π24=________.(2)要得到函数y =cos (2x +π3)的图象,只需将函数y =12sin2x +32cos2x 的图象( )A .向左平移π8个单位 B .向右平移π2个单位 C .向右平移π3个单位 D .向左平移π4个单位难点三 三角函数的性质例3已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z)B.⎣⎡⎦⎤k π,k π+π2(k ∈Z)C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z)D.⎣⎡⎦⎤k π-π2,k π(k ∈Z)【规律方法】1.根据三角函数的图象求解函数的解析式时,要注意从图象提供的信息确定三角函数的性质,如最小正周期、最值,首先确定函数解析式中的部分系数,再根据函数图象上的特殊点的坐标适合函数的解析式确定解析式中剩余的字母的值,同时要注意解析式中各个字母的范围.2.进行三角函数的图象变换时,要注意无论进行的什么样的变换都是变换的变量本身,特别在平移变换中,如果这个变量的系数不是1,在进行变换时变量的系数也参与其中,如把函数y =sin ⎝⎛⎭⎫2x +π4的图象向左平移π12个单位时,得到的是函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π4=sin2x +5π12的图象. 3.解答三角函数的图象与性质类的试题,变换是其中的核心,把三角函数的解析式通过变换,化为正弦型、余弦型、正切型函数,然后再根据正弦函数、余弦函数和正切函数的性质进行研究.难点四 正余弦定理的应用例4 、(1)在△A BC 中,若b =5,∠B =π4,sin A =13,则a =________.(2)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A ⎝⎛⎦⎤0,π6 B.⎣⎡⎭⎫π6,π C.⎝⎛⎦⎤0,π3 D.⎣⎡⎭⎫π3,π 难点五 函数的图象的分析判断例5 、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab.(1)求sin C sin A 的值;(2)若cos B =14,b =2,求△ABC 的面积S .【点评】 本题的难点是变换cos A -2cos C cos B =2c -a b 时,变换方向的选取,即是把角的函数转化为边的关系,还是把边转化为角的三角函数,从已知式的结构上看,把其中三个内角的余弦转化为边的关系是较为复杂的,而根据正弦定理把其中边的关系转化为角的正弦,则是较为简单的,在含有三角形内角的三角函数和边的混合关系式中要注意变换方向的选择.正弦定理、余弦定理、三角形面积公式本身就是一个方程,在解三角形的试题中方程思想是主要的数学思想方法,要注意从方程的角度出发分析问题.探究点六 解三角形的实际应用例6、如图6-1,渔政船甲、乙同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70 km 的C 处,渔政船乙在渔政船甲的南偏西20°方向的B 处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C 处沿直线AC 航行前去救援,渔政船乙仍留在B 处执行任务,渔政船甲航行30 km 到达D 处时,收到新的指令另有重要任务必须执行,于是立即通知在B 处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC 航行前去救援渔船丙),此时B 、D 两处相距42 km ,问渔政船乙要航行多少千米才能到达渔船丙所在的位置C 处实施营救?45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船?并指出巡逻艇航行方向.图6-2【规律技巧】1.使用正弦定理能够解的三角形有两类,一类是已知两边及其中一边的对角,一类已知一边和两个内角(实际就是已知三个内角),其中第一个类型也可以根据余弦定理列出方程求出第三边,再求内角.在使用正弦定理求三角形内角时,要注意解的可能情况,判断解的情况的基本依据是三角形中大边对大角.2.当已知三角形的两边和其中一个边的对角求解第三边时,可以使用正弦定理、也可以使用余弦定理,使用余弦定理就是根据余弦定理本身是一个方程,这个方程联系着三角形的三个边和其中的一个内角.3.正弦定理揭示了三角形三边和其对角正弦的比例关系,余弦定理揭示了三角形的三边和其中一个内角的余弦之间的关系. 【历届高考真题】 【2012年高考试题】 一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320xx -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )33.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010B 、1010C 、510D 、5157.【2012高考真题辽宁理7】已知sin cos 2αα-=,α∈(0,π),则tan α=(A) -1 (B) 22-(C)22(D) 18.【2012高考真题江西理4】若tan θ+1tan θ=4,则sin2θ=A .15 B. 14 C. 13 D. 129.【2012高考真题湖南理6】函数f (x )=sinx-c os(x+6π)的值域为 A .3332,32]10.【2012高考真题上海理16】在ABC ∆中,若C B A 222sin sin sin<+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定13.【2012高考真题全国卷理7】已知α为第二象限角,33cos sin =+αα,则cos2α=(A) 5-3 (B )5-9 (C)59(D)53二、填空题14.【2012高考真题湖南理15】函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,332),则ω= ; (2)若在曲线段¼ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 .17.【2012高考真题安徽理15】设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333ab c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2ab c a b +<;则3C π>18.【2012高考真题福建理13】已知△ABC 得三边长成公比为2的等比数列,则其最大角的余弦值为_________.19.【2012高考真题重庆理13】设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且53cos =A ,135cos =B ,3=b 则c = 20.【2012高考真题上海理4】若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。

