桥梁的延性抗震设计理念(内容清晰)
桥梁抗震设计理念
65
Displacement, cm
位移
0 0 10 20 30 Time, s -65 40 50 60
力和变形的要求 所以,我们就有两个不同的方法去对付地震引起的问题
力的要求 力
结构的周期
变形
变形的要求
结构的周期
如果我们把地表的波动纪录下来,就可以得到如下的 地震波的’加速度’和地面的’位移’在地震中的变化
但基本设计理念,那就是说,如何对付这些地震波的方法, 并无分别。
对付地震有两方面的重点:’天的’ 和 ‘人的’ 问题!
对付地震有两方面的重点:’天的’ 和 ‘人的’ 问题!
另一个说法:’工程上的’ 和 ‘社会上的’ 工作
对付地震有两方面的重点:’天的’ 和 ‘人的’ 问题!
另一个说法:’工程上的’ 和 ‘社会上的’ 工作
2009年科协大会 山区高速公路建设技术研讨会,2009.09.09 重庆
桥梁抗震设计理念
邓文中 Man-Chung Tang
林同棪国际公司 T.Y. LIN INTERNATIONAL
山区高速公路建设技术研讨会
在基本的观念上, 山区桥梁 和 平地桥梁 的防地震设计理念并没有大分别
山区高速公路建设技术研讨会
基本对策:
隔震 Isolation - 使地震的波动尽量不传到结构上 延性 Ductility - 使结构可以承受地震的变形
消能 Energy Dissipation - 消耗地震输入的能量,
减低结构的反应
如何去适应地表的位移
基本对策:
隔震 Isolation - 使地震的波动尽量不传到结构上 延性 Ductility - 使结构可以承受地震的变形
把结构造得尽量的刚强,来抵抗地震引起的动力。
桥梁抗震
混凝土剪切强度与曲率延性的关系
延性抗震设计方法简介
延性抗震,必须保证结构具形(延性需求)。
延性需求
延性能力
规则桥梁:简化的延性抗震设计 复杂桥梁:非线性动力时程分析
要充分发挥延性能力,必须采用能力设计方法进行延性设计
能力设计方法
脆性链子,强度为 Pib P
延性链子 强度为Pd
脆性链子,强度为 Pib P
Pib'
Pib
Pd
1
△
2y
△
(a) 脆性链子
(b)延性链
子
图5.7 能力设计方法的原理示意图
基本思想:假设延性链子的设计强度为Pd,其可能发挥的最大强度(超强)
为 0Pd ,其中,0 为超强因子。为保证整个链接破坏时是延性的,要求所有脆
性链子的设计强度满足:
Pib 0Pd
能力设计方法的基本原理:在结构体系中的延性构件和能力保护构件(脆
性构件以及不希望发生非弹性变形的构件)之间建立强度安全等级差异(如 同保险丝),以确保结构不会发生脆性的破坏模式。
梁桥延性抗震设计
▪ 钢筋混凝土墩柱桥梁,抗震设计时,墩柱 宜作为延性构件设计。桥梁基础、盖梁、 梁体和结点宜作为能力保护构件。墩柱的 抗剪强度宜按能力保护原则设计。
曲率延性系数与位移延性系数的关系
曲率延性系数与位移延性系数的关系
参考文献
▪ JTG/T B02-01-2008 公路桥梁抗震设计细则_4> ▪ 王玉洁,钢筋混凝土桥墩的延性分析,[C],四川建筑 第27卷 1期
2007.02 ▪ 聂年圣·牛瑞森,筋混凝土桥墩延性抗震设计方法分析[C] ▪ 周勇、张力、唐光武,矩形实心公路桥墩延性性能影响因素初步研
浅论桥梁抗震设计理念及设计方法
浅论桥梁抗震设计理念及设计方法近些年来,我国的经济发展和城市化发展得到了飞速的发展,我过交通事业也随着得到了比较全满的发展。
众所周知,交通是我国国民经济的大动脉,也是重大自然灾害的生命线。
我国河流众多,桥梁工程是公路路程的咽喉,能够保障公路的通畅。
