数学物理方法第二篇第3章

合集下载

数学物理方法(王元明)第三章

数学物理方法(王元明)第三章

( x at ) 代表以速度a 沿x 轴正向传播的波 ( x at ) 代表以速度a 沿x 轴负向传播的波
1 2
1 x at ( )d b. 只有初始速度时: u ( x, t ) x at 2a 假使初始速度在区间 上是常数 ,而在此区间外恒等于0
u( x, t ) 1 ( x at ) 1 ( x at )
特征方程 A(dy)2 2Bdxdy C(dx)2 0
b 2 4ac A B 4 AB A 2 2 2 2 (d y ) a (d x ) 0 0 4 1 ( a ) 4 a 0 a 0 2 2 x y 双曲型方程 2u 2u 2 2 2 0 0 4 1 1 0 (d y ) (d x ) 0 2 2 x y 椭圆型方程 2 u u a2 2 0 2 4 1 0 0 (dy)2 0 t x 抛物型方程
u u u u u A B x x x
y Ax
y Bx
2 2 2u u u u u 2u 2 u 2 u A B A B A 2 AB B 2 2 x x x 2 u u u u u y y y
e
( x at ) 2
]
1 2

x at x at

x at
2ase
s 2
ds

( x at ) 1 [ e 2
2
2
e
( x at ) 2
] 1 [ e 2
x at x at s 2

数学物理方法第三章-精品文档126页

数学物理方法第三章-精品文档126页

解 级数的部分和为
sn

1

z

z2

z k1

1 zk 1 z
,
(z

1)
26
z 1
z 1
lim
k
sk

1 1
z
lim z k 0
k

级数 zk 收敛,
k0

级数 zk 发散.
k0
由阿贝尔定理知: 收敛范围为一单位圆域 z 1,
在此圆域内, 级数绝对收敛, 收敛半径为1,
从某个k开始,
总有
z k
1, 2
于是有
zk kk


1 2
k
,
故该级数对任意的z均收敛. 11
(2) 对所有的正实数除 z=0 外都发散. 此时, 级数在复平面内除原点外处处发散. 例如,级数 1z22z2kkzk
当z0时, 通项不趋于零, 故级数发散. (3) 既存在使级数发散的正实数, 也存在使级数收 敛的正实数.
[证毕]
18
注意:
定理中极限 lim ak1 存在且不为零 . k ak
如果:

1.0, 则级数 ak zk 在复平面内处处收敛 ,
k0
即 R .
2.(极限不存在),
¥
å 则级数 ak zk 对于复平面内除 z = 0以外的一切 k=0
z 均发散, 即 R0.
19
课堂练习 试求幂级数
n p
wk ,
k n1
绝对收敛
式中 p 为任意正整数



若 wk uk2vk2 收敛,则称 w k 绝对收敛

《数学物理方法》第3章

《数学物理方法》第3章
1 k

(3.2.1) 其中所有的ak和b为复常数,b点称为幂级数 的中心,ak 为幂级数的系数。
32
§3.2.1 阿贝尔定理

定理
若幂级数 ,在某点z0收敛, 则级数在以b点为圆心, |z0-b|为半径的圆内绝
对收敛,并在
|z-b|≤q| z0-b| (0<q<1) (3.2.2)
的闭圆上一致收敛.

由比值法易得两级数之R1 =R2=1/3,故题设 级数的R=1/3.
50
(方法三)变量代换法.

令w=(3z)2,则
,易见
w平面与z平面中级数收敛半径的关系亦为
51
既然幂级数在收敛圆内收敛,
在收敛圆外发散.
那么,在收敛圆周上情况怎样
呢?
52
【例3.2.4】已知下述幂级数的收敛半径R=1, 问它们在收敛圆周上的敛散性如何?
设级数 在圆|z-b|= |z1-b|外的z2 点收敛(|z2-b| > |z1-b|).由阿贝尔定理可知, 该级数必在圆|z-b|= |z2-b|内收敛(z1点在该收敛 内),这与级数在z1点发散的假设矛盾,推论 得证.
36
§3.2.2 收敛圆与收敛半径

阿贝尔定理及其推论表明: (1)幂级数 在某

除了直接用级数一致收敛的充要条件进行判别外,还 有两个很有用的判别法,如表3-2所示.
35
24
26
20
4. 一致收敛级数的重要性质
一致收敛级数的三个性质的
条件与结论之间的联系列于表3-3.


