根的判别式,根与系数的关系

合集下载

4.根与系数的关系—初高中衔接课程

4.根与系数的关系—初高中衔接课程

根的判别式、根与系数的关系一、教学目标1、掌握一元二次方程)0(02≠=++a c bx ax 根的判别式。

2、掌握一元二次方程)0(02≠=++a c bx ax 根与系数的关系,即韦达定理。

二、重难点1、重点:根与系数的关系。

2、难点:根的判别式、根与系数的关系的综合应用,即解决带有字母参数的一元二次方程。

三、导入导学一元二次方程)0(02≠=++a c bx ax 一定有实数根吗?如何判断?如果有实数根,它的根与系数c b a ,,有怎样的关系?填空:1、根的情况:(1)0>∆,则_________________________________________.(2)0=∆, 则__________________________________________.(3)0<∆, 则_________________________________________.2、有实数根(0≥∆),=1x ________________,=2x ____________________3、韦达定理:=+21x x __________________,=21x x ___________________.4、一元二次方程)0(02≠=++a c bx ax 的变形:)0(02≠=++a c bx ax 0)(0212122=++-⇔=++⇔x x x x x x x x a c a b0))((21=--⇔x x x x三、议一议类型1 利用韦达定理求代数式的值例1 若21,x x 是方程01722=-+x x 两根,试求:(1) 2221x x + (2) 3231x x + (3) 21x x -例2 已知m,n 是方程0522=-+x x 的两根,求:代数式n m mn m ++-32的值类型2 韦达定理的逆应用例3 已知实数21,x x 满足821=+x x ,1221=x x ,以21,x x 为根的一个一元二次方程可以是_____________________________________.类型3 根的判别式、根与系数的关系的综合应用,即解决带有字母参数的一元二次方程。

根与系数的关系

根与系数的关系

判别式与根与系数的关系内容分析1.一元二次方程的根的判别式一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.2.一元二次方程的根与系数的关系(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么ab x x -=+21,a c x x =21 (2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=qx 1x 2=q〖考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( )(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:设x1,x2是方程2x2-6x+3=0的两根,则x12+x22的值是()(A)15 (B)12 (C)6 (D)33.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。

在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。

考查题型1.关于x的方程ax2-2x+1=0中,如果a<0,那么根的情况是()(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)不能确定2.设x1,x2是方程2x2-6x+3=0的两根,则x12+x22的值是()(A)15 (B)12 (C)6 (D)33.下列方程中,有两个相等的实数根的是()(A) 2y2+5=6y(B)x2+5=2 5 x(C) 3 x2- 2 x+2=0(D)3x2-2 6 x+1=04.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()(A)y2+5y-6=0 (B)y2+5y+6=0 (C)y2-5y+6=0 (D)y2-5y-6=05.如果x1,x2是两个不相等实数,且满足x12-2x1=1,x22-2x2=1,那么x 1·x 2等于( )(A )2 (B )-2 (C )1 (D )-16.如果一元二次方程x 2+4x +k 2=0有两个相等的实数根,那么k =7.如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有两个不相等的实数根,那么k 的取值范围是8.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=9.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m =考点训练:1、不解方程,判别下列方程根的情况:(1)x 2-x=5 (2)9x 2-6 2 +2=0 (3)x 2-x+2=02、当m= 时,方程x 2+mx+4=0有两个相等的实数根; 当m= 时,方程mx 2+4x+1=0有两个不相等的实数根;3、已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一个根是 ;若两根之和为-35 ,则m= ,这时方程的两个根为 .4、求证:方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系(一)一、知识归纳:1.一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式是:△=b 2-4ac ,当△>0时;△=0;△<0时方程分别有两个不相等的实数根;有两个相等的实数根;没有实数根。

2.判别式“△”的应用:1)由“△”的符号判定方程根的情况;2)由“△”的符号,证明方程的根可能出现的情况;3)由方程的情况通过“△”的符号,确定方程中参数字母的取值范围。

例1. 关于x 的方程(m -1)x 2-2(m -3)x +m +2=0有实数根...,求m 的取值范围。

解:当m -1≠0时, 该方程为关于x 一元二次方程∵原方程有实数根 ∴0≥∆即Δ=[-2(m -3)]2-4(m -1)(m +2)=-28m +440≥即711≤m ,当m-1=0时,该方程变为4x+3=0,它是一元一次方程,有实数根34x =-练习:1.关于x 的方程m 2x 2+(2m+1)x+1=0有两个不相等的实数.........根.,求m 。

(注意二次项系数不为零)2.已知a ,b ,c 为一个三角形的三边,求证方程b 2x 2+(b 2+c 2-a 2)x+c 2=0无实数根。

3.已知方程x 2+2x=k-1没有实数根,求证方程x 2+kx=1-2k 必定有两个不相等的实数根。

4.已知x 1,x 2是关于x 的方程x 2+m 2x+n=0的两个实数根,y 1,y 2是关于y 的方程y 2+my+7=0两个实数根,且x 1-y 1=2, x 2-y 2=2,求m ,n 的值。

3.一般地,对于关于x 的一元二次方程ax 2+bx +c =0(a ≠0) 用求根公式求出它的两个根x 1、x 2 ,由一元二次方程ax 2+bx +c =0的求根公式知x 1=a ac b b 242-+-,x 2=aacb b 242---能得出以下结果:x 1+x 2= 即:两根之和等于x 1•x 2= 即:两根之积等于12x x +=a ac b b 242-+-+aacb b 242---=a acb b ac b b 24422----+- =12.x x =a ac b b 242-+-×aac b b 242---=2224)4)(4(a ac b b ac b b ----+- =2224)()(a -=由此得出,一元二次方程的根与系数之间存在得关系为 x 1+x 2=a b -, x 1x 2=ac 如果把方程ax 2+bx +c =0(a ≠0)的二次项系数化为1,则方程变形为 x 2+ x +ac=0(a ≠0), 则以x 1,x 2为根的一元二次方程(二次项系数为1)是: x 2-( )x +x 1x 2=0(a ≠0)3.一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2它的根与系数的关系是:例1:已知方程5x 2+k x -6=0的一个根为2,求它的另一个根及k 的值; 解:设方程的另一个根是x 1,那么5621-=x (为什么?)∴ x 1= 又x 1+2=5k-(为什么?)∴ k= 例2:利用根与系数的关系,求一元二次方程2x 2+3x -1=0的两个根的(1)平方和 (2)倒数和 解:设方程的两个根分别为x 1,x 2,那么x 1+x 2= , x 1x 2=(1)∵ (x 1+x 2)2= x 12+2 +x 22 ∴ x 12+x 22=(x 1+x 2)2-2 = (2)==+212111x x x x例3:求一个一元二次方程,使它的两个根是212313,- 解:所求的方程是x 2-(212313+-)x +( )212⋅=0 (为什么?) 即 x 2+ x- =0 或 6x 2+ x- =0。

根的判别式、根与系数的关系(优推内容)

根的判别式、根与系数的关系(优推内容)

一对一个性化辅导讲义
学科:数学任课教师:授课时间:年月日(星期 ) 姓名年级学校中
教师
寄语
天道酬勤
课题根的判别式、根与系数的关系
重点1、根的判别式
2、根与系数的关系
难点根与系数的关系
教学过程
解下列方程:
⑴0
6
4
2=
-
-x
x⑵x
x7
3
22=
+
⑶0
1
2
2
1
2=
+
-x
x⑷()()2
5
2
3+
=
+x
x
x
二、新课讲解
知识点一:一元二次方程根的判别式
(1)⊿=b 2-4ac 叫一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式。

(2)运用根的判别式,在不解方程的前提下判别根的情况:
①⊿=b 2-4ac >0 方程有两个不相等实数根;
②⊿=b 2-4ac =0 方程有两个相等实数根;
③⊿=b 2-4ac <0 方程没有实数根;
④⊿=b 2-4ac ≥0 方程有两个实数根。

(3)应用:
①不解方程,判别方程根的情况;
②已知方程根的情况确定方程中字母系数的取值范围;
③应用判别式证明方程的根的状况(常用到配方法);
注意:运用根的判别式的前提是该方程是一元二次方程,即:a ≠0。

例1、不解方程,判断下列方程根的情况
()()()()()()
的方程关于x x m x m m x x x 0112303220
2312222=+---=+=--。

第12课时 一元二次方程根的判别式及根与系数的关系

第12课时 一元二次方程根的判别式及根与系数的关系

第12课时 一元二次方程根的判别式及根与系数的关系一、【教学目标】1. 掌握一元二次方程的根的判别式;2. 掌握一元二次方程的根与系数的关系. 二、【重点难点】重点:一元二次方程的根的判别式及根与系数的关系.难点:一元二次方程的根的判别式及根与系数的关系的应用. 三、【主要考点】 (一)、一元二次方程的根的判别式1.判别方法:对于一元二次方程ax 2+bx +c =0 (a ≠0),∆=b 2-4ac 称为一元二次方程的根的判别式.⑴b 2-4ac >0 ⇔方程有两个不相等的实数根; ⑵b 2-4ac =0 ⇔方程有两个相等的实数根; ⑶b 2-4ac <0 ⇔方程没有实数根.2.在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为0这个限制条件. (二)、一元二次方程的根与系数的关系设x 1,x 2是一元二次方程ax 2+bx +c =0 (a ≠0)的两根,且b 2﹣4ac ≥0,则有x 1+x 2=-a b ,x 1·x 2=ac . 四、【经典题型】【12-1A 】若关于x 的一元二次方程ax 2+2x -1=0无解 ,则a 的取值范围是____________.【12-2A 】 已知关于x 的一元二次方程(m -1)x 2+x +1=0有实数根,则m 的取值范围是 .【12-3B 】关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根. ①求k 的取值范围.②请选择一个k 的负整数值,并求出方程的根.【12-4B 】关于x 的方程kx 2+(k +2)x +4k=0有两个不相等的实数根. ⑴求k 的取值范围. ⑵是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.五、【点击教材】 【12-5A 】(九上P45)一元二次方程3x 2﹣2x -1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根【12-6B 】(九上P48)已知关于X 的一元二次方程X 2-2X-a=0的两个实数根为X 1,X 2,且321121-=+x x ,求a 的值。