三角函数与解三角形题型

三角函数与解三角形题型

三角函数和解三角形是高中数学中的重要内容,它们在实际中应用广泛,如测量高度、角度、距离等。

下面简单介绍一些常见的三角函数应用和解三角形的题型。

1. 三角函数应用题型
(1) 根据两边求角/根据一边和一个角求另一个角/根据两角求第三角
这类题目通常需要用到三角函数的反函数和三角函数关系式,根据给定的两边或一个边和一个角或两个角,求第三个角的大小。

需要注意使用对应的三角函数和反函数,或者利用正弦定理和余弦定理。

(2) 根据两角求角平分线/垂直平分线等
这类题目通常需要应用三角函数、对称性质等知识,利用角平分线定理和垂直平分线定理求解。

(3) 根据角度求高度/距离等
这类题目常常需要使用正弦函数、余弦函数和三角函数关系
式,得出高度或距离与角度之间的关系,然后求解。

2. 解三角形题型
(1) 已知三角形其中两边和一个角
可以使用余弦定理和正弦定理,根据所求角的三角函数求解。

(2) 已知三角形的三边
可以使用余弦定理计算出角度,然后使用正弦定理求出其他角度或者用正弦函数/余弦函数计算出所求角对应的边。

(3) 已知三角形其中一个角和两边之比
可以用正弦函数或余弦函数计算出所求角的正弦值/余弦值,并根据三角函数关系式求解其他角度或边长。

在应用三角函数和解三角形的题型中,需要注意应用公式的正确性和相应角度的变化,考虑各种情况的可能性,带上单位,不要忘记计算结果的合理性等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微点突破 三角函数、解三角形中的实际应用问题
【例 】 (2013·江苏卷)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游
客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35. (1)求索道AB 的长;
(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
解 (1)在△ABC 中,因为cos A =1213,cos C =3
5,
所以sin A =513,sin C =4
5.
从而sin B =sin[π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C =513×
35+1213×45=63
65. 由正弦定理AB sin C =AC
sin B ,得
AB =AC sin B ·sin C =1 2606365×
45=1 040(m). 所以索道AB 的长为1 040 m.
(2)设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得
d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×
12
13 =200(37t 2-70t +50),
因0≤t ≤1 040
130,即0≤t ≤8,
故当t =35
37(min)时,甲、乙两游客距离最短
.
(3)由正弦定理BC sin A =AC
sin B ,
得BC =AC sin B ·sin A =1 2606365
×
5
13=500(m).
乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设乙步行的速度为v m/min ,
由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,
所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎢⎡⎦
⎥⎤
1 25043,62514(单位:m/min)范围内. 探究提高 与解三角形有关的应用题常见两种情形:一是实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;二是实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需要作出这些三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.
【训练1】 如图,现有一个以∠AOB 为圆心角、湖岸OA 与OB 为半径的扇形湖面AOB .现欲在AB ︵上取不同于A ,B 的点C ,用渔网沿着AC ︵(AC ︵
在扇形AOB 的AB ︵
上)、半径OC 和线段CD (其中CD ∥OA )在该扇形湖面内隔出两个养殖区域——养殖区域Ⅰ和养殖区域Ⅱ.若OA =1 km ,∠AOB =π
3,∠AOC =θ
.
(1)用θ表示CD 的长度;
(2)求所需渔网长度(即图中AC ︵
、半径OC 和线段CD 长度之和)的取值范围. 解 (1)由CD ∥OA ,∠AOB =π
3,∠AOC =θ, 得∠OCD =θ,∠ODC =2π3,∠COD =π
3-θ. 在△OCD 中,由正弦定理, 得CD =233sin ⎝ ⎛⎭⎪⎫π3-θ,θ∈⎝ ⎛

