数据挖掘实验报告-聚类分析

合集下载

聚类分析实验报告

聚类分析实验报告

聚类分析实验报告一、实验目的:通过聚类分析方法,对给定的数据进行聚类,并分析聚类结果,探索数据之间的关系和规律。

二、实验原理:聚类分析是一种无监督学习方法,将具有相似特征的数据样本归为同一类别。

聚类分析的基本思想是在特征空间中找到一组聚类中心,使得每个样本距离其所属聚类中心最近,同时使得不同聚类之间的距离最大。

聚类分析的主要步骤有:数据预处理、选择聚类算法、确定聚类数目、聚类过程和聚类结果评价等。

三、实验步骤:1.数据预处理:将原始数据进行去噪、异常值处理、缺失值处理等,确保数据的准确性和一致性。

2.选择聚类算法:根据实际情况选择合适的聚类算法,常用的聚类算法有K均值算法、层次聚类算法、DBSCAN算法等。

3.确定聚类数目:根据数据的特征和实际需求,确定合适的聚类数目。

4.聚类过程:根据选定的聚类算法和聚类数目进行聚类过程,得到最终的聚类结果。

5. 聚类结果评价:通过评价指标(如轮廓系数、Davies-Bouldin指数等),对聚类结果进行评价,判断聚类效果的好坏。

四、实验结果:根据给定的数据集,我们选用K均值算法进行聚类分析。

首先,根据数据特点和需求,我们确定聚类数目为3、然后,进行数据预处理,包括去噪、异常值处理和缺失值处理。

接下来,根据K均值算法进行聚类过程,得到聚类结果如下:聚类1:{样本1,样本2,样本3}聚类2:{样本4,样本5,样本6}聚类3:{样本7,样本8最后,我们使用轮廓系数对聚类结果进行评价,得到轮廓系数为0.8,说明聚类效果较好。

五、实验分析和总结:通过本次实验,我们利用聚类分析方法对给定的数据进行了聚类,并进行了聚类结果的评价。

实验结果显示,选用K均值算法进行聚类分析,得到了较好的聚类效果。

实验中还发现,数据预处理对聚类分析结果具有重要影响,必要的数据清洗和处理工作是确保聚类结果准确性的关键。

此外,聚类数目的选择也是影响聚类结果的重要因素,过多或过少的聚类数目都会造成聚类效果的下降。

生物数据挖掘聚类分析实验报告

生物数据挖掘聚类分析实验报告

实验三 聚类分析一、实验目的1. 了解典型聚类算法2. 熟悉聚类分析算法的思路与步骤3. 掌握运用Matlab 对数据集做聚类分析的方法二、实验内容1. 运用Matlab 对数据集做K 均值聚类分析2. 运用Matlab 对数据集做基于密度的聚类分析三、实验步骤1.写出对聚类算法的理解聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。

聚类(Cluster )分析是由若干模式(Pattern )组成的,通常,模式是一个度量(Measurement )的向量,或者是多维空间中的一个点。

聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。

在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。

在进行聚类分析时,出于不同的目的和要求,可以选择不同的统计量和聚类方法。

2.写出K-means 算法步骤通过迭代把数据对象划分到不同的簇中,以求目标函数最大化,从而使生成的簇尽可能地紧凑和独立。

具体步骤如下:(1)首先,随机选取k 个对象作为初始的k 个簇的质心;(2)然后,将其余对象根据其与各个簇质心的距离分配到最近的簇;(3)再要求形成的簇的质心。

这个迭代重定位过程不断重复,直到目标函数最小化为止。

设p 表示数据对象,i c 表示 簇i C 的均值,通常采用的目标函数形式为平法误差准则函数: 21||||∑∑=∈-=k i C p i i c p E (欧几里得距离)3.写出DBSCAN 算法步骤与均值漂移聚类类似,DBSCAN 也是基于密度的聚类算法。

具体步骤如下:(1)首先确定半径r 和minPoints. 从一个没有被访问过的任意数据点开始,以这个点为中心,r为半径的圆内包含的点的数量是否大于或等于minPoints,如果大于或等于minPoints则改点被标记为central point,反之则会被标记为noise point。

聚类分析算法实验报告(3篇)

聚类分析算法实验报告(3篇)

第1篇一、实验背景聚类分析是数据挖掘中的一种重要技术,它将数据集划分成若干个类或簇,使得同一簇内的数据点具有较高的相似度,而不同簇之间的数据点则具有较低相似度。

本实验旨在通过实际操作,了解并掌握聚类分析的基本原理,并对比分析不同聚类算法的性能。

二、实验环境1. 操作系统:Windows 102. 软件环境:Python3.8、NumPy 1.19、Matplotlib 3.3.4、Scikit-learn0.24.03. 数据集:Iris数据集三、实验内容本实验主要对比分析以下聚类算法:1. K-means算法2. 聚类层次算法(Agglomerative Clustering)3. DBSCAN算法四、实验步骤1. K-means算法(1)导入Iris数据集,提取特征数据。

(2)使用Scikit-learn库中的KMeans类进行聚类,设置聚类数为3。

(3)计算聚类中心,并计算每个样本到聚类中心的距离。

(4)绘制聚类结果图。

2. 聚类层次算法(1)导入Iris数据集,提取特征数据。

(2)使用Scikit-learn库中的AgglomerativeClustering类进行聚类,设置链接方法为'ward'。

(3)计算聚类结果,并绘制树状图。

3. DBSCAN算法(1)导入Iris数据集,提取特征数据。

(2)使用Scikit-learn库中的DBSCAN类进行聚类,设置邻域半径为0.5,最小样本数为5。

(3)计算聚类结果,并绘制聚类结果图。

五、实验结果与分析1. K-means算法实验结果显示,K-means算法将Iris数据集划分为3个簇,每个簇包含3个样本。

从聚类结果图可以看出,K-means算法能够较好地将Iris数据集划分为3个簇,但存在一些噪声点。

2. 聚类层次算法聚类层次算法将Iris数据集划分为3个簇,与K-means算法的结果相同。

从树状图可以看出,聚类层次算法在聚类过程中形成了多个分支,说明该算法能够较好地处理不同簇之间的相似度。

数据挖掘聚类算法课程设计报告

数据挖掘聚类算法课程设计报告

数据挖掘聚类问题(Plants Data Set)实验报告1.数据源描述1.1数据特征本实验用到的是关于植物信息的数据集,其中包含了每一种植物(种类和科属)以及它们生长的地区。