第02讲根的判别式、根与系数关系-新九年级数学暑假(苏科版)(学生版)

第02讲根的判别式、根与系数关系-新九年级数学暑假(苏科版)(学生版)

第02讲根的判别式、根与系数关系(核心考点讲与练)【基础知识】一.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.二.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2,反过来也成立,即(x1+x2),x1x2.(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.【考点剖析】一.根的判别式(共4小题)1.(2022•东坡区校级模拟)一元二次方程2x2﹣7x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定2.(2022•兴化市模拟)已知一元二次方程ax2+bx+c=0(a≠0),当a+b+c=0时,方程有两个相等的实数根,则下列结论正确的是()A.b=c≠a B.a=b≠c C.a=c≠b D.a=b=c3.(2022•南京一模)若关于x的一元二次方程x2+3(m﹣2)x+2c﹣1=0有两个相等的实数根,则c的最小值是.4.(2022•邗江区校级开学)已知关于x的方程x2﹣(3k+1)x+2k2+2k=0.(1)求证:无论k取何值,方程总有实数根;(2)若等腰三角形的底边长3,另两边长恰好是这个方程的两根,求此三角形的周长.二.根与系数的关系(共6小题)5.(真题•泰兴市期末)已知x2﹣2x﹣5=0的两个根为x1、x2,则x1+x2的值为()A.﹣2 B.2 C.﹣5 D.56.(2022•工业园区校级模拟)已知关于x的一元二次方程x2+2x+1﹣m=0的一个根为2,则另一个根是.7.(真题•鼓楼区期末)已知关于x的一元二次方程ax2+bx+c=0(a、b、c是常数,a≠0)的两个实数根分别为x1,x2,证明:x1+x2,x1•x2.8.(真题•东台市期末)已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)当该方程的一个根为﹣1时,求m的值及方程的另一根.9.(真题•南关区校级期末)已知关于x的方程x2+kx﹣2=0.(1)求证:不论k取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.10.(2022春•宜秀区校级月考)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,若满足|x1﹣x2|=1,则此类方程称为“差根方程”.根据“差根方程”的定义,解决下列问题:(1)通过计算,判断下列方程是否是“差根方程”:①x2﹣4x﹣5=0;②2x2﹣2x+1=0;(2)已知关于x的方程x2+2ax=0是“差根方程”,求a的值;(3)若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,请探索a与b之间的数量关系式.三.一元二次方程的整数根与有理根(共3小题)11.小明到商场购买某个牌子的铅笔x支,用了y元(y为整数).后来他又去商场时,发现这种牌子的铅笔降价20%,于是他比上一次多买了10支铅笔,用了4元钱,那么小明两次共买了铅笔支.12.若关于x的方程rx2﹣(2r+7)x+r+7=0的根是正整数,则整数r的值可以是.13.(2020•仪征市一模)定义:若关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根均为整数,称该方程为“全整方程”,规定T(a,b,c)为该“全整方程”的“全整数”.(1)判断方程x2x﹣1=0是否为“全整方程”,若是,求出该方程的“全整数”,若不是,请说明理由;(2)若关于x的一元二次方程x2﹣(2m﹣3)x+m2﹣4m﹣5=0(其中m为整数,且满足5<m<22)是“全整方程”,求其“全整数”.【过关检测】一.选择题(共5小题)1.(2019秋•苏州期末)关于x的一元二次方程ax2﹣2ax﹣b=0有一个实数根x=1,则下面关于该方程根的判别式△的说法正确的是()A.Δ>0 B.Δ=0 C.Δ<0 D.无法确定2.(真题•仪征市期末)关于x的一元二次方程ax2﹣2x+1=0有两个不相等实数根,则整数a最大是()A.2 B.1 C.0 D.﹣13.(真题•宝应县期末)方程x2﹣x=﹣2的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.(真题•仪征市期末)已知方程(x﹣b)(x﹣c)﹣x=1的根是x1=m,x2=n,且m<n.若b<﹣1<0<c,则下列式子中一定正确的是()A.m<b<n<c B.b<m<n<c C.m<n<b<c D.m<b<c<n5.(2020•南通模拟)已知数m满足6<m<20,如果关于x的一元二次方程mx2﹣(2m﹣1)x+m﹣2=0有有理根,求m的值()A.11 B.12C.m有无数个解D.13二.填空题(共10小题)6.(2019•京口区校级开学)已知关于x的方程x2+px+q=0的两根为﹣4和﹣1,则p=,q=.7.(2022•秦淮区一模)若x2﹣4x+3=0,y2﹣4y+3=0,x≠y,则x+y﹣2xy的值是.8.(2022•鼓楼区一模)已知关于x的方程2x2+mx+n=0的根是﹣1和3,则m+n=.9.(真题•东西湖区期中)设x1,x2是一元二次方程x2﹣5x﹣1=0的两实数根,则x1+x2的值为.10.(2021•栖霞区开学)若x1、x2是一元二次方程x2﹣4x+3=0的两个实数根,则x1+x2﹣x1x2=.11.(真题•姜堰区期中)若关于x的一元二次方程2ax2﹣(a+4)x+2=0有一个正整数解,则正整数a=.12.(2022春•崇川区校级月考)已知α,β是方程x2+2021x+1=0的两个根,则(α2+2022α+1)(β2+2022β+1)=.13.(2022•海安市模拟)一元二次方程x2﹣3x﹣1=0的两实根是x1,x2,则x1+x2﹣x1•x2的值是.14.(2021•栖霞区二模)已知关于x的方程kx2﹣(3k+1)x+2k+2=0根都是整数;若k为整数,则k的值为.15.(2020春•崇川区校级月考)使得关于x的一元二次方程mx2﹣4x+4=0与x2﹣4mx+4m2﹣4m﹣5=0的根都是整数的整数m值是.三.解答题(共9小题)16.(2020春•张家港市期末)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.17.(真题•沭阳县期末)关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于2,求k的取值范围.18.(真题•鼓楼区校级月考)已知关于x的方程x2+(m+2)x+2m﹣1=0(1)求证:无论m取任何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=2,求m的值.19.(真题•海州区校级期中)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若此方程的一个根是1,请求出方程的另一个根.20.(真题•梁溪区校级期中)已知关于x的方程x2+ax+a﹣1=0.(1)求证:不论a取何实数,该方程都有两个实数根;(2)若该方程的一个根为2,求a的值及该方程的另一根.21.(真题•阜宁县期末)定义新运算:对于任意实数m,n都有m★n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3★2=(﹣3)2×2+2=20.根据以上知识解决问题:(1)若(x+1)★3=15,求x的值.(2)若2★a的值小于0,请判断关于x的方程:2x2﹣bx+a=0的根的情况.22.(真题•大丰区期末)已知关于x的一元二次方程:x2﹣(2k+2)x+k2+2k=0.(1)当k=2时,求方程的根;(2)求证:这个方程总有两个不相等的实数根.23.(真题•东台市月考)已知关于x的一元二次方程x2﹣(k+3)x+2k+2=0有实数根.(1)求证:方程总有两个实数根;(2)若x1+x2﹣3x1x2=2,求k的值.24.(真题•东海县期中)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.请解决下列问题:(1)若一元二次方程x2﹣9x+c=0是“倍根方程”,则c=;(2)若(x﹣1)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式的值.。

根的判别式与根与系数的关系

根的判别式与根与系数的关系
回顾与反思
我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0) 的根的判别式,通常用△表示. 判别式定理 当b2-4ac>0时,方程有两个 不相等的实数根 当b2-4ac=0时,方程有两个 相等的实数根 当b2-4ac<0时,方程没有实数根 当b2-4ac≥0时,方程有两个 实数根
回顾与反思
c a
.
知识源于悟
例3 设x1,x2是方程3x2-4x=-1的两根,不解方程 求下列各式的值
(1) ∣x1-x2∣
(2)9x13+13x2
知识源于悟
例4
已知方程( 5 1)x2+( 5 5)x-4=0的一个
根为-1,设另一个根为a,求a3-2a2-4a的值.
小试牛刀
已知关于x的方程x2-(2k-1)x+k2-k=0的 两个根恰好等于斜边为5的直角三角形 的两条直角边的长,求实数k的值.
2x2-(m+2)+2m-2=0有两个相等的实数根? 求出这时方程的根.
小试牛刀
说明不论m取何值,关于x的方程
(x-1)(x+2)=m2总有两个不相等的实数根.
回顾与反思 一元二次方程根与系数的关系 设x1,x2是一元二次方程ax2+bx+c=0(a≠0)
的两个根,则有
x1+x2=
b a
,
x1x2=
灵感
智慧
已知关于x的方程kx2+(2k-1)x+k-1=0
(k为整数) ①只有整数根,且关于y的一
元二次方程(k-1)y2-3y+m=0 ②有两个实
数根y1和y2,试确定k的值.


1.根的判别式及根与系数关系 的应用 2.通过这节课你增长了….

