高中数学公式大全(完整版)

合集下载

高中数学公式大全表

高中数学公式大全表

高中数学公式大全表1. 代数公式:方程的根:设方程ax² + bx + c = 0的根为x₁和x₂,则有:x₁ + x₂ = -b/ax₁ × x₂ = c/a二次方程的解:对于方程ax² + bx + c = 0,解可以用以下公式表示:x = (-b ± √(b² - 4ac)) / 2a二次函数的顶点坐标:设二次函数的表达式为y = ax² + bx + c,顶点坐标可以通过以下公式计算:x = -b / 2ay = c - b² / 4a二次函数的平移变换:设原二次函数的表达式为y = ax² + bx + c,经过平移变换后的函数的表达式为y = a(x - h)² + k。

其中(h, k)为平移的距离,代表二次函数的顶点坐标。

2. 几何公式:三角函数:常用的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

它们的定义如下:sinθ = 对边 / 斜边cosθ = 邻边 / 斜边tanθ = 对边 / 邻边勾股定理:对于一直角三角形,较长的边称为斜边,其余两边称为直角边。

勾股定理可以表示为:斜边² = 直角边₁² + 直角边₂²正弦定理:对于任意三角形ABC,边长的比值与角度的正弦的比值之间有以下关系:a / sinA =b / sinB =c / sinC余弦定理:对于任意三角形ABC,边长的平方与另外两条边长的乘积和它们的夹角的余弦的乘积之间有以下关系:a² = b² + c² - 2bc cosA3. 概率公式:事件概率的计算:对于一个随机试验,事件A发生的概率可以用以下公式表示:P(A) = n(A) / n(S)其中,n(A)表示事件A发生的次数,n(S)表示随机试验的总次数。

加法原理:如果A和B是两个互不相容的事件,即A和B不能同时发生,那么A或B发生的概率可以用以下公式计算:P(A或B) = P(A) + P(B)乘法原理:如果A和B是两个相互独立的事件,即事件A发生与否不会影响事件B发生的概率,那么A和B同时发生的概率可以用以下公式计算:P(A和B) = P(A) × P(B|A)条件概率:对于事件A和B,条件概率可以表示为:P(B|A) = P(A和B) / P(A)4. 统计学公式:均值:一组数据的均值可以用以下公式计算:mean = (x₁ + x₂ + ... + xn) / n其中,x₁、x₂、...、xn为每个数据点的值,n为数据点的个数。

完整版)高中数学公式大全完整版

完整版)高中数学公式大全完整版

完整版)高中数学公式大全完整版高中数学常用公式及常用结论1.包含关系若集合A包含于集合B,则AB=B;若AB=B,则A为B 的子集;若C为A和B的并集,则B包含于C;若A和B的交集为∅,则AB=∅;若AB=R,则A和B互为补集。

2.集合的子集集合{a1,a2,…,an}的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个。

3.充要条件1)充分条件:若p→q,则p是q的充分条件。

2)必要条件:若q→p,则p是q的必要条件。

3)充要条件:若p→q,且q→p,则p是q的充要条件。

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然。

4.函数的单调性1)设x1≠x2,且x1,x2∈[a,b],则有:f(x1)−f(x2)>0 ⇔ f(x)在[a,b]上是增函数;f(x1)−f(x2)<0 ⇔ f(x)在[a,b]上是减函数。

2)设函数y=f(x)在某个区间内可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。

5.函数的性质如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)+g(x)也是减函数;如果函数y=f(u)和u=g(x)在其对应的定义域上都是减函数,则复合函数y=f[g(x)]是增函数。

6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,则这个函数是奇函数;如果一个函数的图象关于y轴对称,则这个函数是偶函数。

7.函数的对称轴对于函数y=f(x)(x∈R),若f(x+a)=f(b−x)恒成立,则函数f(x)的对称轴是函数x=a+b/2;函数y=f(x+a)与y=f(b−x)的图象关于直线x=a+b/2对称。

8.几个函数方程的周期(约定a>0)1)f(x)=f(x+a),则f(x)的周期T=a;2)f(x+a)=−f(x),或f(x+a)=f(−x)(f(x)≠0),则f(x)的周期T=2a。

高中数学公式大全(完整版)

高中数学公式大全(完整版)

高中数学公式大全(完整版)高中数学公式大全(完整版)精选1、两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)2、乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)3、三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径。

5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角。

6、圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标。

7、圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。

8、倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^29、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))10、某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3高中数学的学习方法1、养成演算、校核的好习惯,提高计算能力。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全一、代数部分。

1. 二项式定理。

(a+b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿᵢaⁿ⁻ⁱbⁱ + ... + Cⁿₙa⁰bⁿ。

2. 一元二次方程求根公式。

ax²+bx+c=0的解为x= (-b±√(b²-4ac))/2a。

3. 等差数列通项公式。

an = a₁ + (n-1)d。

4. 等比数列通项公式。

an = a₁ q^(n-1)。

5. 两点间距离公式。

两点A(x₁, y₁)和B(x₂, y₂)间的距离为√((x₂-x₁)² + (y₂-y₁)²)。

6. 直线斜率公式。

直线y=kx+b的斜率为k。

7. 二次函数顶点坐标。

二次函数y=ax²+bx+c的顶点坐标为(-b/2a, c-b²/4a)。

二、几何部分。

1. 直角三角形勾股定理。

a² + b² = c²。

2. 直角三角形中正弦、余弦、正切公式。

sinA = a/c, cosA = b/c, tanA = a/b。

3. 三角形面积公式。

三角形面积S=√(p(p-a)(p-b)(p-c)),其中p为半周长。

4. 圆周长和面积公式。

圆周长C=2πr, 圆面积S=πr²。

5. 正多边形内角和公式。

正n边形内角和为(n-2) 180°。

6. 圆锥、圆柱、球体积公式。

圆锥体积V=1/3πr²h, 圆柱体积V=πr²h, 球体积V=4/3πr³。

三、概率与统计部分。

1. 随机事件概率公式。

P(A) = n(A)/n(S)。

2. 期望公式。

E(X) = x₁p₁ + x₂p₂ + ... + xᵢpᵢ。

3. 正态分布概率公式。

P(a < X < b) = ∫(a, b) 1/√(2πσ²) e^(-(x-μ)²/2σ²) dx。

高中必背的数学公式(完整归纳)

高中必背的数学公式(完整归纳)

高中必背的数学公式(完整归纳)高中必背的数学公式(一)两角和公式1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB3、tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(二)倍角公式1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA(三)半角公式1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))(四)和差化积公式1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB(五)几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)(六)椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积如何提高高中数学成绩1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全【代数基本公式】1. 二次方程的根公式:若二次方程ax²+bx+c=0的判别式Δ=b²-4ac≥0,则它的根公式为:x₁=(-b+√Δ)/2a,x₂=(-b-√Δ)/2a。

2. 四则运算公式:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²,(a+b)(a-b)=a²-b²。