一致收敛级数性质(1)、(2)的证明见习题3.1.5 和习题3.1.6; 这里仅证明性质(3),即证明 性质(3) 魏尔斯 特拉斯(Weierstrass)定理

数学物理方法整理(全)

数学物理方法整理(全)

CR条件极坐标形式
u 1 v 1 u v
f z u v u v 0 CR条件: i 0 z x y y x 解析函数 性质1、f(z)在区域 B 解析,u(x,y)和v(x,y)为共轭调和函数 u(x,y)和v(x,y)都满足二维 Laplace 方程
若l所围区域包围n个奇 点b1 b2 b3 …., bn , 则 单极点
f z dz 2 i Re sf (b )
l j 1 j
n
称为留数定理
Re sf ( z0 ) lim ( z z0 ) f ( z )
z z0
m 1
1 d m Re sf ( z ) lim { [( z z ) f ( z )]} m阶极点 0 0 m 1 z z0 (m 1)! dz
m为z0的阶,z 0为m阶极点,一阶极点 单极点 z0本性奇点 m ,
第四章 留数定理

l
f ( z )dz ak ( z z0 ) k dz 2ia1 2i Re sf z0
k l0

a1 Re sf ( z0 )
a-1称为f(z)在 奇点z0的留数
k

k
0
f(z)正幂部分称为解析部分,负幂部分称为主要部分 (z-z0 )-1的系数a-1称为f(z)在 奇点z0的留数
若 f ( z) a0 a1 ( z z0 ) a2 ( z z0 )2 z0可去奇点
m m1 f ( z ) a ( z z ) a ( z z ) ... a0 a1 ( z z0 ) 若 m 0 m1 0
f ( z)

【免费下载】数学物理方法讲义

【免费下载】数学物理方法讲义

0

ih t
复数


ቤተ መጻሕፍቲ ባይዱ
h2 2m
x, y, z, t
1. 数的概念的扩充
正整数(自然数) 1,2,…
负数
整数

运算规则 +,-,×,÷, 2 ,
- 1 2 1
÷2
2
x2
0,-1,-2,…
…,-2,-1,0,1,2,…
2
y 2
1 0.5 1 0.333
有理数(分数) 整数、有限小数、无限循环小数
无理数 无限不循环小数
实 数 有理数、无理数
虚数 复数
2. 负数的运算符号
2 1.414
1 i yi
实数、虚数、实数+虚数
x2 1
x i
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数学物理方法.PDF

数学物理方法.PDF

第一章 典型的推导即基本概念本章讨论偏微分方程及其定解问题有关的基本概念和物理模型,讨论某些一般性的原理、方法。

这样,对从总体上了解课程的特点、内容、方法有重要的作用。

由于我们要讨论的这些偏微分方程都来自物理问题,因此我们先研究如何推导出这些方程,并给出相应的定解条件。

最后简单地介绍一下二阶线性偏微分方程的分类。

1.1弦振动方程与定解条件数学物理方程中研究的问题一般具有下面两个:一方面是描述某种物理过程的微分方程;另一方面是表示一个特定的物理现象的具体的表达式。

我们通过推导弦振动方程引入这些概念。

1.1.1方程的导出设有一根理想化的弦,其横截面的直径与弦的长度相比非常小,整个弦可以任意变形,其内部的张力总是沿着切线方向。

设其线密度为ρ,长度为l ,平衡时沿直线拉紧,除受不随时间变换的张力作用及弦本身的重力外,不受外力的影响。

下面研究弦作微小横向振动的规律。

建立坐标系如图1-1,所谓横向,是指运动全部在某一包含x 轴的xu 平面内进行,且在振动过程中,弦上各点在x 轴方向上的位移比在u 轴方向上的位移小得多,前者可以忽略不计。

因此用时刻t 、弦上的横坐标为x 的点在u 轴方向上的位移),(t x u 来描述弦的运动规律。

所谓“微小”,不仅指振动的幅度),(t x u 很小,同时认为切线的倾角也很小,即1<<∂∂xu, t 时刻,任选一段弦,其每一点的位置如图1-1所示。

其中MN t x u =),(,且弧s M M d =′现在建立位移),(t x u 满足的方程。

首先,我们将弦段M M ′上的运动,近似认为一个质点的运动。

根据牛顿运动定律,我们得到在x 轴方向,弦段M M ′受力总和为α′+α−=cos cos T T F x因为弦只作横向振动,在x 轴方向没有位移,因此合力为0,即0cos cos =α′+α−T T (1.1.1)由于是微小振动,因此α′α,近似为0,因此由泰勒公式L ++−=!4!21cos 42x x x当略去高阶无穷小时,有1cos cos ≈α′≈α代入(1.1.1)可以得到T T ′=在u 轴方向上,弦段N M ′受力的总和为s ρg T T F u d sin sin −α′′+α−=因为0≈α′≈α,所以x t x x u xt x u ∂+∂=α′≈α′∂∂=α≈α),d (tan sin ,),(tan sin x x xt x u s d d )),((1d 2≈∂∂+=图1-1弧段M M ′在t 时刻,沿u 方向运动的加速度近似为22),(tt x u ∂∂,x 为弧段M M ′的质心。

数学物理方法讲义

数学物理方法讲义

《数学物理方法》(Methods of MathematicalPhysics)《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学方法及工具。