数据集中总共有68个地区,主要分布在美国和加拿大。

一条数据(对应于文件中的一行)包含一种植物(或者某一科属)及其在上述68个地区中的分布情况。

可以这样理解,该数据集中每一条数据包含两部分内容,如下图所示。

图1 数据格式例如一条数据:abronia fragrans,az,co,ks,mt,ne,nm,nd,ok,sd,tx,ut,wa,wy。

其中abronia fragrans是植物名称(abronia是科属,fragrans是名称),从az一直到wy 是该植物的分布区域,采用缩写形式表示,如az代表的是美国Arizona州。

植物名称和分布地区用逗号隔开,各地区之间也用逗号隔开。

1.2任务要求聚类。

采用聚类算法根据某种特征对所给数据集进行聚类分析,对于聚类形成的簇要使得簇内数据对象之间的差异尽可能小,簇之间的差距尽可能大。

2.数据预处理2.1数据清理所给数据集中包含一些对聚类过程无用的冗余数据。

数据集中全部数据的组织结构是:先给出某一科属的植物及其所有分布地区,然后给出该科属下的具体植物及其分布地区。

例如:abelmoschus,ct,dc,fl,hi,il,ky,la,md,mi,ms,nc,sc,va,pr,viabelmoschus esculentus,ct,dc,fl,il,ky,la,md,mi,ms,nc,sc,va,pr,viabelmoschus moschatus,hi,pr上述数据中第行给出了所有属于abelmoschus这一科属的植物的分布地区,接下来的两行分别列出了属于abelmoschus科属的两种具体植物及其分布地区。

从中可以看出后两行给出的所有地区的并集正是第一行给出的地区集合。

在聚类过程中第行数据是无用的,因此要对其进行清理。

动态聚类分析实验报告(3篇)

动态聚类分析实验报告(3篇)

第1篇一、实验背景与目的随着大数据时代的到来,数据量呈爆炸式增长,如何有效地对海量数据进行聚类分析,提取有价值的信息,成为数据挖掘领域的重要课题。

动态聚类分析作为一种新兴的聚类方法,能够在数据不断变化的情况下,自动调整聚类结果,具有较强的适应性和实用性。

本次实验旨在通过动态聚类分析,对一组数据进行聚类,并验证其有效性和可靠性。

二、实验数据与工具1. 实验数据本次实验数据来源于某电商平台用户购买行为数据,包括用户ID、购买时间、商品类别、购买金额等字段。

数据量约为10万条,具有一定的代表性。

2. 实验工具本次实验采用Python编程语言,利用sklearn库中的KMeans、DBSCAN等动态聚类算法进行实验。

三、实验方法与步骤1. 数据预处理(1)数据清洗:删除缺失值、异常值等无效数据;(2)数据标准化:将不同量纲的数据进行标准化处理,消除数据之间的量纲差异;(3)特征选择:根据业务需求,选取对聚类结果影响较大的特征。

2. 动态聚类分析(1)KMeans聚类:设置聚类数量k,初始化聚类中心,计算每个样本与聚类中心的距离,将样本分配到最近的聚类中心所在的簇;迭代更新聚类中心和簇成员,直至满足停止条件;(2)DBSCAN聚类:设置邻域半径ε和最小样本数min_samples,遍历每个样本,计算其邻域内的样本数量,根据样本密度进行聚类;(3)动态聚类分析:设置时间窗口,以时间窗口内的数据为样本,重复上述聚类过程,观察聚类结果随时间的变化趋势。

四、实验结果与分析1. KMeans聚类结果通过KMeans聚类,将用户分为若干个簇,每个簇代表一组具有相似购买行为的用户。

从聚类结果来看,大部分簇的用户购买行为较为集中,具有一定的区分度。

2. DBSCAN聚类结果DBSCAN聚类结果与KMeans聚类结果相似,大部分簇的用户购买行为较为集中。

同时,DBSCAN聚类能够发现一些KMeans聚类无法发现的潜在簇,例如小众用户群体。

聚类分析实习报告

聚类分析实习报告

聚类分析实习报告(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、演讲发言、活动方案、条据文书、合同协议、心得体会、社交礼仪、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as report summaries, speeches, activity plans, written documents, contract agreements, personal experiences, social etiquette, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!聚类分析实习报告聚类分析是一种常用的数据分析技术,能够将一组相似的样本数据分为若干个不同的类别或簇。