但是桥梁一旦受到地震的影响出现了損坏或者坍塌,将会给周边的居民和国家带来不可小觑额的经济损失。
所以,完善桥梁抗震的设计岁保障桥梁安全有着极为重要的意义。
一、在桥梁设计中应该注意的问题1.选择桥梁的位置在选择桥梁的桥址时,设计人员应该尽量避免将桥梁建设在相对松软的场地,应该选择抗震系数比较高,且较为坚硬的场地。
像人工填土地、粘土地或者根基不稳的场地都是较为危险的地区。
硬粘土、基岩以及碎石类地基是桥梁施工最理想的地方。
拱桥还要注意尽量避免建立在断层之上,若有必要,需要对其进行地震安全测评。
2.对桥型的选择桥型的选择应该考虑到施工地的地质条件、地形地势以及桥梁工程的实际规模,以此为基础选择合适的桥型、桥墩以及桥梁的基础形式。
施工单位要尽可能的选择先进的施工技术和测量技术,根据自己的实际情况将建筑成本降到最低,将建设质量提到最高。
还可以多加利用先进的混凝土建设架构。
3.对桥孔的布置对桥孔的选择,需要有利于抗震的布局,桥孔应该尽量避免与高墩或者大跨度的桥梁结合。
桥孔比较适宜自重较轻、架构相对简单、质量分布比较均匀、重心相对较低的桥梁。
二、桥梁抗震设计的原则桥梁的抗震设计,其合理性要求,设计桥梁需要使桥梁结构的强度、刚度及其延性等指标实现最佳的结合,此外,还要将设计方案设计的即经济有能够达到抗震的指标。
这就要求桥梁设计师要深入了解施工地的地质结构,以及桥梁结构对地震的反应,还需要具有科学合理的创造力,对于一些落后的规范要勇于挑战。
桥梁抗震的设计要遵循以下的原则:合适的建设场地、注重桥梁的整体性与规则性、提高桥梁结构的构件强度、设置多道抗震防线。
三、桥梁抗震设计的措施1.基础抗震措施设计师在加强基础抗震的措施是,可以采取减轻桥梁上部的自重和荷载,以防止桥梁受地震的影响出现永久性的变形。
【精品】桥梁延性与减隔震设计探讨
桥梁延性与减隔震设计探讨桥梁延性与减隔震设计探讨桥梁延性与减隔震设计探讨摘要:本文从桥梁震害的发生部位和特点入手,详细探讨了桥梁延性抗震设计的要点,并对桥梁减隔震设计中应注意的问题进行了说明。
关键词:桥梁;延性;减隔震;构件;强度Abstract: this article from the location and the characteristics of the bridge damage, the main points of the seismic design and retrofit of Bridges is discussed in detail, and the reduction of the bridge isolation problems should be paid attention to in the design.Key words: Bridges; Ductility; Reduce isolation; Component; Strength of the中图分类号:U442.5+9文献标识码:A文章编号:2095-2104(2013)桥梁震害的发生部位与特点纵观以往的桥梁震害,主要产生于下部结构,即使有上部结构破坏的情况,也往往是由于下部结构的破坏或过大的变位引起的,特别是梁式桥和连续拱桥更是如此。
一般说来,桥梁墩台的破坏主要是由于地面加速度产生很大的振动使薄弱截面产生破坏而引起的,从大量震害实例来看,比较高柔的桥墩多为弯曲型破坏,矮粗的桥墩则为剪切型破坏,介于两者之间的则为混合型破坏;无筋或少筋的圬工墩台,破坏一般为开裂或折断;而钢筋混凝土或钢结构等延性构件,多表现为开裂、混凝土剥落、压溃、钢筋裸露和弯曲等,并可以产生很大的塑性变形。