3. 余弦定理:a²=b²+c²-2bc·cosA,b²=a²+c²-2ac·cosB,c²=a²+b²-2ab·cosC。

4. 正弦定理:a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆半径)。

5.二项式定理:(a+b)ⁿ=Cⁿ₀aⁿb⁰+Cⁿ₁aⁿ⁻¹b+Cⁿ₂aⁿ⁻²b²+……+Cⁿₙa⁰bⁿ。

【平面几何公式】1.两点间距离公式:AB=√[(x₂-x₁)²+(y₂-y₁)²]。

2. 直线斜率公式:k=tgθ=∆y/∆x=(y₂-y₁)/(x₂-x₁)。

3.两条直线垂直公式:k₁k₂=-1,其中k₁和k₂分别为两条直线的斜率。

4.点到直线距离公式:点A(x₀,y₀)到直线Ax+By+C=0的距离为d=,(Ax₀+By₀+C)/√(A²+B²)。

【解析几何公式】1. 点乘公式:a·b=,a,b,cosθ,其中a=(x₁,y₁)和b=(x₂,y₂)。

2.向量模长公式:,a,=√(x²+y²)。

3. 向量夹角公式:cosθ=(a·b)/(,a,b,),其中a和b为向量。

【三角函数公式】1. 正弦函数基本关系:sin²θ+cos²θ=12. 余弦函数基本关系:1+tan²θ=sec²θ,1+cot²θ=csc²θ。

高中数学必备公式汇总

高中数学必备公式汇总

高中数学必备公式汇总高中数学的学习离不开对公式的熟练掌握。

公式是数学知识的精华所在,也是解决数学问题的重要工具。

下面为大家汇总了高中数学中必备的公式,希望能对大家的学习有所帮助。

一、函数1、一次函数:y = kx + b(k 为斜率,b 为截距)2、二次函数:y = ax²+ bx + c(a ≠ 0),顶点坐标为(b/2a,(4ac b²)/4a)3、反比例函数:y = k/x(k 为常数)二、三角函数1、正弦函数:sinα =对边/斜边2、余弦函数:cosα =邻边/斜边3、正切函数:tanα =对边/邻边三角函数的基本关系式:sin²α +cos²α = 1tanα =sinα/cosα诱导公式:sin(π +α) =sinαsin(π α) =sinαcos(π +α) =cosαcos(π α) =cosα两角和与差的三角函数公式:sin(α +β) =sinαcosβ +cosαsinβsin(α β) =sinαcosβ cosαsinβcos(α +β) =cosαcosβ sinαsinβcos(α β) =cosαcosβ +sinαsinβ二倍角公式:sin2α =2sinαcosαcos2α =cos²α sin²α =2cos²α 1 =1 2sin²αtan2α =2tanα/(1 tan²α)三、数列1、等差数列通项公式:an = a1 +(n 1)d(a1 为首项,d 为公差)等差数列前 n 项和公式:Sn = n(a1 + an)/2 = na1 + n(n 1)d/22、等比数列通项公式:an = a1q^(n 1)(a1 为首项,q 为公比)等比数列前 n 项和公式:当q ≠ 1 时,Sn = a1(1 q^n)/(1 q);当q = 1 时,Sn = na1四、不等式1、基本不等式:对于任意正实数 a、b,有 a +b ≥ 2√(ab),当且仅当 a = b 时,等号成立。

高中数学必备的289个公式

高中数学必备的289个公式
42.周期性标志:(1)f(x+a)=f(x+b)⇒T=|a-b|;
(2)f(x+a)=-f(x)⇒T=2a;
(3)f(x+a)=±f(x)⇒T=2a
43.对称轴标志:f(x+a)=-f(b-x)⇒对称中心为(a+b,0);
如常见的对称中心有:f(x+a)=-f(a-x)⇒对称中心为(a,0);f(x+1)=-f(1-x)⇒对称 中心为(1,0).
16.不等式相同性:任意x∈D,证明:
f(x)>g(x)⇔h(x)=f(x)-g(x)>0⇔h(x)min>0;
存在x∈D,证明:f(x)≤g(x)⇔h(x)=f(x)-g(x)≤0⇔h(x)min≤0.
17.不等式相异性:任意x1、x2∈D,证明:f(x1)<g(x2)⇔x∈D,f(x)max<g(x)min;存在x1、x2∈D,证明:f(x1)>g(x2)⇔x∈D,f(x)max>g(x)min.
第2章函数
31.几个近似值:2≈1.414,3≈1.732,5≈2.236,
π≈3.142,e≈2.718,e2≈7.389,
ln3≈1.0986,ln2≈0.693.32.指数公式:(1)am=man;(2)nan={|a|,n为偶数.
33.对数公式:
(1)ax=N⇔x=logaN;(2)alogaN=N;
x1+y1x2+y2≥x1x2+y1y2.
(1+x)n≥xn+nx;n≥1(1+x)n≤1+nx;0≤n≤1
86.洛必达法则:limf(x)=limf'(x)(当f(x)→0或∞时使用).
87.恒成立问题:(1)a≥f(x)⇔a≥f(x)max;(2)a<f(x)⇔a<f(x)min.

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全1. 二次函数的标准形式:y = ax² + bx + c2. 三角函数的基本关系:sin(A±B)=sinAcosB±cosAsinB3. 余弦定理:a² = b² + c² - 2bc cosA4. 正弦定理:a/sinA = b/sinB = c/sinC5. 相似三角形的定义:两个三角形的相应角相等,且相应边成比例,则称两个三角形相似。

6. 三角形面积公式:S=1/2ab sinC7. 勾股定理:a² + b² = c²8. 平面向量的定义:平面向量是指在平面上的有向线段,它由起点和终点确定,其长度和方向确定。

9. 向量的加法:a+b=b+a10. 向量的减法:a-b=b-a高中数学公式大全总结1、二次函数的标准方程:y=ax^2+bx+c2、三角函数的基本公式:sinA=a/c,cosA=b/c,tanA=a/b3、勾股定理:a^2+b^2=c^24、直角三角形面积公式:S=1/2ab5、椭圆面积公式:S=πab6、圆的面积公式:S=πr^27、梯形面积公式:S=1/2(a+b)h8、平行四边形面积公式:S=ab9、正方形面积公式:S=a^210、圆柱体体积公式:V=πr^2h探索澳洲金融数学,展开你的金融数学之旅澳洲金融数学是一门涉及金融统计学、投资分析和金融工程的综合性学科。

它侧重于金融市场、金融产品和金融服务中经济学、数学和计算机科学知识的结合。

本文将为您提供了解更多澳洲金融数学的指南,帮助您开启探索之旅。

一、澳洲金融数学的定义澳洲金融数学是一门综合性学科,涉及金融统计学、投资分析和金融工程等领域。

它涉及金融市场、金融产品和金融服务相关的经济学、数学和计算机科学知识。

二、澳洲金融数学的内容澳洲金融数学的内容包括:金融数学基础、金融数学模型、金融产品定价、金融风险管理、金融统计学、金融工程、投资管理、金融市场分析等。

高中数学公式大全完整版

高中数学公式大全完整版

高中数学公式大全完整版1.代数公式:a)二次方程求根公式:对于二次方程ax²+bx+c=0,其解为:x = (-b±√(b²-4ac))/(2a)b)平方差公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²c)三次方差公式:(a+b)(a²-ab+b²) = a³+b³d)和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA± tanB)/(1 ∓ tanAtanB) e)二项式定理:(a+b)ⁿ=nC₀aⁿb⁰+nC₁aⁿ⁻¹b¹+nC₂aⁿ⁻²b²+...+nCₙa⁰bⁿ2.几何公式:a)三角形:面积公式:S=1/2*底边*高正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosCb)圆:周长公式:C=2πr面积公式:A=πr²弧长公式:L=2πr(θ/360)c)立体图形:容积公式:立方体:V=a³正方体:V=a³圆柱体:V=πr²h圆锥体:V=1/3πr²h球体:V=4/3πr³d)平移、旋转、缩放公式:平移:(x,y)→(x+a,y+b)旋转:逆时针旋转θ度:(x,y) → (xcosθ - ysinθ, xsinθ + ycosθ)缩放:横向缩放k倍,纵向缩放k倍:(x,y) → (kx, ky)3.概率公式:a)排列组合公式:排列:A(n,m)=n!/(n-m)!组合:C(n,m)=n!/(m!(n-m)!)b)期望公式:对于离散型随机变量X,期望值E(X)=Σ(x*p(x)),其中x为X的可能取值,p(x)为对应x的概率对于连续型随机变量X,期望值E(X) = ∫(x*f(x))dx,其中f(x)表示X的概率密度函数c)标准差公式:方差σ²=Σ(x-μ)²*p(x),其中μ为随机变量X的期望值标准差σ=√σ²d)独立事件公式:P(A∩B)=P(A)P(B)4.数列与级数公式:a)等差数列通项公式:aₙ=a₁+(n-1)db)等比数列通项公式:aₙ=a₁*r^(n-1)c)等差数列求和公式:Sn=(n/2)(a₁+aₙ)d)等比数列求和公式:Sn=a₁*(rⁿ-1)/(r-1)以上是高中数学公式的一个完整版,涵盖了代数、几何、概率、数列与级数等多个方面的公式。

高中数学公式大全(完整版)