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

四、不解方程,求与根有关的代数式的值 例2 若a、b为互不相等的实数,且a 2-3a+1=0,b 2-3b+1=0 求a 2-ab+b 2的值 分析:要求一个含字母a、b的代数式的值,常规的解法就是 先求出a、b的值,然后代入求解.本题若按这个思路计算将 会涉及到解一元二次方程及二次根式的运算,运算量非常 大.但如果考虑a、b的关系,把a、b看作某个一元二次方程 的两个根,利用根与系数的关系得到a、b的关系式,再利用 a、b的关系式整体代入,问题将会变得简便. 解:根据题意知a、b是方程x 2-3x+1=0的两个根由根 与系数关系得a+b=3,ab=1. 点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
例3:当m为何值时,方程(m-1)x² +2mx+m+3=0 ①﹑无实根 ②﹑有实根 ③﹑只有一个实根 ④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析
(1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0 ② △≥0 且m-1≠0
;企业老板电话名单 企业老板电话名单 ; 2019.1 ;
们大意了,可恶,俺们被戮申殿算计了.”阔怜元老低沉の声音嘶吼.如果无暇善尊一直留在城市之内,那么就算戮申殿攻打无暇城,可要破开无暇城の防御也需要事间.再不济,无暇城の守护大阵也能顶一点事间.就算可能仍然等不到玄月商楼の救援,但也起码会比现在强.在城市之外, 戮申殿直接就能够对无暇善尊动手.“阔怜元老,现在俺们该怎么办?无暇善尊此事

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

(2)设抛物线与x轴交点为(x 1,0),(x 2,0),x 1+ x 2=2k , ∣ x 1-x 2∣ =2 得:(2k)2-4(2k-1)=4 解得k 1=0,k 2=2. 所以抛物线为y=x 2-1 或y=x 2-4x+3.
x 1﹒x 2=2k-1
注意:这类题目应注意抛物线与x轴两交点之间的距离就是一元二次方程两根
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么
一元二次方程根的判别式、 根与系数的关系
一元二次方程根的判别式
一元二次方程根的判别式是一个比较重要的知识点,它的应用很广泛,既可以 用来判断一元二次方程根的情况,还是后续知识点的基础和准备。另一方面, 根的判别式也能独立形成综合题。
一元二次方程ax 2+bx+c=0(a≠0)的判别式:△=b 2-4ac
△>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. △≥0方程有两个实数根. 上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
3、已知⊙ O的面积为π,△ABC内接于⊙O,a、b、c分别是三角形三个内 角A、B、C的对边,且a 2+b 2=c 2,sinA、sinB是方程

初三数学培优——判别式根与系数关系

初三数学培优——判别式根与系数关系

一元二次方程根的判别式及根与系数的关系1,对于方程ax 2+bx +c =0(a ≠0),代数式b 2-4ac 叫做根的判别式,用“△=b 2-4ac ”表示.写出一个一元二次方程的根的判别式,首先要将一元二次方程化为一般形式,凡不是一般形式的一元二次方程,都理应通过去括号、移项、合并等步骤化为一般形式.任何一个一元二次方程 用配方法将其变形为,所以对于被开方数来说,只需研究为如下几种情况的方程的根。

① 当 时,方程有两个不相等的实数根。

即② 当 时,方程有两个相等的实数根,即 。

③ 当 时,方程没有实数根。

判别式的作用是能够由其值的情况确定一元二次方程根的情况,当判别式的值分别取正数、零和负数时,一元二次方程分别有两个不等的实数根、两个相等的实数根和没有实数根.必须指出的是: 不难得到 x 1+x 2=-a b , x 1·x 2=ac. 这就是一元二次方程的根与系数关系(韦达定理). 在学习和应用上述定理时要注意以下几点:1.一元二次方程根与系数的关系揭示了一元二次方程的实根与系数之间的内在联系,在使用时需先将一元二次方程化为一般形式ax 2+bx +c =0(a ≠0);2.使用韦达定理的前提是方程有实数根;3.韦达定理不但可求出方程两实根的和与积,而且可判断两实数根的符号(如两正根;两负根;一正根一负根等);4.要防止出现x 1+x 2=ab这样的错误. 典型例题例1 m 取什么值时,方程3x 2-2(3m -1)x +3m 2-1=0 (1)有两个不相等的实数根? (2)有两个相等的实数根?(3)没有实数根?例2已知方程x2-(3-a)x-(3a+b2)=0有两个相等的实数根,求实数a与b的值.例3当a、b为何值时,方程x2+(1+a)x+(3a2+4ab+4b2+2)=0有实数根?例4判别下列关于x的二次方程2(m+1)x2+4mx+(2m-1)=0的根的情况.例5当m为何值时,关于x的二次三项式x2+2(m-4)x+m2+6m+2是完全平方式?例6已知a、b、c是△ABC的三边,且方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实数根,试判断△ABC的形状.分析这是一道代数、几何知识的综合题,解题前理应明确:(1)从条件知,问题与判别式相关,又因原方程不是标准形式,所以必须先将方程 化为标准形式;(2)判断△ABC 的形状常从边,或角的方面去考虑,从题设条件可知,本题应从边的关系去判断.例7 已知一元二次方程ax 2+bx +c =0(a >0)中,b >0,c <0,则( ).(A)方程有两个正根 (B)方程有两个负根(C)方程的两根异号,且正根的绝对值较大 (D)方程的两根异号,且负根的绝对值较大例8 如果2+3是方程x 2-4x +c =0的一个根,不解方程,求方程的另一个根及c 的值.例9 设x 1、x 2是方程2x 2+3x -1=0的两根,不解方程,求112112+++x x x x 的值.这类题是常见题,解题的规律是通过恒等变形把原代数式化为用二次方程两根和与积表示的代数式.如: x 12+x 22=(x 1+x 2)2-2x 1x 2;21212111x x x x x x +=+; 212122121212221122)(x x x x x x x x x x x x x x -+=+=+; (x 1-x 2)2=(x 1+x 2)2-4x 1x 2;(x 1+m )(x 2+m )= x 1x 2+m ·(x 1+x 2)+m 2……等等.但不是任何一个代数式都能用两个根的和与积表示的,如x 13+x 22.例10 k 为何值时,方程x 2-(2k -1)x +k 2-1=0有两个实数根,且两根互为倒数.例11 已知a 、b 是方程8x 2+6mx +2m +1=0的两个实数根,且a 2+b 2=1,求m 的值.例12 已知a 2+a -1=0,b 2+b -1=0(a ≠b ). 求a 2b +ab 2的值.巩固练习一、选择题1.若关于x 的一元二次方程2x (mx -4)-x 2+6=0没有实数根,则m 的最小整数值是( )(A)-1 (B)2 (C)3 (D)4 2.已知方程x 2-p x +m =0(m ≠0)有两个相等的实数根,则方程x 2+p x -m =0的根的情况是 ( ) (A)有两个不相等的实数根 (B)有两个相等的实数根 (C)没有实数根 (D)不能确定有无实数根 3.在下面方程中: ①2x 2-mx -1=0;②21x 2-2mx +2m 2=0;③4x 2+(m -1)x -m =0. 无论m 取任何实数根都永远有两个实数根的方程的个数是 ( ) (A)0个 (B)1个 (C)2个 (D)3个 4.如果方程2x 2+kx -6=0一个根是-3,另一根是x ,则( )(A)x 1=1,k =4 (B)x 1=-1,k =8 (C)x 2=2,k =1 (D)x 2=-2,k =5 5.以53 和-35为根的一元二次方程是( )(A)15x 2+16x -1=0 (B) 15x 2-16x +15=0 (C)15x 2+16x -15=0 (D) 15x 2-16x -15=06.已知一元二次方程的两根之和是25,两根的倒数和是-35,这个一元二次方程是(A )x 2-25x -23=0 (B) x 2-25x -35=0 (C) x 2+25x +23=0 (D) x 2+25x -35=07.不解方程,判断43x 2+3x +1=0根的情况是( ) (A )有一正根一负根 (B )有两个正根 (C )有两个负根 (D )没有实数根 8.一元二次方程x 2-x +1=0的根的情况是( ) (A)两实数根的和等于两实数根的积 (B)两实数根的和与两实数根的积互为相反数 (C)有两个相等的实数根 (D)没有实数根9.若方程x 2-(k 2-7)x =1的两根之和是2,则实数k 的值是( ) (A )±5 (B)±6 (C) ±3 (D) ±2二、填空题1.不解方程,判断4x 2-43+3=0的根的情况是______________________.2.不解方程,判断y 2-(6+2 )y +2+3=0的根的情况是___________________.3.不解方程,判断3x 2-6x -2x +2=0的根的情况是.4.当m ______时,方程3x2-2(3m +1)x +3m 2+1=0没有实数根. 5.当m _____ 时,方程(m -1)x 2+2(m -7)x +2m +2=0有两个相等的实数根.6.若关于x 的一元二次方程2k x 2+(8k +1)x =-8k 有两个实数根,则k 的取值范围是_____7.已知一元二次方程x 2-3x +1=0的两根为x 1、x 2,则11x +21x = , x 12+ x 22= ,(x 1-5)·(x 2-5)= .8.以2+3、2-3为两根的一元二次方程是 . 9.已知关于x 的方程6x 2+2x +a =0的一根比另一根大2,则a = . 10.已知关于x 的方程4x 2-9x +3(k -1)=0,当k 时,方程有一根为零, 当k 时,方程的两实数根互为倒数.三、解答题1.m 为何值时,方程mx 2-3x +2=0没有实数根.2.试判别一元二次方程x 2+2x +m =0的根的情况.3.求证:对于任何实数m ,关于x 的二次方程x 2-(m +1)x +(m -1)=0总有两个不相等的实数根.4.已知a 、b 、c 是△ABC 的三边,且一元二次方程(c -b )x 2+2(b -a )x +(a -b )=0 有两个相等的实数根,试判断△ABC 的形状.5.已知方程2x 2+kx -2k +1=0的两实数根的平方和为429,求k 的值.6.已知直角三角形ABC 中,斜边上的中线长为23,两条直角边的长分别是方程 2x 2-2mx +m +3=0的两根,求m 的值和直角三角形ABC 的面积.。