课程内容:复变函数(18学时),付氏变换(20学时),数理方程(26学时)第一篇复变函数(38学时)绪论第一章复变函数基本知识4学时第二章复变函数微分4学时第三章复变函数积分4学时第四章幂级数4学时第五章留数定理及应用简介2学时第六章付里叶级数第七章付里叶变换第八章拉普拉斯变换第二篇数学物理方程(26学时)第九章数理方程的预备知识第十章偏微分方程常见形式第十一章偏微分方程的应用绪 论含 义使用数学的物理——(数学)物理 物理学中的数学——(应用)数学Mathematical Physics方 程1=x{222111c y b x a c y b x a =+=+()t a dtdx= ⎰=)(t a xdt常微分方程0222=⎪⎪⎭⎫ ⎝⎛+x dt x d ω ()C t A x +=ωcos偏微分方程——数学物理方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ψψψ ()z y x ,,ψψ=12=x()ψψψψψz y x U zy x m h t h i ,,22222222+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂-=∂∂()t z y x ,,,ψψ=复 数1. 数的概念的扩充正整数(自然数) 1,2,…运算规则 +,-,×,÷,()2,- 121-=-负 数 0,-1,-2,…整 数 …,-2,-1,0,1,2,…÷ 5.021= 333.031=有理数(分数) 整数、有限小数、无限循环小数414.12=无理数 无限不循环小数 实 数 有理数、无理数i =-1 虚 数y i复 数 实数、虚数、实数+虚数 yi x y x +,,2. 负数的运算符号12-=xi x ±=i 虚数单位,作为运算符号。

数学物理方法(第四版)(汪德新)PPT模板

数学物理方法(第四版)(汪德新)PPT模板

12.1傅里 叶变换
1
12.2傅里 叶变换法
2
12.3拉普 拉斯变换
3
12.4拉普拉 斯变换法
4
第三篇数学物理方程
第13章格林函数法
03
*13.3格林函数法
在波动问题中的应

02
*13.2格林函数法 在输运问题中的应

01
*13.1格林函数法 在稳定场问题中的
应用
第三篇数学物理方程
第14章保角变换法
02 第17章Z变换
*17.1Z变换的定义及其性质 *17.2用Z变换求解差分方程
03 第18章小波变换
*18.1从傅里叶变换,加博变换到小波 变换 *18.2连续小波变换的性质
第四篇数学物理 方法的若干新兴 分支
06 参考文献
参考文献
07 附录
附录
1. 附录A微分算符▽的若干常用公式 2. 附录B几种常用的常系数常微分方程的解 3. 附录C广义积分与积分主值 4. 附录D二阶线性齐次常微分方程w″(z)+p(z)w′(z)+q(z)w(z)
数学物理方法(第四版)(汪德新)
演讲人
2 0 2 X - 11 - 11
01 前言
前言
02 第一篇复变函数导论
第一篇复变函数导 论
第1章复变函数与解析函数 第2章复变函数的积分 第3章解析函数的级数表示 第4章留数定理及其应用 第5章解析延拓多值函数及其黎曼面
第一篇复变 函数导论
第1章复变函数与解析函 数
6.3勒让德多项式的正交性与完备 性
6.2勒让德多项式的微分与积分表 达式母函数与递推公式
6.4关联勒让德方程与关联勒让德 函数
第二篇特殊函数场论与狄拉克δ函数

数学物理方法电子教案第三章

数学物理方法电子教案第三章

第三章 幂级数展开§3.1 复数项级数(一) 复数项级数 1.复数项级数定义 复数项级数:()1.1.3..., (211)++++=∑∞=k k kw w w w,级数中每一项都可分为实部和虚部k k k iv u w +=那么,∑∑∑∞=∞=∞=+=111k k k k k k v i u w 即一个复数项级数可以用两个实数项级数来表示。

这样,实数项级数的许多性质都可以用到复数项级数中。

2. 复数项级数收敛的柯西判据复数项级数(3.1.1)收敛的充分必要条件是,对于任一给定的正数ε,必有N 存在,使得n>N时,,1ε<∑++=pn n k kw其中,p 为任意正整数。

3. 复数项级数的绝对收敛如果复数项级数(3.1.1)各项的模(正实数)组成的级数)3.1.3( (1)221∑∑∞=∞=+=k k k k kv u w收敛,就把复数项级数(3.1.1)叫做绝对收敛。

◆ 绝对收敛的复数项级数必是收敛的◆ 绝对收敛的级数各项先后次序可以改变,其和并不因此改变。

4. 两个绝对收敛的复数项级数之积仍然绝对收敛n n m mk kk k q pqp •=•∑∑∑∞=∞=∞=1,11(二) 复变项级数(函数项级数) 1. 复变项级数定义()()()()()6.1.3..., (2)11++++=∑∞=z w z w z w z w kk k它的各项是z 的函数。

2.复变项级数收敛如果在某个区域B (或某根曲线 l )上所有的点,级数(3.1.6)都收敛,就叫做在B (或l )上收敛。

3.复变项级数收敛的柯西判据及一致收敛复变项级数(3.1.6) 在某个区域B (或某根曲线 l )上收敛的充分必要条件是,在B (或l )上各点z, 对于任一给定的小正数ε,必有()εN 存在,使得()εN n >时,(),1ε<∑++=pn n k kz w 式中p 为任意正整数。