高中数学公式大全(完整版)

⾼中数学公式⼤全(完整版)⾼中数学常⽤公式及常⽤结论1.元素与集合的关系,.2.德摩根公式.3.包含关系4.容斥原理.5.集合的⼦集个数共有个;真⼦集有–1个;⾮空⼦集有–1个;⾮空的真⼦集有–2个.6.⼆次函数的解析式的三种形式(1)⼀般式;(2)顶点式;(3)零点式.7.解连不等式常有以下转化形式.8.⽅程在上有且只有⼀个实根,与不等价,前者是后者的⼀个必要⽽不是充分条件.特别地,⽅程有且只有⼀个实根在内,等价于,或且,或且.9.闭区间上的⼆次函数的最值⼆次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a>0时,若,则;,,.(2)当a<0时,若,则,若,则,.10.⼀元⼆次⽅程的实根分布依据:若,则⽅程在区间内⾄少有⼀个实根.设,则(1)⽅程在区间内有根的充要条件为或;(2)⽅程在区间内有根的充要条件为或或或;(3)⽅程在区间内有根的充要条件为或.11.定区间上含参数的⼆次不等式恒成⽴的条件依据(1)在给定区间的⼦区间(形如,,不同)上含参数的⼆次不等式(为参数)恒成⽴的充要条件是.(2)在给定区间的⼦区间上含参数的⼆次不等式(为参数)恒成⽴的充要条件是.(3)恒成⽴的充要条件是或.12.真值表pq⾮pp或qp且q真真假真真真假假真假假真真真假假假真假假 13.常见结论的否定形式原结论反设词原结论反设词是不是⾄少有⼀个⼀个也没有都是不都是⾄多有⼀个⾄少有两个⼤于不⼤于⾄少有个⾄多有()个⼩于不⼩于⾄多有个⾄少有()个对所有,成⽴存在某,不成⽴或且对任何,不成⽴存在某,成⽴且或14.四种命题的相互关系原命题互逆逆命题若p则q若q则p互互互为为互否否逆逆否否否命题逆否命题若⾮p则⾮q互逆若⾮q则⾮p15.充要条件(1)充分条件:若,则是2)必要条件:若是.(3)充要条件:若,则是.注:如果甲是⼄的充分条件,则⼄是甲的必要条件;反之亦然.16.函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.17.如果函数和都是减函数,则在公共定义域内,和函数也是减函数;如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果⼀个函数的图象关于原点对称,那么这个函数是奇函数;如果⼀个函数的图象关于y轴对称,那么这个函数是偶函数.19.若函数是偶函数,则;若函数是偶函数,则.20.对于函数(),恒成⽴,则函数的对称轴是函数;两个函数与的图象关于直线对称.21.若,则函数的图象关于点对称;若,则函数为周期为的周期函数.22.多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.24.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.26.互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,⽽函数是的反函数.28.⼏个常见的函数⽅程(1)正⽐例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.29.⼏个函数⽅程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.30.分数指数幂(1)(,且).(2)(,且).31.根式的性质(1).(2)当为奇数时,;当为偶数时,.32.有理指数幂的运算性质(1).(2).(3).注:若a>0,p是⼀个⽆理数,则ap表⽰⼀个确定的实数.上述有理指数幂的运算性质,对于⽆理数指数幂都适⽤.33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).35.对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).36.设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.37.对数换底不等式及其推⼴若,,,,则函数(1)当时,在和上为增函数.,(2)当时,在和上为减函数.推论:设,,,且,则(1).(2).38.平均增长率的问题如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.39.数列的同项公式与前n项的和的关系(数列的前n项的和为).40.等差数列的通项公式;其前n项和公式为.41.等⽐数列的通项公式;其前n项的和公式为或.42.等⽐差数列:的通项公式为;其前n项和公式为.43.分期付款(按揭贷款)每次还款元(贷款元,次还清,每期利率为). 44.常见三⾓不等式(1)若,则.(2)若,则.(3).45.同⾓三⾓函数的基本关系式,=,.46.正弦、余弦的诱导公式47.和⾓与差⾓公式;;.(平⽅正弦公式);.=(辅助⾓所在象限由点的象限决定,).48.⼆倍⾓公式...49.三倍⾓公式...50.三⾓函数的周期公式函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期.51.正弦定理?.52.余弦定理;;.53.⾯积定理(1)(分别表⽰a、b、c边上的⾼).(2).(3).54.三⾓形内⾓和定理在△ABC中,有.55.简单的三⾓⽅程的通解...特别地,有...56.最简单的三⾓不等式及其解集......57.实数与向量的积的运算律设λ、µ为实数,那么(1)结合律:λ(µa)=(λµ)a;(2)第⼀分配律:(λ+µ)a=λa+µa;(3)第⼆分配律:λ(a+b)=λa+λb.58.向量的数量积的运算律:(1)a·b=b·a(交换律);(2)(a)·b=(a·b)=a·b=a·(b);(3)(a+b)·c=a·c+b·c.59.平⾯向量基本定理?如果e1、e2是同⼀平⾯内的两个不共线向量,那么对于这⼀平⾯内的任⼀向量,有且只有⼀对实数λ1、λ2,使得a=λ1e1+λ2e2.不共线的向量e1、e2叫做表⽰这⼀平⾯内所有向量的⼀组基底.60.向量平⾏的坐标表⽰??设a=,b=,且b0,则ab(b0).53.a与b的数量积(或内积)a·b=|a||b|cosθ.61.a·b的⼏何意义数量积a·b等于a的长度|a|与b在a的⽅向上的投影|b|cosθ的乘积.62.平⾯向量的坐标运算(1)设a=,b=,则a+b=.(2)设a=,b=,则a-b=.(3)设A,B,则.(4)设a=,则a=.(5)设a=,b=,则a·b=.63.两向量的夹⾓公式(a=,b=).64.平⾯两点间的距离公式=(A,B).65.向量的平⾏与垂直设a=,b=,且b0,则A||bb=λa.ab(a0)a·b=0.66.线段的定⽐分公式?设,,是线段的分点,是实数,且,则().67.三⾓形的重⼼坐标公式△ABC三个顶点的坐标分别为、、,则△ABC的重⼼的坐标是.68.点的平移公式.注:图形F上的任意⼀点P(x,y)在平移后图形上的对应点为,且的坐标为.69.“按向量平移”的⼏个结论(1)点按向量a=平移后得到点.(2)函数的图象按向量a=平移后得到图象,则的函数解析式为.(3)图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.(4)曲线:按向量a=平移后得到图象,则的⽅程为.(5)向量m=按向量a=平移后得到的向量仍然为m=.70.三⾓形五“⼼”向量形式的充要条件设为所在平⾯上⼀点,⾓所对边长分别为,则(1)为的外⼼.(2)为的重⼼.(3)为的垂⼼.(4)为的内⼼.(5)为的的旁⼼.71.常⽤不等式:(1)(当且仅当a=b时取“=”号).(当且仅当a=b时取“=”号).(4)柯西不等式(5).72.极值定理已知都是正数,则有(1)若积是定值,则当时和有最⼩值;(2)若和是定值,则当时积有最⼤值.推⼴已知,则有(1)若积是定值,则当最⼤时,最⼤;当最⼩时,最⼩.(2)若和是定值,则当最⼤时,最⼩;当最⼩时,最⼤.73.