聚类分析实习报告

聚类分析实习报告

实习报告:聚类分析实习一、实习背景与目的随着大数据时代的到来,数据分析已成为各个领域研究的重要手段。

聚类分析作为数据挖掘中的核心技术,越来越受到人们的关注。

本次实习旨在通过实际操作,掌握聚类分析的基本原理、方法和应用,提高自己的数据分析能力和实践能力。

二、实习内容与过程1. 实习前的准备在实习开始前,我首先查阅了相关文献资料,对聚类分析的基本概念、原理和方法有了初步了解。

同时,学习了Python编程,熟练掌握了Numpy、Pandas等数据处理库,为实习打下了基础。

2. 实习过程实习过程中,我选取了一个具有代表性的数据集进行聚类分析。

首先,我对数据进行了预处理,包括缺失值填充、异常值处理和数据标准化。

然后,我尝试了多种聚类算法,如K-means、DBSCAN和层次聚类等,并对每个算法进行了参数调优。

在聚类过程中,我关注了聚类结果的内部凝聚度和外部分离度,以评估聚类效果。

3. 实习成果通过实习,我成功地对数据集进行了聚类分析,得到了合理的聚类结果。

通过对聚类结果的分析,我发现数据集中的某些特征具有一定的分布规律,为后续的数据分析提供了有力支持。

同时,我掌握了不同聚类算法的特点和适用场景,提高了自己的数据分析能力。

三、实习收获与反思1. 实习收获(1)掌握了聚类分析的基本原理、方法和应用。

(2)学会了使用Python编程进行数据处理和聚类分析。

(3)提高了自己的数据分析能力和实践能力。

2. 实习反思(1)在实习过程中,我发现自己在数据预处理和特征选择方面存在不足,需要在今后的学习中加强这方面的能力。

(2)对于不同的聚类算法,需要深入了解其原理和特点,才能更好地应用于实际问题。

(3)在实习过程中,我意识到团队协作的重要性,今后需要加强团队合作能力。

四、总结通过本次聚类分析实习,我对聚类分析有了更深入的了解,提高了自己的数据分析能力和实践能力。

在今后的学习和工作中,我将继续努力,将所学知识应用于实际问题,为我国大数据产业的发展贡献自己的力量。

聚类分析实验报告

聚类分析实验报告

聚类分析实验报告
《聚类分析实验报告》
在数据挖掘和机器学习领域,聚类分析是一种常用的技术,用于将数据集中的对象分成具有相似特征的组。

通过聚类分析,我们可以发现数据集中隐藏的模式和结构,从而更好地理解数据并做出相应的决策。

在本次实验中,我们使用了一种名为K均值聚类的方法,对一个包含多个特征的数据集进行了聚类分析。

我们首先对数据进行了预处理,包括缺失值处理、标准化和特征选择等步骤,以确保数据的质量和可靠性。

接着,我们选择了合适的K值(聚类的数量),并利用K均值算法对数据进行了聚类。

在实验过程中,我们发现K均值聚类方法能够有效地将数据集中的对象分成具有相似特征的组,从而形成了清晰的聚类结构。

通过对聚类结果的分析,我们发现不同的聚类中心代表了不同的数据模式,这有助于我们更好地理解数据集中的内在规律和特点。

此外,我们还对聚类结果进行了评估和验证,包括使用轮廓系数和肘部法则等方法来评价聚类的质量和效果。

通过这些评估方法,我们得出了实验结果的可靠性和有效性,证明了K均值聚类在本次实验中的良好表现。

总的来说,本次实验通过聚类分析方法对数据集进行了深入的挖掘和分析,得到了有意义的聚类结果,并验证了聚类的有效性和可靠性。

通过这一实验,我们对聚类分析方法有了更深入的理解,也为今后在实际应用中更好地利用聚类分析提供了有力支持。

路径聚类分析实验报告(3篇)

路径聚类分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过路径聚类分析,深入理解聚类分析的基本原理和应用,掌握路径聚类算法的实现过程,并学会如何使用聚类分析解决实际问题。

通过实验,我们希望能够提高对数据挖掘和模式识别方法的理解,以及提高在实际应用中处理复杂数据的能力。

二、实验背景聚类分析是数据挖掘中的一个重要技术,它将相似的数据对象归为一类,从而发现数据中的隐藏模式和结构。

路径聚类分析是聚类分析的一种,它主要针对序列数据,如时间序列、空间轨迹等,通过分析数据对象之间的顺序关系来进行聚类。

三、实验内容1. 实验环境与工具- 操作系统:Windows 10- 数据库:MySQL- 聚类分析工具:Python(使用Scikit-learn库)2. 数据准备本次实验采用的数据集为某城市居民出行轨迹数据,包含居民出行的时间、地点、出行方式等信息。

数据集共有1000条记录,每条记录包含5个特征。

3. 实验步骤(1)数据预处理:对数据进行清洗、去重、缺失值处理等操作,确保数据质量。

(2)特征工程:对原始特征进行转换和提取,如将时间转换为时间戳、计算出行距离等。

(3)路径聚类分析:使用Scikit-learn库中的KMeans聚类算法对数据进行路径聚类分析。

(4)结果分析与可视化:对聚类结果进行分析,绘制聚类效果图,并评估聚类效果。

四、实验结果与分析1. 数据预处理经过数据预处理,数据集共包含1000条记录,每条记录包含5个特征。

预处理后的数据满足实验要求,为后续聚类分析提供了可靠的数据基础。

2. 特征工程通过特征工程,我们将时间转换为时间戳,并计算出行距离。

这样,特征维度从5个增加到7个,有助于提高聚类效果。

3. 路径聚类分析使用Scikit-learn库中的KMeans聚类算法对数据进行路径聚类分析,设置聚类数为5。

聚类过程耗时约1分钟。

4. 结果分析与可视化(1)聚类效果图通过聚类效果图可以看出,聚类效果较好,不同聚类之间存在明显的界限。

数据挖掘实验报告-聚类分析

数据挖掘实验报告-聚类分析

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载数据挖掘实验报告-聚类分析地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容数据挖掘实验报告(三)聚类分析姓名:李圣杰班级:计算机1304学号:1311610602一、实验目的掌握k-means聚类方法;通过自行编程,对三维空间内的点用k-means方法聚类。

二、实验设备PC一台,dev-c++5.11三、实验内容1.问题描述:立体空间三维点的聚类.说明:数据放在数据文件中(不得放在程序中),第一行是数据的个数,以后各行是各个点的x,y,z坐标。

2.设计要求读取文本文件数据,并用K-means方法输出聚类中心3. 需求分析k-means 算法接受输入量k;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

k-means算法的工作过程说明如下:首先从n个数据对象任意选择k个对象作为初始聚类中心,而对于所剩下的其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类。

然后,再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值),不断重复这一过程直到标准测度函数开始收敛为止。

一般都采用均方差作为标准测度函数,具体定义如下:(1)其中E为数据库中所有对象的均方差之和,p为代表对象的空间中的一个点,mi为聚类Ci的均值(p和mi均是多维的)。

公式(1)所示的聚类标准,旨在使所获得的k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

四、实验步骤Step 1.读取数据组,从N个数据对象任意选择k个对象作为初始聚类中心;Step 2.循环Step 3到Step 4直到每个聚类不再发生变化为止;Step 3.根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离,并根据最小距离重新对相应对象进行划分;Step 4.重新计算每个(有变化)聚类的均值(中心对象)。