常见的破坏部位可归纳如下:承台与桩的连接处,这类破坏多发生在软弱地基上的桥墩;高桩承台式桥墩更易发生这类破坏。
墩身与基础的连接处。
桥梁的延性抗震方法与减隔震设计 张学义
桥梁的延性抗震方法与减隔震设计张学义发表时间:2019-06-20T11:18:43.430Z 来源:《基层建设》2019年第8期作者:张学义[导读] 摘要:桥梁工程作为生命线工程的重要组成部分,应尽量减少其在地震作用下的破坏。
天津市市政工程设计研究院 300392 摘要:桥梁工程作为生命线工程的重要组成部分,应尽量减少其在地震作用下的破坏。
桥梁的减、隔震设计是目前常用的桥梁抗震方案。
本文对于桥梁延性抗震思想和减、隔震设计进行了简要的阐述与分析,比较了两种方法的异同。
以希腊的里翁-安蒂里翁桥为例,详细分析了其设计中所采用的减、隔震措施。
并提出了一种桥梁减、隔震的设计构想。
关键词:延性;减、隔震;漂浮 1.桥梁的延性抗震设计方法 1.1延性抗震设计方法的概念及其发展从本质上讲,延性反映了一种非弹性变形的能力,保证刚度和强度不会因为非弹性变形而急剧降低。
对材料而言,延性材料是指在发生较大的非弹性变形时强度和刚度都没有明显下降的材料,与之对应的是脆性材料,则指一出现非弹性变形或在非弹性变形极小的情况下便发生破坏的材料;对结构和构件而言,如果结构或构件在发生较大的非弹性变形时,其强度和刚度仍没有明显的下降,则这类结构或结构构件称为延性结构或延性构件。
延性结构具有的延性水平与结构中包含的延性构件具有的延性水平密切相关。
但这并不意味着结构包含一些延性水平高的构件,其整体延性水平就一定高,实际上在某些情况下,即使个别构件的延性水平很高,但结构的整体延性水平却可能很低。
1.2 能力设计的方法能力设计原则是Park等在20世纪70年代中期提出的一个重要原则,并最早在新西兰混凝土设计规范(NZS3101,1982)中得以应用,以后这个原则先后被美国、欧洲和日本等国家和地区的桥梁抗震规范所采用。
能力设计方法的基本原理为:在结构体系中的延性构件和能力保护构件(脆性构件以及不希望发生非弹性变形的构件,统称为能力保护构件)之间建立强度安全等级差异,以确保结构不会发生脆性的破坏模式。
ch5 桥梁延性抗震设计解读
(a)
(b)M
(C)屈服
(d)极限状态
图 5.4 悬臂墩曲率分布
p l p (u y )
p p (l 0.5l p ) (u y )l p (l 0.5l p )
7 2019/2/25
桥梁抗震
y p y
1
p y
1 3( 1)
ty
y
单墩模型:结构的屈服位移和
极限位移分别对应于墩底截面到 达屈服曲率和极限曲率时。
假定只有桥墩发生非弹性变形:
ty y b f y b T r C y
C 1 T r b 1 y
(a)具有可变形的基础和弹性支座
0
5
10 15 20 25 30 35 40 45
40
墩顶横向位移(mm)
模型3
30 20
横向力(KN)
10 0 -10 -20 -30 -40 -45 -40 -35 -30 -25 -20 -15 -10 -5
·轴压比:20% ·含箍率:0.57% ·配筋率:1.54% ·砼强度:19.4
实测恢复力曲线
图5.3 柔性高墩与延性矮墩的比较
桥梁抗震
5.1.4 曲率延性系数与位移延性系数的关系
( x)dxdx
墩底截面刚刚屈服时
( x) y
x l
2 y 1 l 3 y
等效塑性铰长度 l p :假设在墩底附近存在一 个长度为 l p 的等塑性曲率段,在该段长度内截 面的塑性曲率等于墩底截面的最大塑性曲率