4一元二次方程的根的判别式及根与系数的关系(名师总结)

4一元二次方程的根的判别式及根与系数的关系(名师总结)

一元二次方程的根的判别式及根与系数的关系【知识点1】一元二次方程的根的判别式概念:一元二次方程ax 2+bx +c=0 (a ≠0)的根的判别式为b 2-4ac ,通常用符号“△”来表示。

即△=b 2-4ac 一元二次方程ax 2+bx +c=0 (a ≠0)的根的情况是:①当△>0时,有两个不相等的实数根。

②当△=0时,有两个相等的实数根。

③当△<0时,没有实数根 ✪注:当△≧0时,方程有实数根。

【例1】已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2+ 2cx + (a + b )=0的根的情况是( ) A . 没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【例2】如果关于x 的一元二次方程有两个不相等的实数根,那么的取值范围是( )A.>B >且C.<D.且【例3】已知关于的一元二次方程有两个不相同的实数根,则的取值范围是【例4】.已知关于x 的二次方程012)21(2=---x k x k 有实数根,则k 的取值范围是 。

【例5】已知a b ,是关于x 的方程2(21)(1)0x k x k k -+++=的两个实数根,则22a b +的最小值是【例6】关于x 的一元二次方程04)(2=-+++ca bx xb a 有两个相等的实数根,那么以a 、b 、c 为三边的三角形是 A 、以a 为斜边的直角三角形 B 、以c 为斜边的直角三角形 C 、以b 为底边的等腰三角形D 、以c 为底边的等腰三角形 【知识点2】一元二次方程根于系数的关系概念:若一元二次方程)0(02≠=++a c bx ax 有两个实数根21x x 和,那么=+21x x ,=∙21x x 。

这两个结论称为一元二次方程根与系数的关系,简称韦达定理。

【例1】在一元二次方程)0(02≠=++a c bx ax 中,有一根为0,则=c ;有一根为1,则=++c b a ;有一根为1-,则=+-c b a ;若两根互为倒数,则=c ;若两根互为相反数,则=b 。

方程的根与系数之间的关系

方程的根与系数之间的关系

方程的根与系数之间的关系1. 引言方程的根与系数之间存在着一定的关系,通过研究这种关系,可以帮助我们更好地理解和解决各类方程。

在本文中,我们将深入探讨方程的根与系数之间的关系,并通过具体的例子和推导,解释其中的数学原理。

2. 一元二次方程的根与系数之间的关系一元二次方程是形如ax2+bx+c=0的方程,其中a、b和c是方程的系数,x是方程的未知数。

我们来讨论一元二次方程的根与系数之间的关系。

2.1 根的判别式一元二次方程ax2+bx+c=0的根可以通过判别式D=b2−4ac来确定。

根据判别式的值,我们可以得到以下结论: - 当D>0时,方程有两个不相等的实根; - 当D=0时,方程有两个相等的实根; - 当D<0时,方程没有实根,但有两个共轭复根。

2.2 根与系数之间的关系一元二次方程的根与系数之间存在着以下关系: 1. 根与系数之间的和:设方程的。

2. 根与系数之间的乘积:设方程的两个根分别为x1和x2,则x1+x2=−ba。

两个根分别为x1和x2,则x1⋅x2=ca由以上关系可以看出,当我们知道方程的系数时,就可以通过这些关系推导出方程的根的和与积,从而进一步研究方程的性质和解法。

3. 三元一次方程的根与系数之间的关系三元一次方程是形如ax+by+cz=d的方程,其中a、b、c和d是方程的系数,x、y和z是方程的未知数。

接下来,我们探讨三元一次方程的根与系数之间的关系。

3.1 方程的解三元一次方程的解是以有序数组的形式表示的,例如(x0,y0,z0)。

解的存在唯一性要求方程的系数满足一定的条件,即系数的行列式不为零。

具体而言,当abc−ac2−b2d=0时,方程无解;当abc−ac2−b2d≠0时,方程有唯一解。

3.2 根与系数之间的关系三元一次方程的根与系数之间的关系可以通过高斯-若尔当消元法进行求解。

解方程组的过程中,我们可以得到以下结论: 1. 根与系数之间的关系是复杂的,且很难直接表达; 2. 方程的解与系数的变化密切相关,系数的微小变化可能导致解的大幅度变化; 3. 方程的解可以通过变量的代换和消元的方法求得,求解过程中可以使用线性代数的相关理论和方法。