数学物理方法第四版期末总结ppt课件

数学物理方法第四版期末总结ppt课件

d [ (i)3k (z i)k1] 1
(i)3k (k 1)(z i)k2
z i dz k0
z i k0
3
(k 2)i3(k3) (z i)k , (1 z i ) k
28
三、有限远孤立奇点分类及其类型判定
奇点名称 0 z z0 R 的洛朗级数 可去奇点 不含负幂项
22
例1 求幂级数 k(z i)k 的收敛圆. k 0

ak k
R lim ak a k
k 1
lim k k k 1
1
收敛圆: z i 1
23
例2
幂级数 ez zk
k0 k !
的收敛域。
1
解:
R lim ak lim
a k
k
k 1
k! 1
(k 1)!
lim k 1 , k
b2,…,bn外连续,则f(z)沿l正向积分 l f (z)dz 之值
等于f(z)在l所围区域内各奇点的留数和的2 i倍.
n
l
f
(z)dz
2 i
Re sf
j 1
(bj )
注意: 左边的积分是沿l 的正向进行的;
右边的奇点是指l 所围区域内的,并非是f(z)所有的奇点。
31
二、计算留数 各孤立奇点留数的计算公式
法二 零点和极点的关系
若z = z0是
f(z)的m阶零点,则z =
z0必是
1 f (z)

m阶极点。
2)
1
zk
1 z k0
3)
1
(1)k zk
1 z k0
( z ) ( z 1) ( z 1)
4) sin z (1)k

2-第三章 数学物理方法

2-第三章   数学物理方法
z 0, z 1 k
1 k
( k 1 , 2 , )
0,
x
因为
k
lim
即k , z 0
总有 f ( z )
即在 z 0 的不论怎样小的去心邻域内, 的奇点存在, 所以 z 0 不是孤立奇点.
二、孤立奇点的分类及性质:
1.孤立奇点的分类: (1)可去奇点: 若函数f(z)在 0 z z 0 R 的环域内,可展为无负幂次项部分
k 0
1
( z 1)
k 1

k
(0 z 1 1)
(2)在区域
1 z2 1
1 z 1

1
( z 1) 1

( z 1)[1 (
)] z 1
1

1

z -1 k 0 ( z -1)
k 0


1
k 1
1 ( z 1)
3
1 3 , b3 1 6! 1 45 , b5 2 945
b5
ctgz
1 z

1 3
z
1 45
z
2 945
z
5
例4 将
1 z ( z 1)
分别在邻域 D1 : 1
z i
2和D2 :
2 z i
展开
在非奇点z=i 处展开为洛朗级数 解 函数有两个奇点 z=0 , z=-1。 1 1 1 f ( z) 函数在给定的区域解析。 z ( z 1) z z 1 对于D1区域:
z 0 称为f(z)的孤立奇点。
2.非孤立奇点: 函数f(z)在 z 0 的邻域内除在 z 0 点处不可导以外,还至 少存在一点使f(z)在该点处不可导,此点称为非孤立奇点。

数学物理方法讲义

数学物理方法讲义

《数学物理方法》(Methods of MathematicalPhysics)《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学方法及工具。

课程内容:复变函数(18学时),付氏变换(20学时),数理方程(26学时)第一篇复变函数(38学时)绪论第一章复变函数基本知识4学时第二章复变函数微分4学时第三章复变函数积分4学时第四章幂级数4学时第五章留数定理及应用简介2学时第六章付里叶级数第七章付里叶变换第八章拉普拉斯变换第二篇数学物理方程(26学时)第九章数理方程的预备知识第十章偏微分方程常见形式第十一章偏微分方程的应用绪 论含 义使用数学的物理——(数学)物理 物理学中的数学——(应用)数学Mathematical Physics方 程1=x{222111c y b x a c y b x a =+=+()t a dtdx= ⎰=)(t a xdt常微分方程0222=⎪⎪⎭⎫ ⎝⎛+x dt x d ω ()C t A x +=ωcos偏微分方程——数学物理方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ψψψ ()z y x ,,ψψ=12=x()ψψψψψz y x U zy x m h t h i ,,22222222+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂-=∂∂()t z y x ,,,ψψ=复 数1. 数的概念的扩充正整数(自然数) 1,2,…运算规则 +,-,×,÷,()2,- 121-=-负 数 0,-1,-2,…整 数 …,-2,-1,0,1,2,…÷ 5.021= 333.031=有理数(分数) 整数、有限小数、无限循环小数414.12=无理数 无限不循环小数 实 数 有理数、无理数i =-1 虚 数y i复 数 实数、虚数、实数+虚数 yi x y x +,,2. 负数的运算符号12-=xi x ±=i 虚数单位,作为运算符号。