⼀元⼆次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简⾔之:同号两根之外,异号两根之间.;.74.含有绝对值的不等式a>0时,有.或.75.⽆理不等式(1).(2).(3).76.指数不等式与对数不等式(1)当时,;.(2)当时,;77.斜率公式(、.78.直线的五种⽅程(1)点斜式直线过点,且斜率为.斜截式b为直线在y轴上的截距.(3)两点式)(、()(分别为直线的横、纵截距,)(5)⼀般式(其中A、B不同时为0)平⾏和垂直,①;②.(2)若,,且A1、A2、B1、B2都不为零,①;②;80.夹⾓公式(1).(,,)(2).(,,).直线时,直线l1与l2的夹⾓是.到的⾓公式(1).(,,)(2).(,,).直线时,直线l1l2的⾓是.(1)定点直线系⽅程:经过定点的直线系⽅程为(除直线),其中是待定的系数;经过定点的直线系⽅程为,其中是待定的系数.(2)共点直线系⽅程:经过两直线,的交点的直线系⽅程为(除),其中λ是待定的系数.(3)平⾏直线系⽅程:直线中当斜率k⼀定⽽b变动时,表⽰平⾏直线系⽅程.与直线平⾏的直线系⽅程是(),λ是参变量.(4)垂直直线系⽅程:与直线(A≠0,B≠0)垂直的直线系⽅程是,λ是参变量.83.点到直线的距离(点,直线).时,表⽰直线的下⽅的区域,当与同号时,表⽰直线的右⽅的区域与异号时,表⽰直线的左⽅的区域或所表⽰的平⾯区域(),则或所表⽰的平⾯区域所表⽰的平⾯区域所表⽰的平⾯区域.圆的⽅程圆的标准⽅程(2)圆的⼀般⽅程(>0).圆的.(4)圆的⽅程(圆的直径的端点是、).,的圆系⽅程是,其中是直线的⽅程,λ是待定的系数.(2)过直线:与圆:的交点的圆系⽅程是,λ是待定的系数.(3)过圆:与圆:的交点的圆系⽅程是,λ是待定的系数.88.点与圆的位置关系点与圆的位置关系有三种若,则点在圆外;点在圆上;点在圆内.89.直线与圆的位置关系直线与圆的位置关系有三种:;;.其中.90.两圆位置关系的判定⽅法设两圆圆⼼分别为O1,O2,半径分别为r1,r2,;;;;.91.圆的切线⽅程(1)已知圆.①若已知切点在圆上,则切线只有⼀条,其⽅程是.当圆外时,表⽰过两个切点的切点弦⽅程.于y轴的切线.③斜率为k的切线⽅程可设为,再利⽤相切条件求b,必有两条切线.(2)已知圆.①过圆上的点的切线⽅程为;②斜率为的圆的切线⽅程为.92.椭圆.93.椭圆,.94.椭圆的在椭圆.(2)点在椭圆.95.椭圆上⼀点处的切线⽅程是.(2)过椭圆外⼀点所引两条切线的切点弦⽅程是.(3)椭圆与直线相切的条件是.96.双曲线的焦半径公式,.97.双曲线在双曲线的内部.(2)点在双曲线的外部.98.双曲线渐近线⽅程:.(2)若渐近线⽅程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).99.双曲线的切线⽅程(1)双曲线上⼀点处的切线⽅程是.(2)过双曲线外⼀点所引两条切线的切点弦⽅程是.(3)双曲线与直线相切的条件是.100.抛物线的焦半径公式抛物线焦半径.过焦点弦长.101.抛物线上的动点可设为P或P,其中.102.⼆次函数的图象是抛物线;(2)焦点的坐标为;(3)准线⽅程是. 103.抛物线的内外部(1)点在抛物线的内部.点在抛物线的外部.(2)点在抛物线的内部.点在抛物线的外部.(3)点在抛物线的内部.点在抛物线的外部.(4)点在抛物线的内部.点在抛物线的外部.104.抛物线的切线⽅程(1)抛物线上⼀点处的切线⽅程是.(2)过抛物线外⼀点所引两条切线的切点弦⽅程是.(3)抛物线与直线相切的条件是.105.两个常见的曲线系⽅程(1)过曲线,的交点的曲线系⽅程是(为参数).(2)共焦点的有⼼圆锥曲线系⽅程,其中.当时,表⽰椭圆;当时,表⽰双曲线. 106.直线与圆锥曲线相交的弦长公式或(弦端点A,由⽅程消去y得到,,为直线的倾斜⾓,为直线的斜率). 107.圆锥曲线的两类对称问题(1)曲线关于点成中⼼对称的曲线是.(2)曲线关于直线成轴对称的曲线是.108.“四线”⼀⽅程对于⼀般的⼆次曲线,⽤代,⽤代,⽤代,⽤代,⽤代即得⽅程,曲线的切线,切点弦,中点弦,弦中点⽅程均是此⽅程得到. 109.证明直线与直线的平⾏的思考途径(1)转化为判定共⾯⼆直线⽆交点;(2)转化为⼆直线同与第三条直线平⾏;(3)转化为线⾯平⾏;(4)转化为线⾯垂直;(5)转化为⾯⾯平⾏.110.证明直线与平⾯的平⾏的思考途径(1)转化为直线与平⾯⽆公共点;(2)转化为线线平⾏;(3)转化为⾯⾯平⾏.111.证明平⾯与平⾯平⾏的思考途径(1)转化为判定⼆平⾯⽆公共点;(2)转化为线⾯平⾏;(3)转化为线⾯垂直.112.证明直线与直线的垂直的思考途径(1)转化为相交垂直;(2)转化为线⾯垂直;(3)转化为线与另⼀线的射影垂直;(4)转化为线与形成射影的斜线垂直.113.证明直线与平⾯垂直的思考途径(1)转化为该直线与平⾯内任⼀直线垂直;(2)转化为该直线与平⾯内相交⼆直线垂直;(3)转化为该直线与平⾯的⼀条垂线平⾏;(4)转化为该直线垂直于另⼀个平⾏平⾯;(5)转化为该直线与两个垂直平⾯的交线垂直.114.证明平⾯与平⾯的垂直的思考途径(1)转化为判断⼆⾯⾓是直⼆⾯⾓;(2)转化为线⾯垂直.115.空间向量的加法与数乘向量运算的运算律(1)加法交换律:a+b=b+a.(2)加法结合律:(a+b)+c=a+(b+c).(3)数乘分配律:λ(a+b)=λa+λb.116.平⾯向量加法的平⾏四边形法则向空间的推⼴始点相同且不在同⼀个平⾯内的三个向量之和,等于以这三个向量为棱的平⾏六⾯体的以公共始点为始点的对⾓线所表⽰的向量.117.共线向量定理对空间任意两个向量a、b(b≠0),a∥b存在实数λ使a=λb.、共线且不共线且不共线.118.共⾯向量定理向量p与两个不共线的向量a、b共⾯的存在实数对,使.推论空间⼀点P位于平⾯MAB内的存在有序实数对,使,或对空间任⼀定点O,有序实数对,使.119.对空间任⼀点和不共线的三点A、B、C,满⾜(),则当时,对于空间任⼀点,总有P、A、B、C四点共⾯;当时,若平⾯ABC,则P、A、B、C四点共⾯;若平⾯ABC,则P、A、B、C四点不共⾯.四点共⾯与、共⾯(平⾯ABC).120.空间向量基本定理如果三个向量a、b、c不共⾯,那么对空间任⼀向量p,存在⼀个唯⼀的有序实数组x,y,z,使p=xa+yb+zc.推论设O、A、B、C是不共⾯的四点,则对空间任⼀点P,都存在唯⼀的三个有序实数x,y,z,使.121.射影公式已知向量=a和轴,e是上与同⽅向的单位向量.作A点在上的射影,作B点在上的射影,则〈a,e〉=a·e122.向量的直⾓坐标运算设a=,b=则(1)a+b=;(2)a-b=;(3)λa=(λ∈R);(4)a·b=;123.设A,B,则=.124.空间的线线平⾏或垂直设,,则;.125.夹⾓公式设a=,b=,则推论,此即三维柯西不等式.126.四⾯体的对棱所成的⾓四⾯体中,与所成的⾓为,则.127.异⾯直线所成⾓=(其中()为异⾯直线所成⾓,分别表⽰异⾯直线的⽅向向量)128.直线与平⾯所成⾓(为平⾯的法向量).129.若所在平⾯若与过若的平⾯成的⾓,另两边,与平⾯成的⾓分别是、,为的两个内⾓,则.特别地,当时,有.130.若所在平⾯若与过若的平⾯成的⾓,另两边,与平⾯成的⾓分别是、,为的两个内⾓,则.特别地,当时,有.131.⼆⾯⾓的平⾯⾓或(,为平⾯,的法向量).132.三余弦定理设AC是α内的任⼀条直线,且BC⊥AC,垂⾜为C,⼜设AO与AB所成的⾓为,AB与AC所成的⾓为,AO与AC所成的⾓为.则.133.三射线定理若夹在平⾯⾓为的⼆⾯⾓间的线段与⼆⾯⾓的两个半平⾯所成的⾓是,,与⼆⾯⾓的棱所成的⾓是θ,则有;(当且仅当时等号成⽴).134.空间两点间的距离公式若A,B,则=.135.点到直线距离136.异⾯直线间的距离(是两异⾯直线,其公垂向量为,分别是上任⼀点,为间的距离).137.点到平⾯的距离(为平⾯的法向量,是经过⾯的⼀条斜线,).138.