一元二次方程的判别式及跟与系数的关系

一元二次方程的判别式及跟与系数的关系

一元二次方程的根的判别式及根与系数的关系要点一、一元二次方程的判别式1.定义:在一元二次方程()ax bx c a 2++=0≠0中,只有当系数a 、b 、c 满足条件△≥b ac 2=−40时才有实数根.这里b ac 2−4叫做一元二次方程根的判别式,记作△.2.判别式与根的关系:在实数范围内,一元二次方程()ax bx c a 2++=0≠0的根的情况由△b ac 2=−4确定. 设一元二次方程为()ax bx c a 2++=0≠0,其根的判别式为:△b ac 2=−4,则①△>0⇔方程()ax bx c a 2++=0≠0有两个不相等的实数根,x 12.②△=0⇔方程()ax bx c a 2++=0≠0有两个相等的实数根b x x a12==−2. ③△<0⇔方程()ax bx c a 2++=0≠0没有实数根. 特殊的:(1)若a ,b ,c 为有理数,且△为完全平方式,则方程的解为有理根;(2)若△为完全平方式,同时b −±2a 的整数倍,则方程的根为整数根.【例1】(1)不解方程,直接判断下列方程的解的情况: ①x x 27−−1=0 ②()x x 29=43−1 ③x x 2+7+15=0④()mx m x 2−+1+=02(m 为常数)(2)已知a 、b 、c 分别是三角形的三边,则方程()()a b x cx a b 2++2++=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【解析】(1)①△>0,有两个不等实根;②△=0,有两个相等实根; ③△<0,无实根;④△m 2=+1>0,方程有两个不等实根. (2)由题()()()()△c a b a b c c a b 22=2−4+=4++−−∵a b c ++>0,c a b −−<0,故方程没有实根.选A .【点评】这道题(1)主要考察判别式与根的关系,属于特别基础的题,锻炼孩子们的思维,(2)结合三角形三边关系来考察一元二次方程的判别式和根的个数的关系.【例2】(1)若关于x 的一元二次方程()k x x 21−1+−=04有实根,则k 的取值范围为______. 【解析】(1)≥k 0且≠k 1;【变式2-1】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( ) A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,且k≠0. 则k 的非负整数值为1.【变式2-2】已知关于x 的一元二次方程有实数根,则m 的取值范围是________ 【答案】且m≠1 【解析】因为方程有实数根,所以,解得, 同时要特别注意一元二次方程的二次项系数不为0,即, ∴ m 的取值范围是且m≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即,m≠1.【例3】已知:关于x 的方程有两个不相等的实数根,求k 的取值范围. 【答案】.【变式3-1】关于x的一元二次方程()k x 21−2−−1=0有两个不相等的实数根,则k 的取值范围______.≤k −1<2且k 1≠2, 由题意,得()()k k k k 4+1+41−2>0⎧⎪+1≥0⎨⎪1−2≠0⎩,解得≤k −1<2且k 1≠2;2(1)10m x x −++=54m ≤2(1)10m x x −++=214(1)450m m =−−=−+≥△54m ≤(1)0m −≠54m ≤(1)0m −≠2(1)04kkx k x +++=102k k ≠>-且【变式3-2】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【答案与解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.【变式3-2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0, 解得:k <2且k≠1. 故答案为:k <2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.【例4】当a 、b 为何值时,方程()x a x a ab b 222+21++3+4+4+2=0有实根?(3)要使关于x 的一元二次方程()x a x a ab b 222+21++3+4+4+2=0有实根,则必有△≥0,即()()≥a a ab b 22241+−43+4+4+20,得()()a b a 22+2+−1≤0.又因为()()a b a 22+2+−1≥0,所以()()a b a 22+2+−1=0,得a =1,b 1=−2.【变式4-1】已知关于x 的一元二次方程()a x ax 213−1−+=04有两个相等的实数根,求代数式a a a21−2+1+的值.【解析】由题,一元二次方程()a x ax 213−1−+=04有两个相等的实数根, 所以a a 2−3+1=0.所以有a a a 2−2+1=,a a 2+1=3.代入a a a21−2+1+,得a a a a a a a a a 2211+13−2+1+=+===3.【点评】这道题主要是考察判别式与代数式的结合,难度不大.【变式4-2】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【例5】在等腰△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x mx m 21++2−=02的两个实数根,求△ABC 的周长.【解析】当b c =时,方程有两个相等的实数根,则=△m m 21⎛⎫−42−=0 ⎪2⎝⎭,∴m 1=−4,m 2=2.若m =−4,原方程化为x x 2−4+4=0, 则x x 12==2,即b c ==2, ∴△ABC 的周长为2+2+3=7. 若m =2,原方程化为x x 2+2+1=0, 则x x 12==−1,不合题意.当a b =或a c =时,x =3是方程的一个根, 则m m 19+3+2−=02,则m 22=−5,原方程化为x x 22221−+=055,解得x 1=3,x 27=5, ∴ABC △的周长为7373+3+=55.综上所述,ABC △的周长为7或375. 【点评】这道题主要考察学生们的分类讨论能力,应对多种情况是要理清思路.要点二、一元二次方程的根与系数关系(韦达定理)1.韦达定理:如果()ax bx c a 2++=0≠0的两根是x 1,x 2,则b x x a 12+=−,cx x a12=.(使用前提:△≥0)特别地,当一元二次方程的二次项系数为1时,设x 1,x 2是方程x px q 2++=0的两个根,则x x p 12+=−,x x q 12=. 2.韦达定理的逆定理:如果有两个数x 1,x 2满足b x x a 12+=−,cx x a12=,那么x 1,x 2必定是()ax bx c a 2++=0≠0的两个根.特别地,以两个数x 1、x 2为根的一元二次方程(二次项系数为1)是()x x x x x x 21212−++=0. 3.韦达定理与根的符号关系:在△≥b ac 2=−40的条件下,我们有如下结论: (1)当ca<0时,方程的两根必一正一负. ①若≥b a −0,则此方程的正根不小于负根的绝对值;②若ba−<0,则此方程的正根小于负根的绝对值.(2)当ca>0时,方程的两根同正或同负. ①若b a −>0,则此方程的两根均为正根;②若ba−<0,则此方程的两根均为负根.注意:(1)若ac <0,则方程()ax bx c a 2++=0≠0必有实数根.(2)若ac >0,方程()ax bx c a 2++=0≠0不一定有实数根.【例6】(1)已知一元二次方程ax ax c 2+2+=0的一根x 1=2,则方程的另一根______x 2=.(2)已知x 1,x 2是方程x x 2−3+1=0的两个实数根,则:①x x 2212+;②()()x x 12−2⋅−2;③x x x x 221122+⋅+;④x x x x 2112+;⑤x x 12−;⑥x x 2212−;⑦x x 1211−.【解析】(1)−4;(2)()x x x x x x 2222121212+=+−2⋅=3−2⨯1=7, ()()()x x x x x x 121212−2⋅−2=⋅−2++4=1−2⨯3+4=−1, ()x x x x x x x x 22211221212+⋅+=+−⋅=9−1=8,x x x x x x x x 2221211212+7+===7⋅1,()()x x x x x x 222121212−=+−4⋅=3−4⨯1=5,∴x x 12−=,∴()()(x x x x x x 22121212−=+−=3⨯=x x x x x x 21121211−−==.【点评】第三小题,主要是考察韦达定理的灵活运用,包含了各种变形情况.【例7】(1)已知关于x 的方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,且x x x x 121211+=+,求k 值.(2)已知x 1,x 2是方程ax ax a 24−4++4=0的两实根,是否能适当选取a 的值,使得()()x x x x 1221−2−2的值等于54.【解析】(1)∵方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,∴()()△≥k k k 22=2−3−4−3=21−120得:≤k 74. 由韦达定理得,()x x k x x k 12212+=−2−3⎧⎪⎨⋅=−3⎪⎩. ∵x x x x 121211+=+,∴x xx x x x 121212++=,x x 12+=0或x x 12=1,当x x 12+=0时,k 3−2=0,k 3=2,∵k 37=<24,所以k 3=2符合题意. 当x x 12=1时,k 2−3=1,k =±2,∵k 7≤4,∴k =2舍去.∴k 的值为32或−2. (2)显然a ≠0由()△a a a 2=16−16+4≥0得a <0, 由韦达定理知x x 12+=1,a x x a12+4=4, 所以()()()()()a x x x x x x x x x x x x a 2221221121212129+4−2−2=5−2+=9−2+=−24a a+36=4 若有()(),x x x x 12215−2−2=4则a a +365=44,∴a =9,这与0a <矛盾, 故不存在a ,使()()x x x x 12215−2⋅−2=4. 【点评】这道题主要锻炼孩子们的过程,以及有两个实根,解出来别忘了限制条件,这种类型的题比较常见,一定不要忽视∆的限定条件以及用韦达定理可得到的限定条件.【例8】(1)若m ,n 是方程x x 2+−1=0的两个实数根,则m m n 2+2+−1的值为________.(2)已知a ,b 是方程x x 2+2−5=0的两个实数根,则a ab a b 2−+3+的值为__________.(3)已知m 、n 是方程x x 2+2016+7=0的两个根,则()()m m n n 22+2015+6+2017+8= ________.【解析】(1)∵m ,n 是方程x x 2+−1=0的两个实数根,∴m n +=−1,m m 2+−1=0,则原式()()m m m n 2=+−1++=−1=−1,(2)∵a 是方程x x 2+2−5=0的实数根,∴a a 2+2−5=0,∴a a 2=5−2,∴a ab a b a ab a b a b ab 2−+3+=5−2−+3+=+−+5, ∵a ,b 是方程x x 2+2−5=0的两个实数根,∴a b +=−2,ab =−5,∴a ab a b 2−+3+=−2+5+5=8. 故答案为8.(3)∵m 、n 是方程x x 2+2016+7=0的两个根,∴m n +=−2016,mn =7;∴m m 2+2016+7=0,n n 2+2016+7=0,()()()()m m n n m m m n n n 2222+2015+6+2017+8=+2016+7−−1+2016+7++1()()()()m n mn m n =−+1+1=−+++1=−7−2016+1=2008故答案是:2008.【点评】这道题主要考查韦达定理根系关系的应用,进一步强化孩子对于韦达定理应用的理解.【例9】(1)已知一元二次方程()ax a x a 2+3−2+−1=0的两根都是负数,则k 的取值范围是_________.(2)已知二次方程342x x k 2−+−=0的两根都是非负数,则k 的取值范围是__________.【解析】(1)此方程两实根为,x x 12,由已知得a x x x x 1212≠0⎧⎪∆0⎪⎨+<0⎪⎪>0⎩≥,∴()()a a a a a a a a2≠0⎧⎪3−24−10⎪⎪2−3⎨<0⎪⎪−1⎪>0⎩-≥g ,即a 91<8≤.(2)此方程两实根为,x x 12,由已知得≥x x x x 1212∆≥0⎧⎪+≥0⎨⎪0⎩,得:∴2()43()k k ⎧⎪−4−⨯−2≥0⎪4⎪>0⎨3⎪−2⎪≥0⎪3⎩即k 102≤≤3. 【点评】这道题主要考查韦达定理和判别式结合不等式组的形式去判定根的具体情况,这类题是比较常见一类题,要将这种不等的思想传授给孩子.【课后作业】1.已知关于x 的一元二次方程()()k x k x 22−1+2+1+1=0有两个不相等的实数根,则k 的取值范围为_____________. A .k 1≥4 B .k 1>4且≠k 1 C .k 1<4且≠k 1 D .k 1≥4且≠k 1【解析】B .2.已知关于x 的一元二次方程x m 2−=0有两个不相等的实数根,则m 的取值范围__________.3.关于x 的方程()()m x m x 22−4+2+1+1=0有实根,则m 的取值范围__________.【解析】2.由题意可知,原方程的判别式(m m m 21∆=+4=1+3>0⇒>−3.又≥≤m m 1−0⇒1, 故≤m 1−<13.3.题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分0m 2−4=和m 2−4≠0,两种情形讨论:当m 2−4=0即m =±2时,()m 2+1≠0,方程为一元一次方程,总有实根; 当m 2−4≠0即m ≠±2时,方程有根的条件是: [()]()≥m m m 22=2+1−4−4=8+20∆0,解得m 5≥−2.∴当m 5≥−2且m ≠±2时,方程有实根.综上所述:当m 5≥−2时,方程有实根.4.已知关于x 的方程()x k x k 2−+1+2−2=0. (1)求证:无论k 为何值,方程总有实根;(2)若等腰ABC △,底边a =3,另两边b 、c 恰好是此方程的两根,求ABC △的周长.【解析】(1)()()()≥△k k k 22=+1−42−2=−30,∴无论k 为何值,方程总有实根.(2)当a =3为底,b ,c 为腰时,b c =,∴方程有两个相等的实根,∴∆=0,即()k 2−3=0,k =3,此时方程为x x 2−4+4=0,解x x 12==2,∴ABC △的周长为3+2+2=7,当a =3为腰,则方程有一根为3,将x =3代入方程,得k =4,方程为x x 2−5+6=0,解得x 1=2,x 2=3,∴ABC △的周长为2+3+3=8,综上所述,ABC △的周长为7或8.5.关于x 的方程x kx 22+=10的一个根是−2,则方程的另一根是_______;k =________.6.已知a ,b ,c 为正数,若二次方程ax bx c 2++=0有两个实数根,那么方程a x b x c 2222++=0的根的情况是( ) A .有两个不相等的正实数根 B .有两个异号的实数根 C .有两个不相等的负实数根D .不一定有实数根7.设α,β是一元二次方程x x 2+3−7=0的两个根,则ααβ2+4+=________.【解析】5.设另一根为x ,由根与系数的关系可建立关于x 和k 的方程组,解之即得.x 5=2,k =−1. 6.a x b x c 2222++=0的()()D b a c b ac b ac 42222=−4=+2−2, ∵二次方程ax bx c 2++=0有两个实数根, ∴≥b ac 2−40, ∴b ac 2−2>0,∴()()△b a c b ac b ac 42222=−4=+2−2>0∴方程有两个不相等的实数根,而两根之和为负,两根之积为正. 故有两个负根.故选C .7.∵α,β是一元二次方程x x 2+3−7=0的两个根, ∴αβ+=−3,αα2+3−7=0, ∴αα2+3=7,∴ααβαααβ22+4+=+3++=7−3=4,故答案为:4.11 8.已知关于x 的方程()x m x m 22+2+2+−5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.【解析】有实数根,则∆≥0,且x x x x 221212+−=16,联立解得m 的值.依题意有:()2()3()()x x m x x m x x x x m m 12212121222+=−2+2⎧⎪=−5⎪⎨+−=16⎪⎪∆=4+2−4−5≥0⎩,解得:m =−1或m =−15且m 9≥−4, ∴ m =−1.韦达定理说明了一元n 次方程中根和系数之间的关系。