数学物理方法-复变函数-第三章-幂级数

数学物理方法-复变函数-第三章-幂级数
收敛域
在复平面上,幂级数的收敛域是由收 敛半径决定的圆环或点集。对于形如 (a_n(z-a)^n)的幂级数,其收敛域可 能是圆环、半圆、点或全平面。
幂级数的可微性
幂级数的导数
对于形如(a_n(z-a)^n)的幂级数 ,其导数也是形如(a_n(z-a)^n) 的幂级数。
可微性
如果一个幂级数在某点处可微, 则该点处函数的值可以通过幂级 数的导数来近似计算。
在求解波动方程时,幂级数展开可以提供一种简洁的近似方法,用于分析波动现 象的近似解。这种方法在处理复杂波动问题时特别有效,如非线性波动和多维波 动问题。
在热传导方程中的应用
热传导方程是描述热量传递过程的偏微分方程,广泛应用于 工程和科学领域。通过将热传导方程转化为幂级数形式,可 以方便地求解热量传递问题。
收敛性和应用
分式函数的幂级数展开在x不等于0时 收敛,可以用于计算分式函数的近似 值,尤其在处理分式函数的积分和微 分时非常有用。
04
幂级数展开在物理问题中的 应用
在波动方程中的应用
波动方程是描述波动现象的基本方程,如声波、光波和水波等。通过将波动方程 转化为幂级数形式,可以方便地求解波动问题,得到波的传播规律和性质。
幂级数展开在处理复杂电磁场问题时特别有用,如非均匀 介质中的电磁波传播和多维电磁场问题。这种方法能够提 供近似解,帮助我们更好地理解电磁场的规律和性质。
05
幂级数展开的进一步研究
幂级数展开的误差分析
01
02
03
误差来源
主要来源于截断误差和舍 入误差。
误差估计
通过泰勒级数展开,可以 估计幂级数展开的误差大 小。
幂级数的可积性
幂级数的积分
对于形如(a_n(z-a)^n)的幂级数,其积分也是形如(a_n(z-a)^n)的幂级数。

数学物理方法 第三章 幂级数展开

数学物理方法 第三章 幂级数展开
wuxia@
y
∞ 1 1 1 1 1 ∞ 1 例: ∑ Re z ⋅ 2k = ∑ x ⋅ 2k = x ∑ 2k k =1 k =1 k =1 ∞
i D1 D2
1 n+ p 1 1 2 若级数收敛,则∀ε > 0, 要求 | ∑ k |< ε o x x k = n +1 2 N与x有关,当x → 0时,N (ε , x) → ∞, 在D1上找不到最大的N, D1上收敛但不一致。 D 2上,x > 1, ∃N (ε ,1), D 2上一致收敛,
上次课复习
柯西Cauchy定理
单连区域柯西定理:
如果函数f(z)在闭单通区域B上解析,则沿B上的 任一分段光滑闭合曲线l,有
∫ f ( z )dz = 0
l
复通区域柯西定理:
如果f(z)是闭复通区域上的单值解析函数,则
∫ f ( z )dz + ∑ ∫
l i =1
n
li
f ( z )dz = 0
wuxia@
k +1 1 k 1
ak +1 1 = lim | | R1 = R1 < 1 k →∞ ak R
wuxia@
k =1
收敛,则幂级数在收敛圆内部绝对且一致收敛。
例1:求幂级数1 + t + t 2 + ⋯ + t k + ⋯的收敛圆,t为复变数。 解: ak ak = 1, R = lim | |= 1 k →∞ a k +1 收敛圆以t = 0为圆心,R = 1,圆内表示为 | t |< 1 说明: 其实,本例是几何级数,公比为t, t k = 1 + t + t 2 + ⋯ + t n ∑

(完整word版)数学物理方法总结(改)(word文档良心出品)

(完整word版)数学物理方法总结(改)(word文档良心出品)