聚类算法_实验报告

聚类算法_实验报告

一、实验背景随着大数据时代的到来,数据量呈爆炸式增长,如何有效地对海量数据进行处理和分析成为了一个重要课题。

聚类算法作为一种无监督学习方法,在数据挖掘、模式识别等领域有着广泛的应用。

本实验旨在通过实际操作,了解聚类算法的基本原理、实现方法及其在实际问题中的应用。

二、实验目的1. 理解聚类算法的基本原理和流程;2. 掌握K-means、层次聚类、DBSCAN等常用聚类算法;3. 分析不同聚类算法在处理不同类型数据时的优缺点;4. 学会使用聚类算法解决实际问题。

三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数据库:Pandas4. 机器学习库:Scikit-learn四、实验内容1. K-means聚类算法(1)数据准备本实验使用的数据集为Iris数据集,包含150个样本,每个样本有4个特征。

(2)算法实现使用Scikit-learn库中的KMeans类实现K-means聚类算法。

(3)结果分析通过绘制样本分布图,观察聚类效果。

根据聚类结果,将样本分为3类,与Iris数据集的类别标签进行对比。

2. 层次聚类算法(1)数据准备本实验使用的数据集为鸢尾花数据集,包含150个样本,每个样本有4个特征。

(2)算法实现使用Scikit-learn库中的AgglomerativeClustering类实现层次聚类算法。

(3)结果分析通过绘制树状图,观察聚类过程。

根据聚类结果,将样本分为3类,与鸢尾花数据集的类别标签进行对比。

3. DBSCAN聚类算法(1)数据准备本实验使用的数据集为Iris数据集。

(2)算法实现使用Scikit-learn库中的DBSCAN类实现DBSCAN聚类算法。

(3)结果分析通过绘制样本分布图,观察聚类效果。

根据聚类结果,将样本分为3类,与Iris 数据集的类别标签进行对比。

五、实验结果与分析1. K-means聚类算法K-means聚类算法在Iris数据集上取得了较好的聚类效果,将样本分为3类,与真实标签一致。

聚类分析中实验报告

聚类分析中实验报告

一、实验背景聚类分析是数据挖掘中的一种无监督学习方法,通过对数据集进行分组,将相似的数据对象归为同一类别。

本实验旨在通过实践,加深对聚类分析方法的理解,掌握常用的聚类算法及其应用。

二、实验目的1. 理解聚类分析的基本原理和方法。

2. 掌握常用的聚类算法,如K-means、层次聚类、密度聚类等。

3. 学习使用Python等工具进行聚类分析。

4. 分析实验结果,总结聚类分析方法在实际应用中的价值。

三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 数据库:SQLite 3.32.24. 聚类分析库:scikit-learn 0.24.2四、实验步骤1. 数据准备- 下载并导入实验数据集,本实验使用的是Iris数据集,包含150个样本和4个特征。

- 使用pandas库对数据进行预处理,包括缺失值处理、异常值处理等。

2. 聚类算法实现- 使用scikit-learn库实现K-means聚类算法。

- 使用scikit-learn库实现层次聚类算法。

- 使用scikit-learn库实现密度聚类算法(DBSCAN)。

3. 结果分析- 使用可视化工具(如matplotlib)展示聚类结果。

- 分析不同聚类算法的优缺点,对比聚类效果。

4. 实验总结- 总结实验过程中遇到的问题和解决方法。

- 分析聚类分析方法在实际应用中的价值。

五、实验结果与分析1. K-means聚类- 使用K-means聚类算法将数据集分为3个类别。

- 可视化结果显示,K-means聚类效果较好,将数据集分为3个明显的类别。

2. 层次聚类- 使用层次聚类算法将数据集分为3个类别。

- 可视化结果显示,层次聚类效果较好,将数据集分为3个类别,且与K-means聚类结果相似。

3. 密度聚类(DBSCAN)- 使用DBSCAN聚类算法将数据集分为3个类别。

- 可视化结果显示,DBSCAN聚类效果较好,将数据集分为3个类别,且与K-means聚类结果相似。

对数据进行聚类分析实验报告

对数据进行聚类分析实验报告

对数据进行聚类分析实验报告数据聚类分析实验报告摘要:本实验旨在通过对数据进行聚类分析,探索数据点之间的关系。

首先介绍了聚类分析的基本概念和方法,然后详细解释了实验设计和实施过程。

最后,给出了实验结果和结论,并提供了改进方法的建议。

1. 引言数据聚类分析是一种将相似的数据点自动分组的方法。

它在数据挖掘、模式识别、市场分析等领域有广泛应用。

本实验旨在通过对实际数据进行聚类分析,揭示数据中的隐藏模式和规律。

2. 实验设计与方法2.1 数据收集首先,我们收集了一份包含5000条数据的样本。

这些数据涵盖了顾客的消费金额、购买频率、地理位置等信息。

样本数据经过清洗和预处理,确保了数据的准确性和一致性。

2.2 聚类分析方法本实验采用了K-Means聚类算法进行数据分析。

K-Means算法是一种迭代的数据分组算法,通过计算数据点到聚类中心的距离,将数据点划分到K个不同的簇中。

2.3 实验步骤(1)数据预处理:对数据进行归一化和标准化处理,确保每个特征的权重相等。

(2)确定聚类数K:通过执行不同的聚类数,比较聚类结果的稳定性,选择合适的K值。

(3)初始化聚类中心:随机选取K个数据点作为初始聚类中心。

(4)迭代计算:计算数据点与聚类中心之间的距离,将数据点划分到距离最近的聚类中心所在的簇中。

更新聚类中心的位置。

(5)重复步骤(4),直到聚类过程收敛或达到最大迭代次数。

3. 实验结果与分析3.1 聚类数选择我们分别执行了K-Means算法的聚类过程,将聚类数从2增加到10,比较了每个聚类数对应的聚类结果。

通过对比样本内离差平方和(Within-Cluster Sum of Squares, WCSS)和轮廓系数(Silhouette Coefficient),我们选择了最合适的聚类数。

结果表明,当聚类数为4时,WCSS值达到最小,轮廓系数达到最大。

3.2 聚类结果展示根据选择的聚类数4,我们将数据点划分为四个不同的簇。

聚类分析实验报告结论(3篇)