根的判别式和根与系数的关系

根的判别式和根与系数的关系

初二升初三衔接班数学知识点复习卷(根的判别式与根的系数的关系)1、已知关于x的方程kx2-4x-2=0有两个实数根.(1)求k的取值范围;(2)若方程的两个实数根为x1,x2,且x12+x22=4,求k的值2、已知:关于x的方程kx2-4x+1=0(1)若方程有两个实数根,请求出k的取值范围;(2)若方程两个根的倒数和为k.请确定k的值.3、已知关于x的方程k2x2+(2k-1)x+1=0有两个实数根x1、x2(1)求k的取值范围;(2)是否存在k的值,可以使得这两根的倒数和等于0?如果存在,请求出k,若不存在,请说明理由.4、已知关于x的方程kx2-2(k+1)x+k-1=0有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.(根的判别式与根的系数的关系答案)1、分析:(1)根据判别式在大于等于0时,方程总有两个实数根,确定m的取值范围.(2)根据根与系数的关系可以求出m的值.解答:解:(1)∵△≥0时,一元二次方程总有两个实数根,△=(-4)2-4×k×(-2)=16+8k≥0,k≤-2,所以k≤-2时,方程总有两个实数根.(2)∵方程的两个实数根为x1,x2,且x12+x22=4,∴(x1+x2)2-2x1x2=78,∵x1+x2=-,x1•x2=,∴()2-2×=4,2k2-k-8=0解得k=,故k的值是或.点评:此题主要考查了根的判别式和根与系数的关系,要记住x1+x2=-,x1•x2=.2、分析:(1)此题只需根据其判别式不小于0即可得出k的取值范围;(2)此题只需将x1+x2和x1•x2的表达式代入+即可求得k的值.解答:解:(1)由题意得:方程有两个实数根,则△=16-4k≥0;解不等式得:k≤4;又方程需为二次方程,则k≠0;因此k的取值范围为:k≤4且k≠0;(2)由于方程两个根的倒数和为k,且x1+x2=,x1•x2=;则k=+==;即k=4.点评:此题主要考查了根的判别式及根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.3、分析:(1)根据方程由两个不相等的实数根,则有△≥0,可列出不等式,求出k的取值范围;(2)根据一元二次方程根与系数的关系可求出x1+x2=-,x1x2=,再根据题意可得,把式子进行变形,进行代入可求出k的值.解答:解:(1)(2k-1)2-4k2×1≥0,解得:k≤,且:k2≠0,∴k≠0,∴k≤且k≠0;(2)不存在,∵方程有两个的实数根,∴x1+x2=-,x1x2=,∴==-=-2k+1=0,k=,∵k≤且k≠0;∴不存在.点评:此题主要考查了根的判别式,以及一元二次方程根与系数的关系,关键是把握准计算公式:一元二次方程ax2+bx+c=0(a≠0)中:△=b2-4ac,x1+x2=-,x1x2=.4、分析:(1)根据方程有两个不相等的实数根可知△=[-2(k+1)]2-4k(k-1)>0,求得k的取值范围;(2)可假设存在实数k,使得方程的两个实数根x1,x2的倒数和为0,列出方程即可求得k的值,然后把求得的k值代入原式中看看与已知是否矛盾,如果矛盾则不存在,如果不矛盾则存在.解答:解:(1)∵方程有两个不相等的实数根,∴△=[-2(k+1)]2-4k(k-1)=12k+4>0,且k≠0,解得k>-,且k≠0,即k的取值范围是k>-,且k≠0;(2)假设存在实数k,使得方程的两个实数根x1,x2的倒数和为0,则x1,x2不为0,且,即,且,解得k=-1,而k=-1与方程有两个不相等实根的条件k>-,且k≠0矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.点评:本题主要考查了根的判别式的运用和给定一个条件判断是否存在关于字母系数的值令条件成立.解决此类问题,要先假设存在,然后根据条件列出关于字母系数的方程解出字母系数的值,再把求得的字母系数值代入原式中看看与已知是否矛盾,如果矛盾则不存在,如果不矛盾则存在.。

第五讲一元二次方程根的判别式、根与系数的关系

第五讲一元二次方程根的判别式、根与系数的关系

第5讲 一元二次方程根的判别式、根与系数的关系一、根的判别式1.一元二次方程根的判别式的定义:运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±. 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.2.判别式与根的关系:在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程有两个不相等的实数根21,24b b acx -±-=.②0∆=⇔方程有两个相等的实数根122bx x a==-.③0∆<⇔方程没有实数根.④⇔≥∆0方程有(两个)实数根典例分析知识点1:求根的判别式的值例1:(1)一元二次方程2x 2﹣4x+1=0的根的判别式的值是 (2)已知关于x 的一元二次方程x 2+(m ﹣2)x+m ﹣2=0. (1)求根的判别式△的值(用含m 的代数式表示). (2)当m=4时,求此一元二次方程根.知识点2:利用根的判别式不解方程判断根的情况 例2:不解方程,判别下列方程的根的情况:(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=知识点:利用根的判别式求待定字母系数的取值范围(1)关于x的一元二次方程(a﹣1)x2+2ax﹣3+a=0有实数根,则a .(2)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;(3)已知分式,当x=2时,分式无意义,则a= ;当a<6时,使分式无意义的x的值共有个.知识点4:利用根的情况判断三角形形状例4:已知a、b、c是三角形的三条边长,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断三角形的形状.知识点5:利用判别式求最值例5:阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.知识点:6:一元二次方程的简单应用例6:(1)李明准备进行如下操作实验,把一根长40cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm 2,李明应该怎么剪这根铁丝? (2)李明认为这两个正方形的面积之和不可能等于48cm 2,你认为他的说法正确吗?请说明理由.(2)如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m 2? (2)能否使所围矩形场地的面积为810m 2,为什么?(3)怎样围才能使围出的矩形场地面积最大?最大面积为多少?请通过计算说明.二、根与系数的关系 1、根与系数的关系如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a=.(此公式的大前提:0∆≥)2、以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=3、根与系数的关系主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.典例分析知识点7:利用方程中各项系数求两根的和与积 例7:不解方程,求下列方程的两根和与积.(1)x 2﹣2x ﹣3=0; (2)3x 2+x ﹣1=0; (3)x 2+4x ﹣1=0.知识点8:已知方程的一个根,求另一个根例8:⑴若方程240x x c -+=的一个根为23+,则方程的另一个根为 ,c = .(2)已知关于x 的方程220x kx +-=的一个解与方程131x x +=-解相同. ⑴求k 的值;⑵求方程220x kx +-=的另一个解.知识点9:已知方程,求关于方程的两根的代数式的值 例9:(1)已知方程2350x x +-=的两根为1x 、2x ,则2212x x += .(2)已知α、β是方程2250x x +-=的两个实数根,22ααβα++的值为 . (3)已知α、β是方程2520x x ++=βααβ的值.(4)如果a ,b 都是质数,且2130a a m -+=,2130b b m -+=,求b aa b+的值.知识点10:根据根与系数的关系确定方程参数的值 例10:(1)设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是____.(2)已知关于x 的方程22(23)30x k x k +-+-=有两个实数根1x ,2x ,且121211x x x x +=+,求k 值.(3)已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值。

根与系数关系及根的判别式

根与系数关系及根的判别式

一元二次方程根的判别式、根与系数的关系一、根的判别式21.4022.02043.,22ac b b ac b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪-±--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为。

时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为二、根与系数的关系(韦达定理):如果)0(02≠=++a c bx ax 的两个根是,,21x x 则acx x a b x x =⋅-=+2121, 以x 1和x 2为根的一元二次方程为:x 2-( x 1+x 2)x + x 1x 2=0一、选择题1. 若关于x 的方程x 2+2(k -1)x +k 2=0有实数根,则k 的取值范围是( )A. 12k <B. 12k ≤C. 12k >D. k ≥122.若t 是一元二次方程20(0)ax bx c a ++=≠的根,则判别式24b ac =-和完全平方式2(2)M at b =+的关系( )A. M =B.M >C.M <D.大小关系不能确定3.已知关于x 的一元二次方程220x x a -+=有实数根,则实数a 的取值范围是( )A.a ≤1B. a<1C. a ≤-1D. a ≥14.下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( ) A.012=+xB.0122=++x xC.0322=++x xD.0322=-+x x5.若1x 、2x 是一元二次方程0572=+-x x的两根,则2111x x +的值是( ) A.57 B.57- C.75 D.75- 6.已知x 1、x 2是方程x 2-3x +1=0的两个实数根,则1x 1+1x 2的值是()A 、3B 、-3C 、13D 、17. 不解方程,判别方程5-7x+5=0的根的情况是( ).8.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是( ) A .-3或1B .-3C .1D .39.满足“两实数根之和等于3”的一个方程是( )A.0232=--x xB.02322=--x xC.0232=-+x xD.02322=-+x x 10.一元二次方程0322=--x x 的根为( )A 、3,121==x xB 、3,121=-=x xC 、3,121-=-=x xD 、3,121-==x x 11.下列方程中,没有实数根的是( )A .012=++x xB .0122=++x xC .0122=--x xD .022=--x x 12.两个不相等的实数m ,n 满足m 2-6m=4,n 2-6n=4,则mn 的值为( ) A.6 B.-6 C.4 D.-413.关于x 的一元二次方程2x 2x 40--=的两根为12x x 、,那么代数式1211x x +的值为( ) A12 B 12- C 2 D -2 14.方程x 2-5x -1=0 ( )A 、有两个相等实根B 、有两个不等实根C 、没有实根D 、无法确定 15.两个不相等的实数m ,n 满足462=-m m ,462=-n n ,则mn 的值为( )A.6B.-6C.4D.-416.已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是( ) A. 6 B. 2 m -8 C. 2 m D. -2 m17.方程组18ax y x by -=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,那么方程x 2+a x+b=0( )A .有两个不相等实数根B .有两个相等实数根C .没有实数根D .有两个根为2和3 18.一元二次方程0132=-+x x 的根的情况为( ) A 、有两个不相等的实数根B 、有两个相等的实数根C 、只有一个实数根D 、没有实数根二、填空题1.等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程0102=+-m x x 的两根,则m 的值是 。