数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而 ()x C ϕ=.故 v=2xy+C.222()(2)f z x y i x y C z i C=-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2lf z f dz iz απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限11010l i m l i m 1k k k k k k kk a z z aR a a z z +++→∞→∞->=-,即说明20102000()()()......()......k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1l i m1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑. 双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim{[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--. 推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xz zz π-====-=-+++++⎰⎰⎰,Z的单极点为1,22z ==- 则221Re (22241z s i z z z π→--=+=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()}i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()}i m x G x m x d x G x e π∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n )k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰, k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i l lk l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1. ()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()ptf p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()()c f t c f t c f pc fp ++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a . (5) 位移定理 ()()te f t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()()f t f t f p f p , 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为ux∂∂,xx u 意为22u x ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)u f M t n∑∂=∂第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sinn n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k l k X x C x lπλπ+=+= 其中 k=0,1,2…… (4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+. 初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(c o s )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(c o s )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l lr r l u A r P x P x P x θθ∞======+∑,则 22200121(,)(c o s )(c o s )33l l l l u r A r P r P r θθθ∞===+∑.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 行波法和通积分法§2.3.1一维波动方程哥西问题达朗贝尔公式无限长均匀弦的自由振动归结为一维齐次波动方程的哥西问题:⎩⎨⎧==>+∞<<-∞=-)()0,(),()0,()0,(,02x x u x x u t x u a u t xx tt ψϕ 这个方程的特征方程为 0)(22=-at x d d ,所以波动方程是双曲型方程,有两组实的特征线1c at x =-,2c at x =+,作自变量的变换,令at x -=ξ,at x +=η, 应用复合函数求导法则,有ηξηξau au a u a u u t +-=⋅+-=)(,ηξηξu u u u u x +=⋅+⋅=11,ηηξηξξu a u a u a u tt 2222+-=,ηηξηξξu u u u xx ++=2,代入波动方程中,化简得0=ξηu ,利用偏导数的意义,得通解)()()()(),(at x G at x F G F t x u ++-=+=ηξ,其中F 和G 是任意二阶连续可微函数.由),(t x u 满足的初始条件来确定F 和G 的具体形式,于是 得函数方程⎩⎨⎧='+'-=+)()()(),()()(x x G a x F a x x G x F ψϕ 积分第二式得C ax G x F xx +=+-⎰ααψd 0)(1)()(,C 为积分常数.从而得2)(21)(21)(0C a x x F xx --=⎰ααψϕd ,2)(21)(21)(0C ax x G xx ++=⎰ααψϕd故得一维齐次波动方程哥西问题的解 ααψϕϕd ⎰+-+++-=atx atx aat x at x t x u )(21)]()([21),(,这就是著名的达朗贝尔公式.通常称)(at x F -为右传播波(或右行波),称)(at x G +为左传播波(或左行波),a 为速度.所以这种解波动方程哥西问题的方法称为行波法,在数学上又叫通积分法.例1. 一端运动的半无限长均匀弦的自由振动,归结为求解下面的初边值问题:⎪⎩⎪⎨⎧+∞<≤==>=>+∞<<=-)0(),()0,(),()0,()0(),(),0()0,0(,02x x x u x x u t t t u t x u a u t xx tt ψϕμ a 是波的传播速度,当x ≥at 时,端点)(),0(t t u μ=的波动不会对解),(t x u 产生影响,所以这时ααψϕϕd ⎰+-+++-=atx atx aat x at x t x u )(21)]()([21),(,(x ≥at )特别地,当at x =时,有)()(21)]2()0([21),(20t g aat t at u at≡++=⎰ααψϕϕd是已知函数.