开裂点
y
u
图5.1 截面弯矩-曲率关系示意图
钢筋混凝土截面的屈服曲率:
浅述桥梁延性抗震设计中的能力设计理念
浅述桥梁延性抗震设计中的能力设计理念摘要:文章以桥梁的延性抗震设计为切入点,着重阐述了延性抗震设计中的能力设计理念,其中包括了该设计理念的基本原理、计算方法、基本步骤、构造要求以及与传统抗震设计方法的主要优势等等内容,希望通过本文的一些论述,能够对今后桥梁的延性抗震设计提供一些参考经验。
关键词:桥梁;延性抗震设计;能力设计理念0 引言当前我国的交通建设高速发展,桥梁建设的发展更是取得了令人瞩目的傲人成绩。
在桥梁建设发展的过程中,桥梁的抗震设计备受关注,尤其在5.12汶川大地震以后,桥梁的抗震设计更是取得了飞速的发展,从以前纯粹依靠结构的刚度来抵抗地震引起的动力,发展到通过结构的柔度来适应地震引起的波动,抗震设计的理念从如何去抵抗地震力转变为如何去适应地震变形,抗震设计的基本措施也相应调整为:隔震、延性、消能。
其中延性抗震设计即为使结构能够承受地震带来的变形。
本文将着重阐述延性抗震设计中的能力设计理念,希望能为大家更好地了解延性抗震设计,更好地进行桥梁的抗震设计提供一些参考。
1 延性抗震的历史与概念在上世纪70年代以前,全世界的桥梁抗震设计基本上都是纯粹以结构的刚度来抵抗地震引起的动力,基本上都算是“以刚克刚”的设计理念。
直到1971年美国发生了圣·费尔南多地震之后,人们才开始重视延性设计,从单一的强度设计理念转变为强度-延性双重设计的理念,并逐渐正式提出延性抗震设计理念,用中国的话说是“刚柔并济”的设计理念。
目前,延性抗震设计理念已被绝大多数地震国家的桥梁设计规范所采纳。
延性抗震设计,从根本上说就是使结构能够承受地震带来的变形。
从力学本质上,延性反应了结构的一种非弹性变形的能力,这种能力包括两个方面,一是能够承受较大的非弹性变形,同时强度没有明显下降;二是能够利用滞回特性吸收能量。
延性的这种非弹性变形能力,是结构从屈服到破坏的后期变形能力,这种能力保证了结构强度不会因为发生了非弹性变形而急剧下降,如此在适应变形、消能、保证足够强度的三重条件下,增强了结构抵御地震破坏的能力,从而确保了桥梁的安全性能。
轨道交通桥梁与结构延性抗震设计的概念及实用设计方法-58页
需要的初始强度最低,但罕遇地震下的破坏也最严重,某种
意义上不适合用于非常重要的结构
2)有限延性-个人理解交通建筑
3)完全弹性-适合用于非常重要的结构,如核反应堆
4.延性的层次
• 应变延性层次----材料层面
• 曲率或转角延性层次---截面
的层面
• 位移延性层次----构件的层
面
• 多构件的位移延性----结构
Hale Waihona Puke
1.建筑抗震规范
2.城市桥梁抗震规范(公路)
2.城市桥梁抗震规范(公路)
3.铁路抗震规范
四.延性抗震设计的实现方法
1.验算内容
• 1)构造要求H/B不小于2.5
• 2)在罕遇地震下进入屈服
• 3)罕遇地震下的位移小于允许的位移
• 假定构件不发生脆性破坏,如剪切破坏,倾覆
2.截面分析
c
s
c
x
h0 x
截面的曲率
s
h x
0
c
x
**曲率--近似等于转角的一阶导数
EI y M
''
s
3.延性指标
• 由于延性指标是反映构件或截面塑性变形能力的指标,因
此必须首先明确从哪个位置开始的变形定义为塑性变形,
难点和核心:求等效屈服曲率和极限曲率
2.具体过程1---公路或城市规范法
• 首先根据正常受力拟定截面和配筋
• 根据截面和配筋情况,利用MIDAS 或XTRACT等软件进
行截面的弯矩曲率分析,得出截面的等效屈服曲率(或利