考点04 一元二次方程根的判别式以及根与系数的关系(解析版)

考点04 一元二次方程根的判别式以及根与系数的关系(解析版)

考点四一元二次方程根的判别式以及根与系数的关系知识点整合一、一元二次方程根的判别式及根与系数关系1.根的判别式一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=.典例引领1.已知关于x 的一元二次方程()()22110x m x m m -+++=.(1)求证:无论m 取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m 的值及另一个根.【答案】(1)证明见解析(2)当0m =时,方程的另一个根为0x =;当1m =时,方程的另一个根为2x =【分析】本题主要考查了一元二次方程根的判别式,解一元二次方程,一元二次方程的定义,熟练掌握一元二次方程的相关知识是解题的关键.(1)只需要证明()()221410m m m ∆=-+-+>⎡⎤⎣⎦恒成立即可;(2)把1x =代入原方程得到20m m -=,解方程求出m 的值,进而根据m 的值解方程求出方程的另一根即可.【详解】(1)证明:由题意得,()()22141m m m ∆=-+-+⎡⎤⎣⎦依题意有:215x -+=,21x k -⋅=,解得26x =,6k =-,故k 的值为6-,方程的另一个根为6x =.9.求证:对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.【答案】见解析【分析】本题主要考查了一元二次方程()200ax bx c a ++=≠的根情况,判断其根的情况,完全取决于24b ac ∆=-的符号,当0> 时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【详解】解:()24422m m =--△2488m m =-+()2414m =-+.()210m -≥,∴()241440m =-+≥>△.∴对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.10.已知关于x 的一元二次方程()2320x m x m ++++=.(1)求证:不论实数m 取何值,方程总有实数根;(2)当m 取何值时,方程有两个相等的实数根?【答案】(1)见详解(2)1m =-【分析】本题考查了一元二次方程根的判别式,熟记“24b ac ∆=-”是解题关键.(1)方程有实数根时240b ac ∆=-≥,由此即可求解.(2)方程有两个相等的实数根即240b ac ∆=-=,由此即可求解.【详解】(1)证明:()()2243412b ac m m ∆=-=+-⨯⨯+26948m m m =++--221m m =++()21m =+(2)由题意得,222229k k ⨯+-=,整理得,245k k -=,根据()223122023342023k k k k -+=-+,计算求解即可.【详解】(1)解:∵2229x kx k +-=,∴22290x kx k -+-=,∴()()222419360k k ∆=--⨯⨯-=>,∴此方程有两个不相等的实数根;(2)解:由题意得,222229k k ⨯+-=,整理得,245k k -=,∴()2231220233420231520232038k k k k -+=-+=+=,∴23122023k k -+的值为2038.13.已知关于x 的方程22220x mx m ++-=.(1)试说明:无论m 取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求22122043m m ++的值.【答案】(1)证明见解析(2)2029【分析】本题主要考查了一元二次方程根的判别式,一元二次方程的解,代数式求值;(1)根据一元二次方程根的判别式,进行证明即可;(2)根据方程有一个根为3,得出267m m +=-,然后整体代入求值即可.解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.【详解】(1)证明:∵()()2222241244880m m m m ∆=-⨯⨯-=-+=>,∴无论m 取何值,方程总有两个不相等的实数根;(2)解:∵方程有一个根为3,∴223620m m ++-=,整理,得:267m m +=-,∴22122043m m ++()2262043m m =++()272043=⨯-+142043=-+2029=.14.已知关于x 的一元二次方程210x mx m -+-=.(1)若该方程有一个根是2,求该方程的另一个根;(2)求证:该方程总有两个实数根.【答案】(1)1(2)见解析【分析】本题主要考查了一元二次方程的解和根的判别式,(1)直接把2x =代入到原方程中得到关于m 的方程,再解方程即可得到答案;(2)根据一元二次方程根的判别式进行证明.掌握对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根;理解一元二次方程的解是使方程左右两边相等的未知数的值,是解决问题的关键.【详解】(1)解:当2x =时,4210m m -+-=3m ∴=,则原方程为:2320x x -+=,即:()()210x x --=,11x ∴=,22x =,∴另一个根1,(2)证明:()()2Δ411m m =--⨯⨯-244m m =-+()220m =-≥,∴该方程总有两个实数根;15.已知关于x 的一元二次方程()()25230x m x m +---=(1)求证:该方程总有两个实数根(2)如果该方程的两个实数根的差为4,求m 的值(2)“凤凰”方程必定有一个根是______;(3)已知方程20x mx n ++=是“凤凰”方程,且有两个相等的实数根,求mn 的值.【答案】(1)2230x x +-=(2)1(3)mn 2=-【分析】(1)本题主要考查一元二次方程根的情况,通过观察可以发现1x =是方程的根,直接写出一个根为1一元二次方程即可.(2)本题主要考查通过代数式观察,可以发现1x =是一元二次方程的一个根,直接求解即可.(3)本题主要考查由一元二次方程根的情况,推导出240b ac ∆=-=,可以得到一个方程,再由凤凰方程,又可以得到一个10m n ++=的方程,然后去求,m 和n 即可,最后求出mn 的值.【详解】(1)由题可知,要写出一个一元二次方程,并且满足一个根是1x =;即为:2230x x +-=.(2)关于x 的一元二次方程()200ax bx c a ++=≠,且满足0a b c ++=;∴1x =时,0a b c ++=;故凤凰”方程必定有一个根是1x =.(3)20x mx n ++= 是“凤凰”方程;10m n ∴++=,即1n m =--;方程20x mx n ++=有两个相等的实数根;240m n ∴∆=-=.将1n m =--代入,得()2410m m ---=;解得:2,1m n =-∴=;()212mn ∴=-⨯=-.19.已知关于x 的一元二次方程()23220x k x k ++++=.(1)求证:方程有两个实数根;(2)若方程的两个根分别为1x ,2x ,且1212217x x x x ++=,求k 的值.【答案】(1)见解析【分析】本题考查了一元二次方程根的判别式的意义,根与系数的关系,解一元二次方程;(1)求出0∆>即可证明;(2)根据根与系数的关系得出1221k x k x -=++,123x x +=,结合已知等式得出关于k 的一元二次方程,解方程可得答案.【详解】(1)证明:∵()()()2222234194444452140k k k k k k k ∆=---++=+--=-+=-+>,∴无论k 取何值,方程总有两个不相等的实数根;(2)解:∵方程22310x x k k ++--=有两个实数根1x ,2x ,∴1221k x k x -=++,123x x +=,又∵()()12113++=x x ,∴121213x x x x +++=,∴23131k k -+++=+,解得:12k =,21k =-.5.已知关于x 的一元二次方程220x x k ++=.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若m 是方程的根,且222m m +=,求k 的值.【答案】(1)1k <(2)2k =-【分析】本题主要考查了一元二次方程根的判别式与一元二次方程的解的含义,理解原理的应用是解本题的关键;(1)根据方程有两个不相等的实数根,可得240b ac ∆=->,求出k 的取值范围即可;(2)先由方程解的含义可得22m m k +=-,结合222m m +=即可求解.【详解】(1)解:∵关于x 的一元二次方程220x x k ++=有两个不相等的实数根,∴24440b ac k ∆=-=->,解得:1k <;(2)∵m 是方程220x x k ++=的根,∴220m m k ++=即22m m k +=-,∵222m m +=,∴2k -=,解得:2k =-.6.已知关于x 的一元二次方程2210(0)nx x n -+=≠有实数根.(1)求n 的取值范围;(2)当n 取最大值时,求方程2210(0)nx x n -+=≠的根.【答案】(1)1n ≤且0n ≠(2)121x x ==【分析】本题主要考查了一元二次方程的根的判别式以及解一元二次方程.(1)根据题意,可得240b ac ∆=-≥,即440n -≥,解不等式,并根据一元二次方程的定义确定n 的取值范围即可;(2)结合n 的取值范围确定n 的最大值,然后利用配方法解该方程即可.【详解】(1)解:根据题意,一元二次方程2210(0)nx x n -+=≠有实数根,则224(2)41440b ac n n ∆=-=--⨯⨯=-≥,解得1n ≤,又∵0n ≠,∴n 的取值范围是1n ≤且0n ≠;(2)由1n ≤且0n ≠得,n 的最大值为1,把1n =代入原方程得2210x x -+=,∴2(1)0x -=,解得121x x ==.7.己知一元二次方程2410x x m -+-=.(1)若方程有两个不相等的实数根,求实数m 的取值范围;(2)若方程有两个相等的实数根,求实数m 以及此时方程的根.【答案】(1)5m <(2)5m =,122x x ==【分析】本题考查了根的判别式,牢记“①当0∆>时,方程有两个不相等的实数根;②当Δ0=时,方程有两个相等的实数根;③当Δ0<时,方程无实数根.”(1)由方程有两个不相等的实数根结合根的判别式,即可得出关于m 的一元一次不等式,解之即可得出结论;(2)由方程有两个相等的实数根结合根的判别式,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)解:2(4)4(1)m ∆=---,方程有两个不相等的实数根,∴0∆>,解得5m <.(2) 方程有两个相等的实数根,∴Δ0=,即164(1)0m --=解得5m =(1)若所捂的部分为【详解】(1)解:∵方程有实数解是1x 和2x ,∴()22410k ∆=--≥,解得2k ≤,故k 的取值范围是2k ≤;(2)∵一元二次方程2210x x k ++-=的实数解是1x 和2x ,∴122x x +=-,121x x k ⋅=-,则()121221x x x x k +-=---,∵12121x x x x +-<-∴()211k ---<-,解得0k >,又由(1)知2k ≤,∴02k <≤,∵k 为整数,∴k 的值为1或2.13.已知关于x 的一元二次方程250x ax a ++-=.(1)若该方程的一个根为3,求a 的值及该方程的另一个根;(2)求证:不论a 为何值,该方程总有两个不相等的实数根.【答案】(1)方程的另一根为2-;(2)见解析【分析】本题主要考查一元二次方程根的判别式及根与系数的关系,(1)将方程的根代入可求得a 的值,再根据根与系数的关系可求得另一个根;(2)用a 表示出其判别式,利用配方可化为平方的形式,可判断判别式的符号,可得出结论;掌握一元二次方程根的判别式与根的个数的关系及根与系数的关系是解题的关键.【详解】(1)解:将3x =代入方程250x ax a ++-=可得:9350a a ++-=,解得1a =-;∴方程为260x x --=,设另一根为x ,则36x =-,。