现在只需确定问题在0≤x at <处的解,由通解式)()(),(at x G at x F t x u ++-=,分别令0=x 与atx =可得⎩⎨⎧==+==+-)(),()2()0(),(),0()()(t g t at u at G F t t u at G at F μ由此导出,)0()2()(F ag G -=ββ, )0()2()()()()(F ag aG aF +---=---=ββμββμβ从而有)()(),(at x G at x F t x u ++-=)2()2()(aat x g ax at g ax at ++---=μααψϕϕμd ⎰+-+--++-=atx xat ax at at x ax t )(21)]()([21)(,(0≤x at <)故一端运动的半无限长均匀弦的自由振动问题的解为⎪⎪⎩⎪⎪⎨⎧<≤+--++-≥+++-=⎰⎰+-+-)0(,)(21)]()([21)()(,)(21)]()([21),(at x a x at at x a x t at x a at x at x t x u atx xat atx at x ααψϕϕμααψϕϕd d 例2. 一端受力作用的半无限长均匀弦的自由振动问题.⎪⎩⎪⎨⎧==≥=>+∞<<=-),()0,(),()0,()0(),(),0()0,0(,02x x u x x u t t t u t x u a u t x xx tt ψϕμ因为a 是波的传播速度,当x ≥at 时,同样,端点0=x 的波动)(),0(t t u x μ=不会对解),(t x u 产生影响,因此在at x -≥0时有ααψϕϕd ⎰+-+++-=atx atx aat x at x t x u )(21)]()([21),(,(x ≥at )为了满足边界条件,为此求导得:)]()([21)]()([21),(at x at x aat x at x t x u x --+++'+-'=ψψϕϕ,于是当at x =时,有)()]0()2([21)]2()0([21),(t h at aat t at u x ∆=-+'+'=ψψϕϕ,在0≤at x <时的解)()(),(at x G at x F t x u ++-=,就有)()(),(at x G at x F t x u x +'+-'=当0=x 时得:)(),0()()(t t u at G at F x μ=='+-' 即 )()()(ξξμξG aF '--=',积分得 )()()(0ξττμξξ-+-=⎰-G a F ad ,由)(),(t h t at u x =,得)()2()0(t h at G F ='+',即 )0()2()(F ah G '-='ηη积分之,有ηττηη)0()(2)(20F h aG a'-=⎰d这样,在0≤at x <时,有)()(),(at x G at x F t x u ++-=ττμααψααψϕϕd d d ⎰⎰⎰--+-++-++=ax t xat atx aaax at at x 0)()(21)(21)]()([21)2)](0()0(21)0(21[at F a'--'+ψϕ 注意到 )0(21)0(21)0(ψϕaF -'=',因此得解⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-++-++≥+++-=⎰⎰⎰⎰--++-)0(,)()(21)(212)()()(,)(212)()(),(00at x a a a x at at x at x a at x at x t x u ax t xat at x atx atx ττμααψααψϕϕααψϕϕd d d d 例3. 求解Cauchy 问题:⎪⎩⎪⎨⎧+===++==xx u x u u u u xy xxy yy xy xx cos 4,46431032解: 写出特征方程 0310)(32=+-xy x y d d d d得 03=-x y d d 或 03=-x y d d得到特征线 13c x y =-,23c x y =-,21,c c 为任意常数. 令 x y -=3ξ,x y 3-=η, 化简原方程为 6464=-ξηu 即 1=ξηu 得通解有)()(ηξξηG F u ++-=这里F ,G 为二阶可微函数.因此得原方程的通解)3()3()3)(3(),(x y G x y F x y x y y x u -+-+---=. 由24xuxy ==有224)2()2(4xx G x F x =-++,得函数方程 0)()(=-+x G x F , 由x x x x u x cos 4),(+=,而)3(3)3(610),(x y G x y F x y y x u x -'--'--=得 x x x G x F x cos 4)2(3)2(4+=-'-'-, 所以 2cos)(3)(x x G x F -=-'+',积分得 C x x G x F +-=--2s i n 2)(3)(, 这样就有 42sin21)(C x x F +-=,42sin21)(C x x G --=,因此问题的解23sin2123sin21)3)(3(),(y x y x x y y x y x u -+-+--=.例4. 求方程xyu y u y xyuu x y yy xyxx 32222=+++ 的通解.解:写出特征方程 02)(222=+-yxy xyx y x d d d d由于0)(222=--=∆y x xy ,所以方程是抛物型的方程,解得一族特征线:0=-ydx xdy , 有 1c xy =,1c 为实常数.作变量变换: xy =ξ,y =η,0110),(D ),(D 22≠-=-=xy xx y y x ηξ,这样原方程可化为ξηηη=+u u ,)0(≠y得通解 )()(ξξξηηg e f u +-=-, 故得方程的通解有)()(),(2xy g e x y f x yy x u y +-=-, 其中 f 和g 为任意二阶可微函数.§2.3.2一维非齐次波动方程的Cauchy 问题一维非齐次波动方程的Cauchy 问题:⎩⎨⎧+∞<<-∞==>+∞<<-∞=-)(),()0,(),()0,()0,(),,(2x x x u x x u t x t x f u a u t xx tt ψϕ 利用线性方程的叠加原理,考虑如下两个Cauchy 问题:问题I :⎩⎨⎧+∞<<-∞==>+∞<<-∞=-)(),()0,(),()0,()0,(,02x x x v x x v t x v a v t xx tt ψϕ它的解为ααψϕϕd aat x at x t x v atx atx ⎰+-+++-=)(212)()(),(问题II :⎩⎨⎧+∞<<-∞==>+∞<<-∞=-)(,0)0,(,0)0,()0,(),,(2x x u x u t x t x f u a u t xx tt如果这个问题的解),(2t x u 求出来,则原问题的解为 ),(),(),(2t x u t x v t x u += 对于问题II ,有齐次化原理(Duhamel ).齐次化原理:设0≥τ为参数,如果函数);,(τt x w 是Cauchy 问题⎩⎨⎧==>=-),();,(,0);,()(,02ττττττx f x w x w t w a w t xx tt的解,则函数ττd ⎰=tt x w t x u 0);,(),(是问题II 的解.