桥梁的延性抗震设计理念
桥梁的延性抗震设计理念桥梁得抗震设计人类要遭受地震、干旱、洪涝、台风、冰雹、暴雪、沙尘暴等自然灾害,需要认识它们,预防它们。
之前有幸设计过西北地区铁路抗震及华北地区城市桥梁抗震,均采用延性设计方法,提到桥梁得抗震设计,得先从以下几个关于地震得概念说起。
地震震级衡量一次地震大小得等级,定义为离震中100km处用Wood-Anderson式标准地震仪所记录得最大水平地动位移得常用对数值,震级一般分为9级,8级及以上称为巨大地震。
地震烈度衡量地震破坏作用大小得一个指标,标明某一地区地面与各类建筑物遭受某一次地震影响得强弱程度,烈度分为12度,一次具体得地震,只有一个震级,而不同得地区有不同得烈度,一般离震中越近,烈度越高。
汶川地震震级后期修正为8级,但就是距离震中最近得汶川县映秀镇与北川县县城为两个中心呈长条状区域烈度为11度,地震损害影响最大。
青川县烈度为10度,西南端至四川省宝兴县与芦山县,东北端达到陕西省略阳县与宁强县区域烈度为8度。
《中国地震动参数区划图》已经将中国每个地区今后一个时期内在一般场地条件下可能遭遇到得最大地震烈度区划,就是规范中抗震设防烈度得选取依据。
中国主要地震分布我国处于世界上全球环太平洋地震带与欧亚地震带之间,主要分布在1)东南部台湾与福建广东沿海2)华北太行山沿海与京津塘地区3)青藏高原与四川、云南西部4)西北新疆、甘肃与宁夏瞧瞧您得家乡就是否在潜在震区,人类在自然灾害面前有时显得就是无奈无助桥梁主要震害1)上部结构破坏上部结构遭受直接震害被破坏得情形较少,往往就是由于其它部位毁坏而导致上部结构破坏,主要防止落梁或者伸缩缝处撞梁破坏,所以抗震规范中基本都就是下构(桥墩(盖梁)、承台、基础得抗震验算规定要求),2)支承连接部位震害桥梁支承连接部位震害极为常见,支承破坏后引起传力方式改变,从而进一步加大震害3)下部结构与基础震害下部结构与基础严重破坏就是引起桥梁倒塌得主要原因,下部结构与基础承受较大得水平地震力,瞬时反复振动在相对薄弱得截面产生破坏。
桥梁工程抗震设计的主要内容和方法(完整资料)doc
桥梁工程抗震设计的主要内容和方法(完整资料)doc首先我们了解下地震带给桥梁的具体破坏影响,这样才可以采取相应措施来防止。
桥梁上部结构由于受到墩台、支座等的隔离作用,在地震中直接受惯性力作用而破坏的实例较少,由于下部结构破坏而导致上部结构破坏则是桥梁结构破坏的主要形式,下部结构常见的破坏形式有以下几种:1)支承连接部件失败:固定支座强度不足、活动支座位移量不够、橡胶支座梁底与支座底发生滑动,在地震力作用下支座破坏,致使梁体发生位移导致落梁。
2)墩台支承宽度不满足防震要求,防落梁措施设计不合理,在地震力作用下,梁、墩台间出现较大相对位移,导致落梁现象的发生。
3)伸缩缝、挡块强度不足,在地震力作用下伸缩缝碰撞破坏挤压破坏、挡块剪切破坏,都起不到应有作用,导致落梁。
接下来将从两个方面讲述抗震设计。
抗震设计的主要内容目前桥梁工程的设计主要配合静力设计进行,但贯穿整个桥梁设计的全过程。
与静力设计一样,桥梁工程的抗震设计也是一项综合性的工作。
桥梁抗震设计的任务,是选择合理的结构方式,并为结构提供较强的抗震能力。
具体来说,有以下三个部分:1正确选择能够有效抵抗地震作用的结构形式;2合理的分配结构的刚度,质量和阻尼等动力参数,以便最大限度的利用构件和材料的承载和变形能力;3正确估计地震可能对结构造成的破坏,以便通过结构丶构造和其他抗震措施,使损失控制在限定的范围内。
一丶抗震设计流程桥梁工程的设计一般都要包括五个部分,抗震设防标准选定,抗震概念设计,地震反应分析,抗震性能验算和抗震构造设计。