聚类分析实验报告结论(3篇)

第1篇本次聚类分析实验旨在深入理解和掌握聚类分析方法,包括基于划分、层次和密度的聚类技术,并运用SQL Server、Weka、SPSS等工具进行实际操作。

通过实验,我们不仅验证了不同聚类算法的有效性,而且对数据理解、特征选择与预处理、算法选择、结果解释和评估等方面有了更为全面的认知。

以下是对本次实验的结论总结:一、实验目的与意义1. 理解聚类分析的基本概念:实验使我们明确了聚类分析的定义、目的和应用场景,认识到其在数据挖掘、市场分析、图像处理等领域的重要性。

2. 掌握聚类分析方法:通过实验,我们学习了K-means聚类、层次聚类等常用聚类算法,并了解了它们的原理、步骤和特点。

3. 提高数据挖掘能力:实验过程中,我们学会了如何利用工具进行数据预处理、特征选择和聚类分析,为后续的数据挖掘工作打下了基础。

二、实验结果分析1. K-means聚类:- 实验效果:K-means聚类算法在本次实验中表现出较好的聚类效果,尤其在处理规模较小、结构较为清晰的数据时,能快速得到较为满意的聚类结果。

- 特点:K-means聚类算法具有简单、高效的特点,但需要事先指定聚类数目,且对噪声数据敏感。

2. 层次聚类:- 实验效果:层次聚类算法在处理规模较大、结构复杂的数据时,能较好地发现数据中的层次关系,但聚类结果受距离度量方法的影响较大。

- 特点:层次聚类算法具有自适应性和可解释性,但计算复杂度较高,且聚类结果不易预测。

3. 密度聚类:- 实验效果:密度聚类算法在处理噪声数据、非均匀分布数据时,能较好地发现聚类结构,但对参数选择较为敏感。

- 特点:密度聚类算法具有较好的鲁棒性和可解释性,但计算复杂度较高。

三、实验结论1. 聚类算法的选择:根据实验结果,K-means聚类算法在处理规模较小、结构较为清晰的数据时,具有较好的聚类效果;层次聚类算法在处理规模较大、结构复杂的数据时,能较好地发现数据中的层次关系;密度聚类算法在处理噪声数据、非均匀分布数据时,能较好地发现聚类结构。

对数据进行聚类分析实验报告

对数据进行聚类分析实验报告

对数据进行聚类分析实验报告1. 研究背景数据聚类分析是一种将数据根据其相似性进行分组的方法。

通过聚类分析,可以将大量的数据分成相对较小的簇,每个簇内的数据彼此相似,而不同簇之间的数据相差较大。

这有助于我们对数据进行更深入的研究和理解,发现其中的规律和潜在的关联。

2. 实验目的本实验旨在使用聚类分析方法对给定的数据进行分类,以及对不同类别之间的差异和关联进行分析和研究。

通过实验,我们希望揭示数据之间的相似性和差异性,进一步了解其中的规律和潜在的模式。

3. 实验设计与方法3.1 数据收集本次实验使用了某电商网站的销售数据作为实验样本,共包含了1000个样本,每个样本包含了商品的多个属性,如价格、销量、评论数等。

3.2 预处理在进行聚类分析之前,我们首先对数据进行预处理。

预处理包括缺失值处理、数据标准化等步骤。

我们使用均值填充的方法处理缺失值,并对数据进行Z-score标准化,以保证不同属性之间的可比性。

3.3 聚类方法选择在本次实验中,我们选择了K-means算法作为聚类分析的方法。

K-means算法是一种常用且简单的聚类方法,适用于大规模数据集。

3.4 聚类分析过程在聚类分析过程中,我们首先需要确定聚类的簇数K。

为了选择最佳的簇数,我们采用了肘部法则和轮廓系数两种评估指标。

肘部法则通过绘制不同簇数下的聚类误差图来确定最佳簇数,而轮廓系数则通过计算样本与其所在簇以及其他簇的相似性来评估聚类效果。

4. 实验结果与分析4.1 最佳簇数选择通过运用肘部法则和轮廓系数,我们得出了最佳簇数K=4。

聚类误差图显示,随着簇数的增加,聚类误差逐渐减小,但减小速度逐渐减缓,呈现出一个明显的拐点。

轮廓系数分析也显示,在K=4时,轮廓系数达到最大值,说明聚类效果较好。

4.2 聚类结果分析基于最佳簇数K=4,我们进行了聚类分析,将样本分成了4个簇:A、B、C和D。

每个簇内的样本具有相似的属性特征,而不同簇之间的样本则具有较大的差异。

聚类分析实验报告体会(3篇)

聚类分析实验报告体会(3篇)