异⾯直线上两点距离公式..().(两条异⾯直线a、b所成的⾓为θ,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,,). 139.三个向量和的平⽅公式140.长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹⾓分别为,则有.(⽴体⼏何中长⽅体对⾓线长的公式是其特例).141.⾯积射影定理.(平⾯多边形及其射影的⾯积分别是、,它们所在平⾯所成锐⼆⾯⾓的为).142.斜棱柱的直截⾯已知斜棱柱的侧棱长是,侧⾯积和体积分别是和,它的直截⾯的周长和⾯积分别是和,则①.②.143.作截⾯的依据三个平⾯两两相交,有三条交线,则这三条交线交于⼀点或互相平⾏.144.棱锥的平⾏截⾯的性质如果棱锥被平⾏于底⾯的平⾯所截,那么所得的截⾯与底⾯相似,截⾯⾯积与底⾯⾯积的⽐等于顶点到截⾯距离与棱锥⾼的平⽅⽐(对应⾓相等,对应边对应成⽐例的多边形是相似多边形,相似多边形⾯积的⽐等于对应边的⽐的平⽅);相应⼩棱锥与⼩棱锥的侧⾯积的⽐等于顶点到截⾯距离与棱锥⾼的平⽅⽐.145.欧拉定理(欧拉公式)(简单多⾯体的顶点数V、棱数E和⾯数F).(1)=各⾯多边形边数和的⼀半.特别地,若每个⾯的边数为的多边形,则⾯数F与棱数E的关(2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:. 146.球的半径是R,则其体积,其表⾯积.的正四⾯体的内切球的半径为,外接球的半径为. 148.柱体、锥体的体积(是柱体的底⾯积、是柱体的⾼).(是锥体的底⾯积、是锥体的⾼).149.分类计数原理(加法原理).150.分步计数原理(乘法原理).151.排列数公式==.(,∈N,且).注:规定.152.排列恒等式(1);(2);(3);(4);(5).(6).153.组合数公式===(∈N,,且).154.组合数的两个性质(1)=;(2)+=.注:规定.155.组合恒等式(1);(2);(4)=;(5).(6).(7).(8).(9).(10).156.排列数与组合数的关系.157.单条件排列以下各条的⼤前提是从个元素中取个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有种;②某(特)元不在某位有(补集思想)(着眼位置)(着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:个元在固定位的排列有种.②浮动紧贴:个元素的全排列把k个元排在⼀起的排法有种.注:此类问题常⽤捆绑法;③插空:两组元素分别有k、h个(),把它们合在⼀起来作全排列,k个的⼀组互不能挨近的所有排列数有种.(3)两组元素各相同的插空个⼤球个⼩球排成⼀列,⼩球必分开,问有多少种排法?当时,⽆解;当时,有种排法.(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.158.分配问题(1)(平均分组有归属问题)将相异的、个物件等分给个⼈,各得件,其分配⽅法数共有.(2)(平均分组⽆归属问题)将相异的·个物体等分为⽆记号或⽆顺序的堆,其分配⽅法数共有.(3)(⾮平均分组有归属问题)将相异的个物体分给个⼈,物件必须被分完,分别得到,,…,件,且,,…,这个数彼此不相等,则其分配⽅法数共有.(4)(⾮完全平均分组有归属问题)将相异的个物体分给个⼈,物件必须被分完,分别得到,,…,件,且,,…,这个数中分别有a、b、c、…个相等,则其分配⽅法数有.(5)(⾮平均分组⽆归属问题)将相异的个物体分为任意的,,…,件⽆记号的堆,且,,…,这个数彼此不相等,则其分配⽅法数有.(6)(⾮完全平均分组⽆归属问题)将相异的个物体分为任意的,,…,件⽆记号的堆,且,,…,这个数中分别有a、b、c、…个相等,则其分配⽅法数有.(7)(限定分组有归属问题)将相异的()个物体分给甲、⼄、丙,……等个⼈,物体必须被分完,如果指定甲得件,⼄得件,丙得件,…时,则⽆论,,…,等个数是否全相异或不全相异其分配⽅法数恒有.159.“错位问题”及其推⼴贝努利装错笺问题:信封信与个信封全部错位的组合数为.推⼴:个元素与个位置,其中⾄少有个元素错位的不同组合总数为.160.不定⽅程的解的个数(1)⽅程()的正整数解有个.(2)⽅程()的⾮负整数解有个.(3)⽅程()满⾜条件(,)的⾮负整数解有个.(4)⽅程()满⾜条件(,)的正整数解有个.161.⼆项式定理;⼆项展开式的通项公式.162.等可能性事件的概率.163.互斥事件A,B分别发⽣的概率的和P(A+B)=P(A)+P(B).164.个互斥事件分别发⽣的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).165.独⽴事件A,B同时发⽣的概率P(A·B)=P(A)·P(B).166.n个独⽴事件同时发⽣的概率P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An).167.n次独⽴重复试验中某事件恰好发⽣k次的概率168.离散型随机变量的分布列的两个性质(1);(2).169.数学期望170.数学期望的性质(1).(2)若~,则.(3)若服从⼏何分布,且,则.171.⽅差172.标准差=.173.⽅差的性质(1);)~,则.(3)若服从⼏何分布,且,则.174.⽅差与期望的关系.175.正态分布密度函数,式中的实数µ,(>0)是参数,分别表⽰个体的平均数与标准差. 176.标准正态分布密度函数.177.对于,取值⼩于x的概率..178.回归直线⽅程,其中.179.相关系数.|r|≤1,且|r|越接近于1,相关程度越⼤;|r|越接近于0,相关程度越⼩.180.特殊数列的极限(1).(2).(3)(⽆穷等⽐数列()的和).181.函数的极限定理.182.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x0的附近满⾜:(1);(2)(常数),则.本定理对于单侧极限和的情况仍然成⽴. 183.⼏个常⽤极限(1),();(2),.184.两个重要的极限(1);(2)(e=2.718281845…).185.函数极限的四则运算法则若,,则(1);(2);(3).186.数列极限的四则运算法则若,则(1);(2);(3)(4)(c是常数).187.在处的导数(或变化率或微商).188.瞬时速度.189.瞬时加速度.190.在的导数.191.函数在点处的导数的⼏何意义函数在点处的导数是曲线在处的切线的斜率,相应的切线⽅程是.192.⼏种常见函数的导数(1)(C为常数).(2).(3).(4).(5);.(6);.193.导数的运算法则(1).(2).(3).194.复合函数的求导法则设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.195.常⽤的近似计算公式(当充⼩时)(1);;(2);;(3);(4);(5)(为弧度);(6)(为弧度);(7)(为弧度)196.判别是极⼤(⼩)值的⽅法当函数在点处连续时,(1)如果在附近的左侧,右侧,则是极⼤值;(2)如果在附近的左侧,右侧,则是极⼩值.197.复数的相等.()198.复数的模(或绝对值)==.199.复数的四则运算法则(1);(2);(3);(4).200.复数的乘法的运算律对于任何,有交换律:.结合律:.分配律:.201.复平⾯上的两点间的距离公式(,).202.向量的垂直⾮零复数,对应的向量分别是,,则的实部为零为纯虚数(λ为⾮零实数).203.实系数⼀元⼆次⽅程的解实系数⼀元⼆次⽅程,①若,则;②若,则;③若,它在实数集内没有实数根;在复数集内有且仅有两个共轭复数根. (n为偶数)(n为奇数) (n为偶数) (n为奇数)。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