事实上,⎰⎰=+=tt tt t t x w t x w t t x w u 00d );,(d );,();,(ττττ⎰⎰+=+=ttt ttt t tt t x w t x f t x w t t x w u 0d );,(),(d );,();,(ττττ⎰=txxxx t x wu 0d );,(ττ由此 ),(d )];,();,([),(022t x f t x w a t x w t x f u a u ttt tt xx tt ⎰=-+=-τττ.表明),(t x u 满足问题II 中的方程,满足初始条件是显然的. 对于这个问题的解,令τ-='t t ,这样把初始时刻是τ的转化为0='t ,问题就变为⎪⎩⎪⎨⎧==>'=-=''='''),(,0)0(,0002τx f w w t w a w t t t xx t t由达朗贝尔公式得 αταττd ⎰'+'-=+'t a x t a x f at x w ),(21);,(,于是得解ατατττd ⎰-+--=)()(),(21);,(t a x t a x f at x w ,这样问题II 的解为ταταττd d ⎰⎰-+--=t t a x t a x f at x u 0)()(2),(21),(,从而得一维非齐次波动方程的Cauchy 问题的解有ταταααψϕϕττd d d ⎰⎰⎰-+--+-++++-=t t a x t a x atx atx f aaat x at x t x u 0)()(),(21)(212)()(),(.§2.3.3高维波动方程的Cauchy 问题对于三维波动方程的Cauchy 问题的提法是⎩⎨⎧==++≡∆=),,()0,,,(),,,()0,,,()(22z y x z y x u z y x z y x u u u u a u a u t zz yy xx tt ψϕ 用球面平均值法求解.现在将一维波动方程Cauchy 问题的达朗贝尔解改写成ααψααϕd d ⎰⎰+-+-+∂∂=atx atx atx atx at tattt t x u )(2])(2[),(分析一下这个解的特点: (1)ααχd ⎰+-atx atx at)(21是被积函数)(αχ在区间],[at x at x +-上的算术平均值;积分值的大小依赖于区间中点x 和区间的半径长at ,因此它是两个变量),(t x 的函数,记为ααχd ⎰+-=atx atx att x v )(21),(.(2))(x χ是一个任意函数,但),(),(1t x tv t x u =,tt x tv t x u ∂∂=)],([),(2都满足方程 xx tt u a u 2=.(3)只要令)()(x x ψχ=,则),(1t x u 满足初始条件)()0,(1x x u t ψ=;若令)()(x x ϕχ=,那么),(2t x u 就满足初始条件)()0,(2x x u ϕ=,因此,叠加后的),(),(),(21t x u t x u t x u +=都满足初始条件:)()0,(x x u ϕ=,)()0,(x x u t ψ=.由此,启发我们仿照此就可构成三维波动方程Cauchy 问题的达朗贝尔解:球面方程:22222)()()(t a z y x =-+-+-ζηξ,记为Mat S ;球心:),,(z y x ;球半径:at ;球面M at S 的面积:224t a π.这样任意函数),,(z y x χ在球面Mat S 上的平均值为Sta t z y x v d ⎰⎰=ππζηξχπ20022),,(41),,,(σζηξχπππd ⎰⎰=200),,(41,这里球面M at S 上的点),,(ζηξ满足参数方程:⎪⎩⎪⎨⎧+=+=+=θζϕθηϕθξcos sin sin cos sin at z at y at x ϕθθd d d sin 22t a S =, ϕθθσd d d sin =这样对于三维波动方程Cauchy 问题:⎩⎨⎧==++≡∆=),,()0,,,(),,,()0,,,()(22z y x z y x u z y x z y x u u u u a u a u t zz yy xx tt ψϕ 的解为]),,(4[),,,(),(20022S ta tt t z y x u t M u d ⎰⎰∂∂==ππζηξϕπS ta t d ⎰⎰+ππζηξψπ20022),,(4]),,(4[200σζηξϕπππd ⎰⎰∂∂=tt σζηξψπππd ⎰⎰+200),,(4t这就是泊松公式,用球面平均值方法得到的.例5.利用泊松公式求解波动方程的Cauchy 问题⎪⎩⎪⎨⎧+==++===yz x u u u u u a u t t t zz yy xx tt 2002,0)(解:这里0),,(=z y x ϕ,yz x z y x +=2),,(ψ,令ϕθξcos sin at x +=,ϕθηsin sin at y +=,θζcos at z += 由泊松公式得问题的解 ]sin )]cos )(sin sin ()cos sin [(412002ϕθθθϕθϕθπππd d at at z at y at x au ⎰⎰++++=3222231)(])(34)(4[4ta t yz x at yz x t ++=++=πππ例6.试用降维法导出二维波动方程Cauchy 问题的解.二维波动方程的Cauchy 问题:⎩⎨⎧+∞<<-∞==>+∞<<-∞+=),(),,()0,,(),,()0,,()0,,(),(2y x y x y x u y x y x u t y x u u a u t yy xx tt ψϕ 所谓降维法就是把它看成三维问题的特殊情形,函数u 与z 无关,即0=z u ,所以,初值函数ϕ,ψ也与z 无关.现在由泊松公式来导出这个问题的解.由于初值函数ϕ和ψ与z 无关,因此沿球面Mat S 的积分可以用过点M 平行于平面0=z 的平面与球M at K 相截的圆形区域∑Mat上的积分来代替.球面元素S d 与平面元素)d d (d y x σ有S d d θσcos =,而aty x at atz 222)()()(cos ηξθ----==上半球面与下半球面的积分都用∑M at上积分代替,从而得),,(),(t y x u t M u =])()()(),()()()(),([21222222⎰⎰⎰⎰∑∑----+----∂∂=MatMaty x at y x at ta ηξηξηξψηξηξηξϕπd d d d 积分区域∑M at:222)()()(at y x ≤-+-ηξ.例7.非齐次波动方程的Cauchy 问题. 解:考虑带齐次初始条件的Cauchy 问题:⎩⎨⎧==+∆=0)0,,,(,0),,,(),,,(2z y x u t z y x u t z y x f u a u t tt用齐次化原理,对τ>t ,τ为参数,考虑问题⎪⎩⎪⎨⎧==∆=);,,();,,,(0);,,,(2τττττz y x f z y x w z y x w w a w ttt则由泊松方程得解]]),(),(),([4);,,,(200σττζτητξπττππd ⎰⎰-+-+-+-=t a z t a y t a x f t t z y x w 其中 ϕθξcos sin =,ϕθηsin sin =,θζcos =,那么容易验证函数⎰=tt z y x w t z y x u 0);,,,(),,,(ττd]]),(),(),([)(41200τσττζτητξτπππd d ⎰⎰⎰-+-+-+-=t a z t a y t a x f t t 就是带齐次初始条件的Cauchy 问题的解.。

相关文档
最新文档