一元二次方程的根的判别式和根与系数关系复习

一元二次方程的根的判别式和根与系数关系复习

一元二次方程的根的判别式和根与系数关系一、知识要点:1、一元二次方程20(0)ax bx c a ++=≠的根的判别式:24b ac ∆=-;2、一元二次方程20(0)ax bx c a ++=≠的根与系数关系:(1)设12,x x 是方程20(0)ax bx c a ++=≠的两根,则有1212,b c x x x x a a+=-=;(2)以12,x x 为两根的一元二次方程是:21212()0x x x x x x -++=。

3、公式变形:2221212122212121212121212121212(1)()2(2)()()4(3)(1)(1)()111(4)(5)x x x x x x x x x x x x x x x x x x x x x x x x x x +=+--=+- ++=++++ += -==121212121210000010x x x x x x x x x x x ⇔∆>⇔∆⇔∆<⇔∆≥∆≥⎧⎪⇔+=⎨⎪≤⎩∆≥⎧⇔⎨⎩∆≥⎧⎪⇔+>⎨⎪>⎩∆≥⇔+4、(1)方程有两个不等实根;(2)方程有两个相等实根=0;(3)方程没有实根0;(4)方程有两个实根0(5)方程有两个互为相反数的实根 (6)方程有两个互为倒数的实根=0 (7)方程有两个正根0 (8)方程有两个负根2121212121200000x x x x x x x x x x x ⎧⎪<⎨⎪>⎩∆>⎧⎪⇔+>⎨⎪<⎩∆>⎧⎪⇔+<⎨⎪<⎩0 (9)方程有两个异号根,且正根的绝对值比较大0 (10)方程有两个异号根,且负根的绝对值比较大例1、解关于x的方程:2--+=m x mx m(1)20例2、已知关于x的一元二次方程2m x mx m+++-=有两个不等实根,且这两根又不互为相反数,(1)230求m的取值范围。

例3、已知关于x的方程22--+=x m x m4(2)40(1)若方程有两个相等实根,求m的值,并求出方程的根;(2)是否存在正数m,使方程的两个实根的平方和等于224?若存在,请求出满足条件的m值;若不存在,请说明理由。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
上述命题的逆命题也正确
பைடு நூலகம்
例3:当m为何值时,方程(m-1)x²+2mx+m+3=0
①﹑无实根
②﹑有实根
③﹑只有一个实根
④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析 (1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 ② △≥0 且m-1≠0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根

;/ 嗨热线网
一元二次方程根的判别式
一元二次方程根的判别式是一个比较重要的知识点,它的应用很广泛,既可以 用来判断一元二次方程根的情况,还是后续知识点的基础和准备。另一方面, 根的判别式也能独立形成综合题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一对一个性化辅导讲义1、根的判别式
解下列方程:
⑴ x2 4x 6 0
⑶1 x2、2x 1 0
2 ⑷ 3x x 2 5x2
姓名
教师寄语
课题
学科:数学任课教师: 授课时间:年月日(星期)年级学校中
天道酬勤
根的判别式、根与系数的关系
重点2、根与系数的关系难点根与系数的关系
二、新课讲解
木木⑵ 2x2 3 7x
知识点一:一元二次方程根的判别式
(1)/= b2—4ac叫一元二次方程ax2+bx+c=0(a工0)的根的判别式。

(2)运用根的判别式,在不解方程的前提下判别根的情况:
①/ =b2—4ac > 0 方程有两个不相等实数根;
②/ =b2—4ac =0 方程有两个相等实数根;
③/ =b2—4ac v 0 •=:■-方程没有实数根;
④/ =b2—4ac > 0 ';方程有两个实数根。

(3)应用:
①不解方程,判别方程根的情况;
②已知方程根的情况确定方程中字母系数的取值范围;
③应用判别式证明方程的根的状况(常用到配方法);
注意:运用根的判别式的前提是该方程是一元二次方程,即:a^ 0
例1、不解方程,判断下列方程根的情况
1 x
2 3x 2 0
2 2x2
3 0
3 m m x 2m 1 x 1 0关于x的方程
例2、当m为何值时,关于x的一元二次方程x2 4x m:0有两个相等
的实数根?此时两个实数根是多少?
知识点二:一元二次方程根与系数的关系(韦达定理)
(1) 如果一元二次方程ax 2+bx+c=0(a 工0)的两个实数根是x ,,x 2, 那E 么 X i x 2
b
, X i x 2
— a
a
(2) 应用:
① 验根,不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两 个根;
② 已知方程的一个根,求另一根及未知系数的值;
③ 已知方程的两根满足某种关系,求方程中字母系数的值或取值范围; ④ 不解方程可以求某些关于X i ,X 2的对称式的值,通常利用到:
当x i x 2=0且x i x 2 <0,两根互为相反数; 当0且X i X 2=i ,两根互为倒数。

(重点强调:一元二次方程根与系数的关系是在二次项系数 0,/》0前提条件
下应用的,解题中一定要注意检验)
⑩用公式法因式分解二次三项式 ax 2+bx+c (a 工0):
ax 2+bx+c=a (x-x i ) (x-x 2)其中 x i , X 2是方程 ax 2+bx+c=0(a 工0)的两个实数根。

例3、不解方程,求下列方程的两根的和与积
2 X
i
2 X
2
(X i X 2)2 2x i x 2
(X i X 2)2
(X i
X 2)
4x i x 2
(1) 2 x4x 1 0
(2) 4x22x 7 0
(3) 3x210 2x28x
分析:先把方程整理成
-
一般形

例4、已知x 1是方程x2 mx 5 0的一个根,求m的值及方程的另一根x?
例5、(2015?可南)已知关于x的一元二次方程(x - 3) (x-2) =| m| .
(1)求证:对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.
♦【变式训练】
1、若关于x的一元二次方程ax2 2x 6 0有两个实数根,求a的取值范围.
2、已知方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,求k的值
♦【巩固练习】
1、已知关于x的方程kx2 4kx k 5 0有两个相等的实数根,求k的值.
2、(2016?梅州)关于x的一元二次方程x2+ (2k+1)x+k2+1=0有两个不等实根x i、
X2.
(1)求实数k的取值范围.
(2)若方程两实根X I、X2满足x i+x2= - X1?比,求k的值.
三、随堂检测
1、(2016?昆明)一元二次方程x2- 4x+4=0的根的情况是()
A .有两个不相等的实数根
B .有两个相等的实数根
C.无实数根 D .无法确定
2、(2016?可北)a, b, c为常数,且(a- c)2>a2+c2,则关于x 的方程ax2+bx+c=0 根的情况是()
A .有两个相等的实数根
B .有两个不相等的实数根
C.无实数根 D .有一根为0
3、解方程
(1)x2+4x -仁0. (2)x2- 2x=4.
⑶ 2 (x - 3) 2=x2- 9. (4)X2+2X- 5=0.
五、课后作业
(2016?孝感)已知关于x 的一元二次方程x 2- 2x+m r 1=0有两个实数根x i , X 2. (1) 求m 的取值范围;
(2) 当 x i 2+X 22=6x i X 2 时,求 m 的值.
四、课堂小结
元二次方程根的判别式
2
b 4ac
0,有两个不等的实数根
0,有两个相等的实数根 0,无实数根
韦达定理
X 2
-,X i ?X 2 -
a
a。

相关文档
最新文档