ansys有限元电磁场仿真分析教程
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
线圈 (象征性的)
1-39
• 在2D静磁场、交流和瞬态分析中采用磁矢量势方法(MVP) • 此公式称为MVP ,磁通量密度(B) 等于矢量势(A) 的旋度
B = Curl(A)
• 对于二维情况,A只有Z方向分量,在ANSYS中表示为“AZ” 自由度
• 模型有二种边界条件描述 – -Dirichlet条件(AZ约束) : 磁通量平行于模型边界 – Neumann 条件(自然边界条件):磁通量垂直于模型边界
目录
第一章
电磁场仿真简介……………………………………….... …….... …….... …….... …….... 1-4 第二章
二维静态分析
第三章
第1节……………………………………………………………………………..… 第2节……………………………………………………………….……….……… 第3节…………………………………………………………………….….……… 第4节…………………………………………………………………………..…… 第5节……………………………………………………………………………..…
• 打开绘制单元的材料属性 Utility>PlotCtrls>Numbering
• 选择 OK
1-24
• 力边界条件标志需要单元部件,即一组具有 “名称”的单元 • 把衔铁定义为一个单元组件
– 选择衔铁平面 Utility>select>entities
用此选项在图形窗 口中选择平面
再次选择用APPLY
• 选On Lines并选取相应的线 • 选 OK
“所选取的线” 注:未划分单元前,加
上这种边界条件
“所选取的线”
1-22
• 生成有限元网格 • 利用智能尺寸选项来控制网格大小
Preprocessor>-Meshing-Size Cntrls>-smartsize-basic
• 选择OK
1-23
• Preproc>-Meshing-Mesh>-Areas-Free> 在选取框内选择ALL 选择OK
• 选择Apply (重复显示和输入) • 建立线圈面
利用TAB 键移动输 入窗口
• 选择 Apply
1-17
• 建立空气面
• 选择 OK 衔铁
到了这步,建立了全部平 面,但它们还没有连接起 来.
线圈
1-18
• 用Overlap迫使全部平面连接在一起 Preprocessor>Operate> Overlap>Areas
1-30
• 激励线圈要求电流密度,故要得到线圈截面积. Preprocessor>Operate>Calc Geometric Items>Of Areas
• 选择OK • 要用线圈面积来计算电流密度,将线圈面积赋予参数CAREA
Utility>Parameter>Get Scalar Data
• 选择 OK
• 选择 OK
1-37
第二章 第2节
二维静磁学
1-38
EMAG 模拟的概念
• 模型边界条件有:
– 磁通量垂直
– 磁通量平行
– 周期性对称 *
• 偶对称
B
• 奇对称
• 根据单元方程式施加边界条件
– 矢量(2D 或3D)
– 标量 (3D)
– 基于单元边 (3D)
铁芯
A A 空气
*在第2章来讨论
简单励磁的平面模型
耦合场分析概况…………………………………………………………………………….. 5-1
1-1
第一章
教程综述
1-2
• ANSYS/EMAG能用于模拟工业电磁装 置
• 电磁装置当然是3维,但可简化 为2维模 型。
• 模拟可考虑为: – 稳态 – 交流(谐波) – 时变瞬态 • 阶跃电压 • PWM(脉宽调制) (Pulse Width Modulation) • 任意
• 一旦衔铁已选好,选择OK (在选取框内)
1-25
• 选择与已选平面相对应的单元
用“面”
• 选择 OK • 图示衔铁单元
Utility>plot>elements
衔铁单元
1-26
• 使单元与衔铁组件联系起来 Utility>Select>Comp/Assembly>Create Component
2.1-1 2.2-1 2.3-1 2.4-1 2.5-1
二维谐波和瞬态分析
第四章
第1节…………………………………………………………………………….…. 3.1-1 第2节…………………………………………………………………...………….. 3.2-1
三维电磁场分析
第五章
第1节…………………………………………………………………………...….… 4.1-1 第2节…………………………………………………………………….……….... 4.2-1 第3节………………………………………………………………….…..…….…. 4.3-1 第4节………………………………………………………………….……...……. 4.4-1 第5节…………………………………………………………………….…...……. 4.5-1
• 为每个物理区定义材料 – 导磁率(常数或非线性) – 电阻率 – 矫顽磁力,剩余磁感应
衔铁 线圈 锭子
实体模型
1-5
• 建实体模型 • 给模型赋予属性以模拟物理区 • 赋予边界条件
– 线圈激励 – 外部边界 – 开放边界 • 实体模型划分网格 • 加补充约束条件(如果有必要) – 周期性边界条件 – 连接不同网格
1-10
• 设置预选过滤掉其它应用的菜单 Main menu>preferences
• 选择OK
1-11
• 定义所有物理区的单元类型为 PLANE53 Preprocessor>Element type>Add/Edit/Delete
• 选择 Add • 选择磁矢量和8节点53号单元 • 选择 OK
1-40
• 沿A-A 通量平行边界条件需满足:
– 模型中A-A 的左边和右边是相同 的
• 几何形状相同
A
Pole Face
• 材料属性相同
– 左边和右边励磁相位差180度(
B
B
即方向相反)
• 对称平面边界条件 Prep–ro沿c.>Al-oAad必s须>a加pp约ly>束boundary>flux par’l>lines
• 使整个模型激活 Utility>Select>Everything
• 缩放平面-不用拷贝 Preproc>operate>scale>areas
• 选择 OK
1-29
• 给线圈平面施加电流密度 • 选择线圈平面
Utility>Select>Entity
• 选择OK ( 实体选择框) • 选择线圈平面 • 选择 OK (选取框内)
1-3
• 利用轴对称衔铁和平面定子设计 致动器的一个实例 – 衔铁旋转 – 衔铁气隙可变化
• 完整模型由2个独立部件组成 – 衔铁模块 – 定子模块
执行: solen3d.avi看动画
1-4
模拟过程概述
• 利用如下方式观察装置 – 2D与3D – 平面与轴对称 – 利用轴对称平面简化模型
• 定义物理区域 – 空气,铁,永磁体等等 – 绞线圈,块导体 – 短路,开路
• 选择 OK
1-33
• 进行计算 Solu>-solve-electromagnet>Opt & Solve
• 选择OK
这些适用于用BH 数据来进行的分析,本题将忽略
1-34
• 生成磁力线圈 Postproc>plot results>2D flux
lines • 选择 OK
使用缺省设置,选择OK, (在通常情 况下,可这样做)
1-12
• 模拟模型的轴对称形状 • 选择Options(选项) • Element behavior(单元行为) • 选择 Axisymmetric(轴对称) • 选择OK
1-13
• 定义材料 Preprocessor>Material Props>Isotropic
• 定义空气为1号材料(MURX = 1)
有限元网格
1-6
• 进行模拟 • 观察结果
– 某指定时刻 – 整个时间历程 • 后处理 – 磁力线 –力 – 力矩 – 损耗 – MMF(磁动势) – 电感 – 特定需要
1-7
• 模拟由3个区域组成 • 衔铁区: 导磁材料 导磁率为常数(
即线性材料)
• 线圈区: 线圈可视为均匀材料. • 空气区:自由空间 (μr = 1) .