高中公式大全总结数学

高中公式大全总结数学

高中公式大全总结数学一、集合与常用逻辑用语。

1. 集合。

- 集合的基本运算。

- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)- 集合间的关系。

- 子集:若对任意x∈ A,都有x∈ B,则A⊆ B- 真子集:若A⊆ B且A≠ B,则A⊂neqq B2. 常用逻辑用语。

- 充分条件与必要条件。

- 若pRightarrow q,则p是q的充分条件,q是p的必要条件。

- 若pLeftrightarrow q,则p是q的充分必要条件(充要条件)。

- 命题。

- 原命题:若p,则q;逆命题:若q,则p;否命题:若¬ p,则¬ q;逆否命题:若¬ q,则¬ p。

原命题与逆否命题同真同假,逆命题与否命题同真同假。

二、函数。

1. 函数的概念与性质。

- 函数的定义域。

- 分式函数y = (f(x))/(g(x)),g(x)≠0。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),f(x)≥slant0。

- 函数的单调性。

- 设x_1,x_2∈ D(D为函数y = f(x)的定义域),当x_1 < x_2时,若f(x_1),则y = f(x)在D上单调递增;若f(x_1)>f(x_2),则y = f(x)在D上单调递减。

- 函数的奇偶性。

- 对于函数y = f(x),定义域关于原点对称,如果f(-x)=f(x),则y = f(x)是偶函数;如果f(-x)= - f(x),则y = f(x)是奇函数。

2. 基本初等函数。

- 一次函数y = kx + b(k≠0)- 二次函数y=ax^2+bx + c(a≠0),对称轴x = -(b)/(2a),顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。

- 幂函数y = x^α(α∈ R),当α>0时,函数在[0,+∞)上单调递增;当α<0时,函数在(0,+∞)上单调递减。

高中数学公式大全(完整版)

高中数学公式大全(完整版)

1. 集合与常用逻辑用语
2. 复数
3. 平面向量
4. 算法、推理与证明
5.不等式、线性规划
6. 计数原理与二项式定理
7. 函数、基本初等函数的图像与性质
8. 函数与方程、函数模型及其应用
9.导数及其应用
10.三角函数的图形与性质
11.三角恒等变化与解三角形
12.等差数列、等比数列
13.数列求和及数列的简单应用
14.空间几何体
15.空间点、直线、平面位置关系
16.空间向量与立体几何
17.直线与圆的方程
18.圆锥曲线的定义、方程与性质
19.圆锥曲线的热点问题
20.概率
21.离散型随机变量及其分布
22.统计与统计案例
23.函数与方程思想,数学结合思想
24.分类与整合思想,化归与转化思想
25.几何证明选讲
26.坐标系与参数方程。

高中数学公式大全总结

高中数学公式大全总结

高中数学公式大全总结高中数学公式大全总结如下:1. 基本公式:- 指数函数:f(x) = a^x,其中 a 为正数。

- 对数函数:f(x) = log_a(x),其中 a 为非零正数。

- 三角函数:- 正弦函数:f(x) = sin(x),其中 x 为角度。

- 余弦函数:f(x) = cos(x),其中 x 为角度。

- 正切函数:f(x) = tan(x),其中 x 为角度。

- 割函数:f(x) = csc(x),其中 x 为角度。

- 半角函数:f(x) = sin(x)/cos(x),其中 x 为半角。

- 函数图像:- 指数函数:形如 f(x) = a^x 的图像通常呈现出指数型增长。

- 对数函数:形如 f(x) = log_a(x) 的图像通常呈现出对数型增长。

- 三角函数:三角函数的图像通常呈现出周期性的变化。

- 不等式:- a + b > c 当且仅当 a > c 且 b > c。

- 对于任意实数 a、b、c,总有 a + b + c = 3a + 2b + c。

- 对于任意整数 a、b,总有 a + b = b + a。

2. 微积分:- 导数:- 导数的定义:f"(x) = lim(Δx->0) [f(x + Δx) - f(x)] / Δx。

- 导数的四则运算法则:- 链式法则:f"(x) = g"(h) + g"(x) * f"(h)。

- 乘积法则:f"(x) * g"(x) = f(x) * g"(x) + f"(x) * g(x)。

- 加积法则:f"(x) + g"(x) = f(x) + g(x)。

- 偏导数的定义:对于任意函数 f(x),总有 f"(x) = lim(Δx->0) [f(x + Δx) - f(x)] / Δx。

高中数学公式总结大全

高中数学公式总结大全

高中数学公式总结大全高中数学是一个基础而重要的学科,其中包含了众多的公式和定理。

下面是我为您总结的高中数学公式大全(只列出了常用和重要的公式,因篇幅限制可能无法完全涵盖全部公式):-----------------一、代数运算1. 二次根式的乘除公式:(a√b) ×(c√b)= ac√b, (a√b)÷(c√b)= a÷c√b2. 幂的乘除公式:a^n × a^m = a^(n+m), a^n ÷ a^m = a^(n-m)3. 平方差公式:(a-b)² = a² - 2ab + b²4. 平方和公式:(a+b)² = a² + 2ab + b²5. 完全平方公式:a² - 2ab + b² = (a - b)²6. 立方差公式:(a-b)³ = a³ - 3a²b + 3ab² - b³7. 立方和公式:(a+b)³ = a³ + 3a²b + 3ab² + b³8. a² - b² = (a+b)(a-b)9. 二次方程的求根公式:对于 ax² + bx + c = 0 的一元二次方程,x = (-b ± √(b²-4ac)) / 2a10. 二次三角恒等式:(sinθ)² + (cosθ)² = 111. 二次三角恒等式:1 + (tanθ)² = (secθ)²12. 二次三角恒等式:1 + (cotθ)² = (cscθ)²13. 对数运算公式:log_a(xy) = log_a(x) + log_a(y), log_a(x/y) = log_a(x) - log_a(y) log_a(x^n) = nlog_a(x), log_a(1/x) = -log_a(x)14. 指数运算公式:a^x × a^y = a^(x+y), a^x ÷ a^y = a^(x-y)(a^x)^y = a^(xy), (ab)^x = a^x × b^x二、平面几何1. 圆的周长公式:C = 2πr或C = πd2. 圆的面积公式:A = πr²3. 锐角三角函数:sinθ = 对边/斜边, cosθ = 邻边/斜边, tanθ = 对边/邻边4. 余角三角函数:cscθ = 1/sinθ, secθ = 1/cosθ, cotθ = 1/tanθ5. 三角恒等式:sin(90°-θ) = cosθ, cos(90°-θ) = sinθ, tan(90°-θ) = cotθ6. 直角三角形勾股定理:a² + b² = c²或c = √(a² + b²)7. 正弦定理:a/sinA = b/sinB = c/sinC8. 余弦定理:a² = b² + c² - 2bc·cosA9. 面积公式:面积S = 0.5 ×底 ×高三、空间几何1. 简单体积公式:直方体 V = l × w × h正方体 V = a³圆柱体V = πr²h球体V = (4/3)πr³2. 简单表面积公式:直方体表面积 A = 2lw + 2lh + 2wh正方体表面积 A = 6a²圆柱体侧面积A = 2πrh圆柱体全面积A = 2πr(r+h)球体表面积A = 4πr²四、概率与统计1. 排列公式:n个元素取r个排列的情况总数为 P(n,r) = n!/(n-r)!2. 组合公式:n个元素取r个组合的情况总数为 C(n,r) = n!/(r!(n-r)!)3. 随机事件概率公式:P(A) = n(A)/n(S)4. 条件概率公式:P(A|B) = P(AB)/P(B), P(B|A) = P(AB)/P(A)5. 独立事件概率公式:P(A∩B) = P(A) × P(B)六、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d2. 等差数列前n项和公式:Sn = n/2 × (a1 + an) = n/2 × (2a1 + (n-1)d)3. 等比数列通项公式:an = a1 × q^(n-1)4. 等比数列前n项和公式:Sn = a1 × (1-q^n) / (1-q), q≠1五、其他1. 三角函数导数:(sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec²x2. 指数函数导数:(a^x)' = a^x × ln(a), (e^x)' = e^x3. 对数函数导数:(log_ax)' = 1 / (x × ln(a)), (lnx)' = 1 / x4. 反三角函数导数:(sin⁻¹x)' = 1 / √(1-x²), (cos⁻¹x)' = -1 / √(1-x²), (tan⁻¹x)' = 1 / (1+x²)-----------------这只是高中数学公式的一小部分,在学习过程中会遇到更多的公式和定理,希望以上总结对您有所帮助。