第1篇随着大数据时代的到来,数据挖掘技术在各个领域得到了广泛应用。

聚类分析作为数据挖掘中的关键技术之一,对于发现数据中的潜在结构具有重要意义。

近期,我参与了一次聚类分析实验,通过实践操作,我对聚类分析有了更深入的理解和体会。

一、实验背景与目的本次实验旨在通过实际操作,掌握聚类分析的基本原理和方法,并运用SQL Server、Weka、SPSS等工具进行聚类分析。

实验过程中,我们构建了合规的数据集,并针对不同的数据特点,选择了合适的聚类算法进行分析。

二、实验过程与步骤1. 数据准备:首先,我们需要收集和整理实验所需的数据。

数据来源可以是公开数据集,也可以是自行收集的数据。

在数据准备过程中,我们需要对数据进行清洗和预处理,以确保数据的准确性和完整性。

2. 数据探索:对数据集进行初步探索,了解数据的分布特征、数据量、数据类型等。

这一步骤有助于我们选择合适的聚类算法和数据预处理方法。

3. 建立数据模型:根据实验目的和数据特点,选择合适的聚类算法。

常见的聚类算法有K-means、层次聚类、密度聚类等。

在本实验中,我们选择了K-means算法进行聚类分析。

4. 聚类分析:使用所选算法对数据集进行聚类分析。

在实验过程中,我们需要调整聚类参数,如K值(聚类数量)、距离度量方法等,以获得最佳的聚类效果。

5. 结果分析:对聚类结果进行分析,包括分类关系图、分类剖面图、分类特征和分类对比等。

通过分析结果,我们可以了解数据的潜在结构和规律。

6. 实验总结:对实验过程和结果进行总结,反思数据理解、特征选择与预处理、算法选择、结果解释和评估等方面的问题。

三、实验体会与反思1. 数据理解的重要性:在进行聚类分析之前,我们需要对数据有深入的理解。

只有了解数据的背景、分布特征和潜在结构,才能选择合适的聚类算法和参数。

2. 特征选择与预处理:特征选择和预处理是聚类分析的重要步骤。

通过选择合适的特征和预处理方法,可以提高聚类效果和模型的可靠性。

分点聚类分析实验报告

分点聚类分析实验报告

一、实验背景聚类分析是数据挖掘中的一种重要技术,通过对数据进行分类,将相似度高的数据归为一类,从而揭示数据之间的关系。

本次实验旨在通过分点聚类分析方法,对一组数据进行分析,找出其中的规律和特征。

二、实验目的1. 了解分点聚类分析的基本原理和方法;2. 掌握分点聚类分析在数据挖掘中的应用;3. 通过实验,提高数据挖掘能力。

三、实验环境1. 操作系统:Windows 10;2. 编程语言:Python;3. 数据库:MySQL;4. 数据分析工具:Pandas、NumPy、Scikit-learn。

四、实验步骤1. 数据准备(1)收集数据:从网上下载一组数据,如鸢尾花数据集、波士顿房价数据集等;(2)数据预处理:对数据进行清洗、去重、缺失值处理等;(3)数据导入:将处理后的数据导入到MySQL数据库中。

2. 分点聚类分析(1)导入库:导入Pandas、NumPy、Scikit-learn等库;(2)读取数据:从数据库中读取数据,使用Pandas进行数据操作;(3)数据可视化:使用Matplotlib进行数据可视化,观察数据分布情况;(4)特征选择:根据数据分布和业务需求,选择合适的特征进行聚类分析;(5)模型训练:使用Scikit-learn中的KMeans聚类算法进行模型训练;(6)结果分析:分析聚类结果,评估模型效果。

五、实验结果与分析1. 数据可视化通过数据可视化,可以观察到数据的分布情况,如图1所示:图1:数据可视化从图中可以看出,数据分布较为均匀,没有明显的异常值。

2. 特征选择根据数据分布和业务需求,选择以下特征进行聚类分析:(1)特征1:表示数据的一个维度;(2)特征2:表示数据的另一个维度;(3)特征3:表示数据的第三个维度。

3. 模型训练使用Scikit-learn中的KMeans聚类算法进行模型训练,设置聚类数为3,如图2所示:图2:KMeans聚类结果从图中可以看出,数据被成功分为3个类别,类别之间相互独立。

聚类分析实习报告

聚类分析实习报告

一、前言随着大数据时代的到来,数据分析和处理在各个领域都发挥着越来越重要的作用。

聚类分析作为数据挖掘的一种常用方法,能够将相似的数据点划分为一组,有助于我们更好地理解数据结构和特征。

本实习报告主要介绍了我在实习期间对聚类分析的学习和应用。

二、实习目的1. 理解聚类分析的基本原理和方法;2. 掌握聚类分析在现实生活中的应用场景;3. 通过实际案例分析,提高解决实际问题的能力。

三、实习内容1. 聚类分析的基本原理聚类分析是一种无监督学习的方法,其目的是将数据集中的对象分为若干个簇,使得同一簇内的对象尽可能相似,不同簇之间的对象尽可能不同。

常见的聚类算法有K-means、层次聚类、DBSCAN等。

2. 聚类分析的应用场景聚类分析在多个领域都有广泛的应用,如市场细分、客户细分、异常检测、图像处理等。

3. 实际案例分析本次实习我们选取了电商平台用户数据进行分析,旨在通过聚类分析挖掘用户群体特征。

(1)数据预处理首先,对原始数据进行清洗,去除缺失值和异常值。

然后,对数据进行标准化处理,使其在相同的尺度上进行比较。

(2)选择合适的聚类算法考虑到电商平台用户数据的特性,我们选择了K-means算法进行聚类分析。

(3)聚类结果分析通过对聚类结果的观察和分析,我们发现可以将用户分为以下几类:1)高频购买用户:这类用户购买频率高,消费金额大,是电商平台的主要收入来源;2)偶尔购买用户:这类用户购买频率低,消费金额小,对电商平台的影响相对较小;3)潜在购买用户:这类用户购买频率较低,但消费金额较大,有较高的潜在价值。

四、实习收获1. 理解了聚类分析的基本原理和方法,掌握了K-means算法的应用;2. 学会了如何选择合适的聚类算法,并根据实际情况进行调整;3. 提高了数据预处理和分析的能力,为今后的工作奠定了基础。

五、总结通过本次实习,我对聚类分析有了更深入的了解,掌握了聚类分析在实际问题中的应用。

在今后的工作中,我会继续学习相关技术,提高自己的数据分析能力,为我国大数据产业的发展贡献自己的力量。

聚类_实验报告

聚类_实验报告

一、实验目的1. 理解K-均值聚类算法的基本原理和步骤。

2. 掌握K-均值聚类算法的编程实现。

3. 通过实际案例,验证K-均值聚类算法在数据挖掘中的有效性。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 数据集:使用UCI机器学习库中的鸢尾花数据集(Iris dataset)。

三、实验内容与方法1. K-均值聚类算法原理K-均值聚类算法是一种基于距离的聚类算法,其基本思想是将数据集中的数据点划分为K个簇,使得每个数据点与所属簇中心的距离最小。

算法步骤如下:(1)随机选择K个数据点作为初始聚类中心。

(2)将每个数据点分配到距离最近的聚类中心,形成K个簇。

(3)计算每个簇的中心,即该簇中所有数据点的均值。

(4)重复步骤(2)和(3),直到聚类中心不再发生显著变化。

2. 实验步骤(1)导入数据集```pythonfrom sklearn.datasets import load_irisiris = load_iris()X = iris.data```(2)选择K值根据数据集的特点和实际需求,选择合适的K值。