对于没有明确定义属性的 面,其属性缺省为1
• 选择 OK
1-20
• 这些平面要求与物理区和材料联系起来 • Preprocessor>-Attributes-Define>Picked Areas
选取线圈平面 (在选择对话框里)点取OK 材料号窗口输入3
• 点 OK
1-21
• 加通量平行边界条件 Preprocessor>loads>apply>-magnetic-boundary-flux-par’l
1-31
• 下面窗口输入面积的参数名,用于后面电流密度输入
去掉面号(如果有的话) 这相应于几何面积总和 • 选择 OK
1-32
• 把电流密度加到平面上 Preprocessor>Loads>Apply>Excitation>On Areas
• (因为只激活了线圈平面,可在选取框内选择Pick All)
• 对称面 (B-B)边界条件 – 2D磁矢量势(MVP)方式,无须处理 – 加载电流与全模型相同
B
B
Quarter symmetry model of
the simple magnetizer
1-43
• 1/4模型与全模型比较 – 磁通密度分布相同 – 贮能为1/4 – 所示线圈上的Lorentz力 1/2 – 作用在极面上力为1/2
• 选择OK
• 选择 Apply (自动循环地定义下一个材料号)
1-14
• 定义衔铁为2号材料
• 选择OK
• 选择 Apply (自动循环地选择下一个材料号)
1-15
• 定义线圈为3号材料 (自由空间导磁率,MURX=1)
• 选择 OK
• 选择 OK (退出材料数据输入菜单)
1-16
• 建立衔铁面 Preprocessor>Create>Rectangle>By Dimensions
A
(1/2)对称模型
1-41
• 半对称模型与全模型比较: – 磁通量密度是相同的 – 线圈上Lorentz 力是相同的 – 贮能为 1/2 – 极面上力为 1/2 – 加载电流密度与全模型相同
简单导磁体的半对称模型
线圈 (象征性的)
1-42
• 沿B-B磁通量垂直边条件需满足 – B-B线上下两边如下参数是相同的 • 几何形状 • 材料性质 – B-B线上下两边励磁相同
单元边缘围绕的一个红色输廓表示该 区域为同类材料号
1-35
• 计算力 Postproc>Elec&Mag Calc>Comp. Force
必须用鼠标选取
• 选择 OK
衔铁上力是在总体坐标 系下表示的,此力的方 向为使气隙缩小
1-36
•显示总磁通密度值 (BSUM) Postproc>Plot Results>Nodal Solution
• 按Pick All
现在这些平面被连接了,因此当 生成单元时,各区域将共享区域 边界上节点
这种操作后,原先平面被删除, 而新的平面被重新编号
1-19
• 这些平面要求与物理区和材料联系起来 Preprocessor>-Attributes-Define>Picked Areas
• 用鼠标点取衔铁平面 • 选择OK (在选取框内) • 材料号窗口输入2
衔铁 线圈
1-8
性质
柱体: μr = 1000 线圈: μr = 1
匝数:Байду номын сангаас
2000
(整个线圈)
空激气 励:
μr = 1
线圈励磁为直流电流: 2 安 培
模型 轴对称
Y
材料号 2
衔铁 长度=35
材料号3
单位 (mm)
Coil X
1-9
• 建模 – 设置电磁学预选项(过滤器) – 对各物理区定义单元类型 – 定义材料性质 – 对每个物理区定义实体模型 • 铁芯 • 线圈 • 空气 – 给各物理区赋材料属性 – 加边界条件
B
B
励磁体1/4对称模型
1-44
• 单元plane13 and plane53 用于模拟2D磁 场
• 选择 OK
1-27
• 加力边界条件标志 Preprocessor>Loads>Apply>-Magnetic-Flag>Comp Force
• 选择OK
• 施加两个标志,用两个不同的方法来计算力 – Maxwell’s 应力张量 – 虚功
即使只有一种选项,也要鼠 标选取
1-28
• 以毫米单位生成的模型,最好把模型尺寸变换为国际单位制(变换系数 =.001)