高中数学公式大全[最全面,最详细]

高中数学公式大全[最全面,最详细]

高中数学公式大全(最全面,最详细)高中数学公式大全抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

高中数学公式大全必背

高中数学公式大全必背

高中数学公式大全必背一、集合1. 集合的基本运算- 交集:A∩ B = {x|x∈ A且x∈ B}- 并集:A∪ B={x|x∈ A或x∈ B}- 补集:∁_U A={x|x∈ U且x∉ A}(U为全集)2. 集合元素个数关系(容斥原理)- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数1. 函数的定义域- 分式函数y = (f(x))/(g(x)),g(x)≠0。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),f(x)≥slant0。

2. 函数的单调性- 设x_1,x_2∈[a,b],x_1≠ x_2- 对于函数y = f(x),若f(x_1)-f(x_2)<0(当x_1 < x_2时),则y = f(x)在[a,b]上单调递增。

- 若f(x_1)-f(x_2)>0(当x_1 < x_2时),则y = f(x)在[a,b]上单调递减。

3. 函数的奇偶性- 对于函数y = f(x)定义域内任意x- 若f(-x)=f(x),则y = f(x)是偶函数。

- 若f(-x)= - f(x),则y = f(x)是奇函数。

4. 一次函数- 表达式y = kx + b(k≠0),斜率k=(y_2 - y_1)/(x_2 - x_1)。

5. 二次函数- 表达式y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})6. 指数函数- 表达式y = a^x(a>0,a≠1)- 当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。

7. 对数函数- 表达式y=log_{a}x(a > 0,a≠1,x>0)- 当a > 1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。

高中数学公式大全

高中数学公式大全

高中数学公式大全数学公式一定要背好,下面是小编为大家收集的关于高中数学公式大全,欢迎大家阅读!1 、过两点有且只有一条直线2、两点之间线段最短3 、同角或等角的补角相等4 、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9 、同位角相等,两直线平行10 、内错角相等,两直线平行11 、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15 、定理三角形两边的和大于第三边16 、推论三角形两边的差小于第三边17 、三角形内角和定理三角形三个内角的和等于180°18 、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21 、全等三角形的对应边、对应角相等22、边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 、角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24、推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(sss) 有三边对应相等的两个三角形全等26、斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30 、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 、直角三角形斜边上的中线等于斜边上的一半39 、定理线段垂直平分线上的点和这条线段两个端点的距离相等40 、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a^2+b^2=c^247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即s=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h83、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 、相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 、判定定理3 三边对应成比例,两三角形相似(sss)95 、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99 、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