在本实验中,我们选择K=3,因为鸢尾花数据集包含3个类别。

(3)初始化聚类中心```pythonimport numpy as npdef initialize_centers(X, k):indices = np.random.choice(range(len(X)), k, replace=False)return X[indices]centers = initialize_centers(X, 3)```(4)计算距离```pythondef calculate_distance(x, center):return np.sqrt(np.sum((x - center) 2))```(5)分配数据点```pythondef assign_points(X, centers):clusters = [[] for _ in range(len(centers))]for x in X:distances = [calculate_distance(x, center) for center in centers]min_distance = min(distances)index = distances.index(min_distance)clusters[index].append(x)return clusters```(6)更新聚类中心```pythondef update_centers(clusters):new_centers = []for cluster in clusters:new_center = np.mean(cluster, axis=0) new_centers.append(new_center)return np.array(new_centers)```(7)迭代计算```pythondef k_means(X, k):centers = initialize_centers(X, k)while True:clusters = assign_points(X, centers) new_centers = update_centers(clusters) if np.allclose(new_centers, centers): breakcenters = new_centersreturn clusters, centers```(8)输出结果```pythonclusters, centers = k_means(X, 3)print("聚类结果:")for i, cluster in enumerate(clusters):print(f"簇{i}:{cluster}")print("聚类中心:")print(centers)```四、实验结果与分析1. 聚类结果根据实验结果,鸢尾花数据集被成功划分为3个簇,每个簇包含的数据点如下:簇0:[[5.1, 3.5, 1.4, 0.2], [4.9, 3.0, 1.4, 0.2], [4.7, 3.2, 1.3,0.2], ...]簇1:[[5.0, 3.6, 1.4, 0.2], [5.4, 3.9, 1.4, 0.2], [4.6, 3.4, 1.4,0.3], ...]簇2:[[5.2, 3.4, 1.4, 0.2], [4.4, 2.9, 1.4, 0.2], [4.9, 2.5, 1.4,0.2], ...]2. 聚类中心聚类中心如下:[[5.1, 3.5, 1.4, 0.2][5.2, 3.4, 1.4, 0.2][5.0, 3.6, 1.4, 0.2]]通过观察聚类结果和聚类中心,我们可以发现K-均值聚类算法在鸢尾花数据集上取得了较好的效果,成功地将数据划分为3个类别。

聚类分析法实训报告范文

聚类分析法实训报告范文

一、实训背景随着大数据时代的到来,数据分析在各个领域都扮演着越来越重要的角色。

聚类分析法作为一种重要的数据分析方法,能够帮助我们根据数据的特点和特征,将相似的数据归为一类,从而发现数据中隐藏的规律和模式。

为了提高我们对聚类分析法的理解和应用能力,我们进行了本次实训。

二、实训目标1. 掌握聚类分析的基本概念和原理。

2. 熟悉常用的聚类分析方法,如K-means聚类、层次聚类等。

3. 学会使用SPSS等软件进行聚类分析。

4. 通过实际案例,提高运用聚类分析法解决实际问题的能力。

三、实训内容1. 聚类分析的基本概念和原理聚类分析是将一组数据根据相似性或距离进行分组的过程。

通过聚类分析,我们可以将数据划分为若干个类别,使得同一类别内的数据尽可能相似,不同类别之间的数据尽可能不同。

聚类分析的基本原理如下:(1)相似性度量:选择合适的相似性度量方法,如欧氏距离、曼哈顿距离等。

(2)聚类算法:选择合适的聚类算法,如K-means聚类、层次聚类等。

(3)聚类结果评估:评估聚类结果的合理性,如轮廓系数、内聚度和分离度等。

2. 常用的聚类分析方法(1)K-means聚类:K-means聚类是一种迭代优化算法,通过迭代计算聚类中心,将数据点分配到最近的聚类中心所在的类别。

(2)层次聚类:层次聚类是一种自底向上的聚类方法,通过不断合并距离最近的类别,形成树状结构。

3. 软件应用本次实训使用SPSS软件进行聚类分析。

SPSS软件具有操作简便、功能强大等特点,能够满足我们对聚类分析的需求。

四、实训案例案例一:客户细分某银行希望通过聚类分析,将客户分为不同的类别,以便更好地进行客户管理和营销。

我们收集了以下数据:- 客户年龄- 客户收入- 客户储蓄量- 客户消费频率使用K-means聚类方法,将客户分为四个类别:- 高收入、高消费群体- 中等收入、中等消费群体- 低收入、低消费群体- 高收入、低消费群体通过聚类分析,银行可以根据不同客户群体的特点,制定相应的营销策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘实验报告(三)聚类分析姓名:李圣杰班级:计算机1304学号:1311610602一、实验目的1、掌握k-means 聚类方法;2、通过自行编程,对三维空间内的点用k-means 方法聚类。

二、实验设备PC 一台,dev-c++5.11三、实验内容1.问题描述:立体空间三维点的聚类.说明:数据放在数据文件中(不得放在程序中),第一行是数据的个数,以后各行是各个点的x,y,z 坐标。

2.设计要求读取文本文件数据,并用K-means 方法输出聚类中心 3. 需求分析k-means 算法接受输入量k ;然后将n 个数据对象划分为 k 个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

k-means 算法的工作过程说明如下:首先从n 个数据对象任意选择k 个对象作为初始聚类中心,而对于所剩下的其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类。

然后,再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值),不断重复这一过程直到标准测度函数开始收敛为止。

一般都采用均方差作为标准测度函数,具体定义如下:21∑∑=∈-=ki iiE C p m p (1)其中E 为数据库中所有对象的均方差之和,p 为代表对象的空间中的一个点,m i 为聚类C i 的均值(p 和m i 均是多维的)。

公式(1)所示的聚类标准,旨在使所获得的k 个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

四、实验步骤Step 1.读取数据组,从N 个数据对象任意选择k 个对象作为初始聚类中心; Step 2.循环Step 3到Step 4直到每个聚类不再发生变化为止; Step 3.根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离,并根据最小距离重新对相应对象进行划分;Step 4.重新计算每个(有变化)聚类的均值(中心对象)。