⎪⎫0,π3.
(2)设渔网的长度为f (θ).
由(1)可知,f (θ)=θ+1+233sin ⎝ ⎛⎭
⎪⎫
π3-θ,
所以f ′(θ)=1-233cos ⎝ ⎛⎭
⎪⎫
π3-θ,
因为θ∈⎝ ⎛⎭⎪⎫0,π3,所以π3-θ∈⎝ ⎛

⎪⎫0,π3.
令f ′(θ)=0,得cos ⎝ ⎛⎭
⎪⎫
π3-θ=32,
所以π3-θ=π6,即θ=π6. 列表如下:
且f (0)=2,f ⎝ ⎛⎭⎪⎫π6=π+6+236,f
⎝ ⎛⎭⎪⎫π3=π
3+1, 所以f (θ)∈⎝ ⎛⎦
⎥⎤2,
π+6+236. 故所需渔网长度的取值范围是⎝ ⎛⎦
⎥⎤
2,
π+6+236(单位:km). 【训练2】 (2017·徐、宿、连、淮摸底)某城市有一直角梯形绿地ABCD ,其中∠ABC =∠BAD =90°,AD =DC =2 km ,BC =1 km.现过边界CD 上的点E 处铺设一条直的灌溉水管EF ,将绿地分成面积相等的两部分.
(1)如图1,若E 为CD 的中点,F 在边界AB 上,求灌溉水管EF 的长度; (2)如图2,若F 在边界AD 上,求灌溉水管EF 的最短长度. 解 (1)因为AD =DC =2,BC =1,∠ABC =∠BAD =90°,
所以AB = 3.
如图1,取AB 的中点G ,连接EG ,则EG =3
2,
则四边形BCEF 的面积为
1
2S 梯形ABCD =S 梯形BCEG +S △EFG ,
即12×12×3×(1+2)=12×32×⎝ ⎛⎭⎪⎫1+32+12×GF ×32,解得GF =
36, 所以EF =EG 2
+GF 2
=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭
⎪⎫362 =21
3(km).
答:灌溉水管EF 的长度为21
3 km. (2)如图2,连接AC ,设DE =a ,DF =b ,
图2
在△ABC 中,CA =12+(3)2=2,所以在△ADC 中, AD =DC =CA =2, 所以∠ADC =60°, 所以△DEF 的面积为S △DEF =12ab sin 60°=3
4ab ,
又S 梯形ABCD =12×3×(1+2)=33
2,
所以S△DEF=1
2S梯形ABCD,即
3
4ab=
33
4,即ab=3.
在△DEF中,由余弦定理,
得EF=a2+b2-ab≥ab=3,
当且仅当a=b=3时,取等号.
故灌溉水管EF的最短长度为 3 km. 答:灌溉水管EF的最短长度为 3 km.。

相关文档
最新文档