高中数学所有公式汇总总结

高中数学所有公式汇总总结

高中数学所有公式汇总总结高中数学是学生学习的一门重要学科,其中涵盖了许多基本概念、定理和公式。

掌握并熟练运用这些公式是高中数学学习的关键。

在本文中,我们将对高中数学中的所有公式进行汇总总结,帮助学生更好地复习和掌握这些知识。

一、代数1. 二次函数的一般式:y=ax^2+bx+c2. 一元二次方程的解法:x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}3. 平方差公式:(a+b)^2=a^2+2ab+b^24. 定比分点公式:\frac{m}{n}=\frac{x_2-x}{x-x_1}5. 三角函数的基本关系:\sin^2\theta+\cos^2\theta=16. 余切的定义:\cot\theta=\frac{1}{\tan\theta}7. 对数运算规律:\log_ab=\frac{\log_cb}{\log_ca}8. 等比数列通项公式:a_n=a_1\cdot q^{n-1}9. 二项式定理:(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k10. 质因数分解:n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}二、几何1. 三角形的面积公式:S=\frac{1}{2}bh2. 圆的面积公式:S=\pi r^23. 圆锥的体积公式:V=\frac{1}{3}\pi r^2h4. 锥台的体积公式:V=\frac{1}{3}\pi(R^2+r^2+Rr)h5. 二面角余角关系:\alpha+\beta=180^\circ6. 直角三角形三边关系:a^2+b^2=c^27. 多边形内角和公式:S=(n-2)\cdot180^\circ8. 圆心角与弦的关系:\theta=\frac{1}{2}m\alpha9. 角平分线定理:\frac{a}{b}=\frac{c}{d}10. 高度定理:h=\frac{2S}{a}三、概率1. 概率加法:P(A\cup B)=P(A)+P(B)-P(A\cap B)2. 条件概率公式:P(A|B)=\frac{P(A\cap B)}{P(B)}3. 互斥事件概率:P(A\cap B)=04. 独立事件概率:P(A\cap B)=P(A)\cdot P(B)5. 全概率公式:P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i)6. 二项分布概率:P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}7. 正态分布概率密度函数:f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}8. 期望的线性性质:E(aX+b)=aE(X)+b9. 二项分布的期望和方差:E(X)=np,Var(X)=np(1-p)10. 正态分布的期望和方差:E(X)=\mu,Var(X)=\sigma^2四、微积分1. 极限定义:\lim_{x\to a}f(x)=L2. 导数定义:f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}3. 导数基本法则:(Cf(x))'=Cf'(x)4. 高阶导数:f^{(n)}(x)5. 极大极小值判定法则:f'(x_0)=0\Rightarrow f(x_0)6. 不定积分线性性质:\int(kf(x)+g(x))dx=k\int f(x)dx+\int g(x)dx7. 分部积分法:\int u dv=uv-\int v du8. 定积分定义:\int_{a}^{b}f(x)dx=F(b)-F(a)9. 牛顿-莱布尼茨公式:\int_{a}^{b}f(x)dx=F(b)-F(a)10. 参数方程的曲线面积:S=\int_{\alpha}^{\beta}f(\theta)g'(\theta)d\theta五、线性代数1. 行列式定义:D=\begin{vmatrix}a & b\\c & d\end{vmatrix}=ad-bc2. 矩阵乘法:C=AB3. 矩阵转置:A^T4. 逆矩阵定义:AA^{-1}=A^{-1}A=I5. 矩阵行列式性质:|A^T|=|A|6. 向量叉乘定义:A\times B=|A|\cdot|B|\sin\theta n7. 点到直线距离公式:d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}8. 埃尔米特矩阵:A=A^*9. 特征值与特征向量:Ax=\lambda x10. 正交矩阵性质:A^TA=AA^T=I以上便是高中数学中所有公式的汇总总结,希朋对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A"B 二 Au A U B M B U A 二 B= C U B 二 C U A=AflC u B —:」u C u A U B 二 R2 •集合{a i ,a 2,|l(,a n }的子集个数共有2n 个;真子集有2n - 1个;非空子集有2n - 1个;非空的真子集有2n - 2 个• 3•充要条件(1) 充分条件:若 P= q ,则p 是q 充分条件• (2) 必要条件:若 q= p ,则p 是q 必要条件•(3) 充要条件:若 p= q ,且q= p ,则p 是q 充要条件• 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然 4. 函数的单调性 (1) 设为 X 2a,b ,X 1 X 2那么(咅-x 2) f (x ,) - f (x 2) 1 0f (人)__f (x2)o= f (x)在 la,b 上是增函数;捲_x 2(咅-x 2) f (xj - f (x 2)丨::0:=f (xJ 一:::0 二 f (x)在'a, b 1 上是减函数•X<| _ x 2(2) 设函数y = f(x)在某个区间内可导,如果 「(x) .0,则f(x)为增函数;如果f(x):::0,则f(x)为减函数•5. 如果函数 f (x)和g(x)都是减函数,则在公共定义域内 ,和函数f (x) + g( x)也是减函数;如果函数y = f (u)和u =g(x)在其对应的定义域上都是减函数,则复合函数y 二f[g(x)]是增函数•6 •奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.a + b7・对于函数y 二f(x)(x ・R ), f (x • a)二f (b-x)恒成立,则函数f (x)的对称轴是函数 x;两个函2a + b数y = f (x a)与y = f (b - x)的图象关于直线 x对称•28・几个函数方程的周期(约定a>0)(1)f (x) = f (x a),则 f (x)的周期 T=a ;1 1(2)------------------------------ , f (x +a) = --------------------------(f (x)式 0),或 f (x+a) =- (f (x)式0),则 f (x)的周期T=2a ;f (x)f(x)9・分数指数幕巴 1 *- 1*(1) a n( a 0,m, n N ,且 n 1) .(2) a n m ( a 0,m, n N ,且 n1) • "a a n10. 根式的性质| a a > 0(1) (n a)n =a .( 2)当 n 为奇数时,na n 二 a ;当 n 为偶数时,n .a n =|a|=' 一 • 、—a,a £ 0II. 有理指数幕的运算性质 (1) a ra s =a r s (a 0,r, s Q) .(2)(a r )s = a rs (a 0, r,s Q) .(3) (ab)r = a r b r (a 0,b0,r Q).12.指数式与对数式的互化式log a N =b = a b=N(a 0,^M,N 0) •①.负数和零没有对数,②.1的对数等于0:log a1=0,③.底的对数等于1 :log a 1 ,④.积的对数:log a (MN ) = log a M log a N,商的对数:log a M= log a M -log a N ,Nn 」a 1 na* = agq內(1 -q n )=1 -q n a 1,q =118.同角三角函数的基本关系式sin 2v cos 2v T , tan )=sincos 日17.等比数列的通项公式 其前n 项的和公式为s n,q a^i —a n q -n,q"胡、 或sn = < 1 -q19正弦、余弦的诱导公式f n(-1)2 sin :,n A.S "(2:■)(n 为偶数) 20 和J -1) 2 co sa,与差角公式cos (卅二「)= cos : cos : +sin : sin,,任、 tan « ±tan P (n 为奇数)si n(、£ 二 =si n r cos L :二 cos t sin :; asin -■ tan (用二 l :,) .1 + tanet tan Pbcosa 2b 2 sin (二:;用)(辅助角「所在象限由点(a,b )的象限决定,tan =-).a21、二倍角的正弦、余弦和正切公式: ⑴ sin2: =2sin : cos :.2 2 2 2 2⑵ cos2: =cos sin 2cos 1=1-2sin : ( cos :-=1 cos2: ,sin 2-S 空).2 2⑶tan2,车■1 -tan »22.三角函数的周期公式函数 y 二sin (,x 亠门),x € R 及函数 y = cos (,x 亠「), x € R (A, w ,“2兀函数 y 二 tan(「x •「), x = k , k • Z (A, 3 ,「为常数,且 A M 0,2JI3 >0)的周期T 工一o23.正弦定理a b ―2R . sin C幕的对数:log a M “ 二 nlog a M ; log a m b n = n iog a bm伯.对数的换底公式 log a =log m N( a 0,且 a =1, m 0,且 m = 1, N 0). log m a推论 lo g a m b n = nl og a b ( a . 0,且 a . 1, m,n . 0,且 m = 1, n-1, N0).amS,n = 115. a n = j(数列{aj 的前n 项的和为s n =印+ a ?十川+a n ).S n -S nm n 一216.等差数列的通项公式 a n = a 1 (n-1)d=dn • a^i -d(n ・N *);=na 1 n(^d =dn 2 (a 1」d)n .2 2 2 2其前n 项和公式为s n =24. 余弦定理2 2 2 2 2 2 2 2 2a b e _2bccosA ; b c a _2cacosB ; c a b _2abcosC .1 1 125. 面积定理 S absinC bcsin A casin B (2).2 2 226. 三角形内角和定理 C q- A + B 在厶 ABC 中,有 A B -C C - -(A B) 2C =2愿「2(A B).2 2 227. 实数与向量的积的运算律设入、□为实数,那么(1) 结合律:入(卩a)=(入卩)a;(2)第一分配律:(入+卩)a=入a+卩a; (3)第二分配律:入(a+b)=入a+入b. 28. 向量的数量积的运算律:(1) a • b= b • a (交换律);(2) ( - a ) • b= - (a • b ) =,a • b= a • (,b ) ;(3) (a +b ) • c= a • c +b • c.30. 向量平行的坐标表示设 a=(X |, y-j ), b=(x 2, y 2),且 b = 0,则 a l lb(b = 0) = x 1y^x 2y 1 = 0. 31. a 与b 的数量积(或内积)a • b=| a || b|cos 0 .32. 数量积a • b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos 0的乘积. 33. 平面向量的坐标运算(1) 设 a =(X 1,yJ , b=(x 2, y 2),则 a+b= (X 1 冷,y 「y ?).(2) 设 a =(X 1,yJ , b=(X 2, y ?),则^-b.1 ^,力 一丫2)•(3) 设 A (X 1, y 1), B ( x 2, y 2),则 AB = OB -^OA = (x ? -^, y ? -■ %). (4) 设 a= (x, y), .■二 R ,则a=(九x 、y).(5) 设 a=(x 1,yj , b=(X 2,y 2),则 a • b= (x^ ym).(X 2—xj 2 卜2—yj 2 (A (心yj , B (x 2,y ?)).36. 向量的平行与垂直设 a =(X 1, yj , b=(X 2,y 2),且 b = 0,则 A|| b := bd a :二 x 1y 2「x 2y 1 =0. a_b(a =0) = a • b=0u x 1x 2 - %y 2 =0. 37. 三角形的重心坐标公式△ ABC 三个顶点的坐标分别为A(x 1,y J 、 B(x 2,y 2)、 C(x 3,y 3),则△ ABC 的重心的坐标是X 1 x 2 % % y ? *3、G( , ).33设O 为 ABC 所在平面上一点,角,代B,C 所对边长分别为a,b,c ,则2 2 2(1) O 为 ABC 的外心=OA 二OB 二OC(3) O 为 ABC 的垂心=OA OB =OB OC 38. 常用不等式: (1)(2) a,b ・R= L^_・ab (当且仅当a = b 时取“=”号).234.两向量的夹角公式cos =X 1X 2 yy 2 X1a =(X 1, yj ,b = (x 2, y ?)).35.平面两点间的距离公式d A ,B = | ABT ■*)J. (2) O 为 ABC 的重心=OA OB OC = 0 . OC =OCOA .2 2a,b ・R= a b-2ab (当且仅当a = b 时取“=”号) AB ABy 2\ x ; y ;(3)a—b 兰a+b + b .39已知x, y都是正数,则有(1)若积xy是定值p,则当x = y时和x y有最小值2 p ;1 2(2)若和x y是定值s,则当x二y时积xy有最大值一s2.440. 含有绝对值的不等式当a> 0时,有xca= x?ca二_acx<a.x〉au x >a u x>a 或-a .y2—y141. 斜率公式k 2- ( R(X i,y i)、F2(X2,y2)).X2— Xj42. 直线的五种方程(〔)点斜式y-w^a x-x j (直线I过点F^(x1, y-i),且斜率为k).(2)斜截式y =kx • b (b为直线I在y轴上的截距).y _ y x — x(3)两点式(y i y2)( P1(x i, y i)、P2(x2, y2) ( x i 7- x2 )).y2 - y i x2 - x i(4)截距式- * =i(a b分别为直线的横、纵截距,a、b = 0)a b(5)—般式Ax • By・C = 0(其中A、B不同时为0).43. 两条直线的平行和垂直⑴若l i: y =k i x D , J : y =k2X d ① h〔出二k i =k2,b i = 6 ;② l i _ ^二- -i・⑵若l i : A]X By G = 0 , l2: A2XB2 y C2 = 0,且A i、A2、B i、B2都不为零,① l i||l2 = AA2 B2A]A2B-I B2 =0 ;(l i : Ax B i y C i =0,l2: A2X B?y C2 二0,人代B i B^-0).直线h_l2时,直线l i与l2的夹角是一.245 .点到直线的距离d」AX° By° o C|(点P(x。

相关文档
最新文档