代码#include <stdlib.h> #include <stdio.h> #include <math.h> #include <time.h> int K,Vectordim,datasize,seed=1;float **data,**kmatrix;float *max_column,*min_column;/*创建维数可指定的二维动态数组array[m][n]*/float** array(int m, int n){float **p;int i;p=(float**)malloc(m*sizeof(float *));p[0]=(float*)malloc(m*n*sizeof(f loat));for(i=1; i<m; ++i) p[i]=p[i-1]+n;return p;}/*释放二维数组所占用的内存*/void freearray(float** p){free(*p); free(p);}void loaddata(){FILE * fp;int i,j;if((fp=fopen("data.txt","r"))==N ULL){printf("Cannot open file!\n");exit(0);}if(feof(fp)){printf("data.txt is a empty file!\n");fclose(fp);exit(0);} if(fscanf(fp,"K=%d,Vectordim=%d, datasize=%d\n",&K,&Vectordim,&da tasize)!=3){printf("load error!\n");fclose(fp);exit(0);}data=array(datasize,Vectordim+1) ;for(i=0;i<datasize;i++){data[i][Vectordim]=0;for(j=0;j<Vectordim;j++) {if(j==(Vectordim-1)) fscanf(fp,"%f\n",&data[i][j]);else fscanf(fp,"%f ",&data[i][j]);/*printf("%f",data[i][j]);*/}}}double euclid_distance(float a[],float b[],int dim){int i;double sum=0;for(i=0;i<dim;i++)sum+=pow(a[i]-b[i],2);return sqrt(sum);}void getmaxmin(float **a){int i,j;max_column=(float*)malloc(sizeof(float)*Vectordim );min_column=(float*)malloc(sizeof(float)*Vectordim );for(i=0;i<Vectordim;i++){max_column[i]=a[0][i];min_column[i]=a[0][i];}for(i=0;i<Vectordim;i++){for(j=1;j<datasize;j++){if(a[j][i]>max_column[i])max_col umn[i]=a[j][i];if(a[j][i]<min_column[i])min_col umn[i]=a[j][i];/*printf("max_column[%d]=%f, min_column[%d]=%f\n",i,max_column[i],i,min_column[i]);*/}}}void initializerandom(){seed++;srand((unsigned)time(NULL)+seed);}float randomreal(float Low, float High){return ((float) rand() / RAND_MAX) * (High-Low) + Low;}void K_locations_random(){int i,j;kmatrix=array(K,Vectordim+1); printf("Randomly the K-locations are initialized as follows:\n"); for(i=0;i<K;i++){initializerandom();kmatrix[i][Vectordim]=(float)(i+ 1);printf("location---%d: ",i+1); for(j=0;j<Vectordim;j++){kmatrix[i][j]=randomreal(min_co lumn[i],max_column[i]);printf("% f, ",kmatrix[i][j]);}printf("\n");}}int existemptyclass(){int *empty,i,j,ef;empty=(int*)malloc(sizeof(int)*K);for(i=0;i<K;i++) empty[i]=0;for(i=0;i<datasize;i++){for(j=1;j<=K;j++){if(j==(int)data[i][Vectordim]) empty[j-1]++;}}for(i=0,ef=0;i<K;i++)if(0==empty[i]) ef=1;return ef;}int cluster(){int i,j,flag,eflag=1;double closest,d;for(i=0;i<datasize;i++){closest=euclid_distance(data[i], kmatrix[0],Vectordim);flag=1;for(j=1;j<K;j++){d=euclid_distance(data[i],kmatrix[j],Vectordim);if(d<closest){closest=d;flag=j+1;}}if(data[i][Vectordim]!=(float )flag) {eflag=0;}data[i][Vectordim]=(float)fla g;}return eflag;}void update_k_location(){int i,j,number,m;float *temp;temp=(float*)malloc(sizeof(float)*(Vectordi m));for(m=0;m<Vectordim;m++)temp[m]=0;for(number=0,i=1;i<=K;i++){for(m=0;m<Vectordim;m++)temp[m]=0;for(j=0;j<datasize;j++){if(data[j][Vectordim]==i){number++;for(m=0;m<Vectordim;m++){temp[m]+=data[j][m];}}}for(m=0;m<Vectordim;m++){kmatrix[i-1][m]=temp[m]/numbe r;/*printf("%f\n",kmatrix[i-1][ m]);*/}}free(temp);}void output(){int i,j,m;/*for(m=0;m<datasize;m++)*//*printf("data[%d][Vectordim]=%f \n",m,data[m][Vectordim]);*/for(i=1;i<=K;i++){printf("The following data are clusterd as CLASS %d:\n",i); for(j=0;j<datasize;j++){if(data[j][Vectordim]==(float)i) {for(m=0;m<Vectordim;m++) printf("%f ",data[j][m]);printf("\n");}}}}void freememory(){freearray(kmatrix);freearray(data);free(max_column);free(min_column);}main(){int end_flag,empty_flag=0;long int time;loaddata();getmaxmin(data);while(1){K_locations_random();end_flag=cluster();if(existemptyclass()){printf("There is a empty class!\nSorestart!\n");continue;}time=0;while(!end_flag){if(time>1000)break;time++;update_k_location();end_flag=cluster();}empty_flag=existemptyclass();if(empty_flag) {printf("There is a empty class!\nSo restart!\n");continue;}else break;}printf("\nAfter %ld times calculation\n",time);output();freememory();}实验数据文件:data.txt用空格分开K=3,Vectordim=3,datasize=15-25 22.2 -35.3431.2 -14.4 2332.02 -23 24.44-25.35 36.3 -33.34-20.2 27.333 -28.22-15.66 17.33 -23.3326.3 -31.34 16.3-22.544 16.2 -32.2212.2 -15.22 22.11-41.241 25.232 -35.338-22.22 45.22 23.55-34.22 50.14 30.9815.23 -30.11 20.987-32.5 15.3 -25.22-38.97 20.11 33.22五、结果截图。

相关文档
最新文档