其中地震反应分析和抗震性能验算工作量最多,且最为复杂。
如果采用三级设防的抗震设计思想,上面的两个部分就要做三个循环,即对于每一个设防标准,进行一次地震反应分析,并进行相应的抗震性能验算,直到结构的抗震性能满足要求。
二丶抗震概念设计抗震概念设计是从概念上,特别是从结构总体上考虑抗震的工程决策;概念设计是指根据地震灾害和工程经验等获得的基本设计和设计思想,正确地解决结构总体方案丶材料使用和细部构造,以达到合理抗震设计的目的。
桥梁抗震与抗风设计理念及设计方法
桥梁抗震与抗风设计理念及设计方法1. 桥梁抗震设计理念:桥梁抗震设计的主要目的是在地震发生时,确保桥梁结构能够安全地承受地震力的作用,避免结构破坏或倒塌。
2. 桥梁抗震设计方法:桥梁抗震设计方法包括强度设计、刚度设计、能量耗散设计和容限状态设计等。
3. 强度设计:强度设计是指根据地震力要求确定结构的强度,确保桥梁在地震力作用下不会发生破坏。
通常采用抗震设防烈度等级来确定设计地震力。
4. 刚度设计:刚度设计是指通过控制桥梁结构的刚度,使其能够在地震作用下产生足够的变形和位移,分散地震能量,减少对结构的破坏。
5. 能量耗散设计:能量耗散设计是指通过设计合理的耗能装置,将地震能量引导到可控制的耗能装置中,从而减少对桥梁结构的破坏。
6. 容限状态设计:容限状态设计是指在地震作用下,桥梁结构仍然能够保持可用性和安全性,不会发生严重的破坏。
7. 桥梁抗风设计理念:桥梁抗风设计的主要目的是确保桥梁结构能够抵御风力的作用,避免结构受到风灾的影响。
8. 桥梁抗风设计方法:桥梁抗风设计方法包括风洞试验、计算模拟等。
9. 风洞试验:风洞试验是通过建立模型,在风洞中模拟不同的风速和风向条件,测试桥梁模型在风力作用下的响应,从而得到设计所需的抗风能力。
10. 计算模拟:计算模拟是通过建立桥梁结构的数值模型,在计算机上模拟不同风速和风向下的风力作用,分析桥梁结构的响应。
11. 桥梁抗震设计中的设计地震力:设计地震力是指根据所在地区的抗震设防烈度等级,确定桥梁结构所需的地震力。
12. 桥梁抗震设计中的土动力性能:土动力性能是指土壤在地震作用下的变形和位移特性,对桥梁结构的抗震性能有重要影响。
13. 桥梁抗震设计中的结构可靠性:结构可靠性是指桥梁结构在地震作用下的安全性能,包括结构的强度、刚度和位移控制等。
14. 桥梁抗风设计中的风压计算:风压计算是确定桥梁结构受风力作用下的压力分布和大小,从而进行结构设计。
15. 桥梁抗风设计中的风荷载选择:风荷载选择是根据所在地区的设计风速和风向,确定桥梁结构所需的抗风能力。
桥梁抗震与抗风设计理念及设计方法
桥梁抗震与抗风设计理念及设计方法3内江市市中区交通战备服务中心云南省内江市 641000摘要:桥梁结构设计的理念是指在桥梁设计过程中所遵循的设计思想和原则。
一个好的桥梁设计理念可以提高桥梁的安全性、可靠性和经济性,同时也可以减少对环境和资源的影响。
设计理念应该注重桥梁的安全性,确保其承载能力、稳定性和耐久性符合设计标准,尽量避免桥梁发生垮塌或损坏的情况。
设计理念应该注重桥梁的经济性,即在满足使用功能、安全和可靠性要求的前提下,尽可能降低建设和维护成本,提高资金利用效率。
设计理念应该注重桥梁的环境友好型,尽量降低桥梁对环境的污染和破坏,如减少空气和水质污染,保护野生动物和植物的栖息地等。
基于上述理念,本文将深入研究桥梁抗震与抗风设计方法,以期对关注该领域的人员有所帮助。
关键词:桥梁工程;抗震;抗风;设计方法;设计理念;1 概念分析地震波和风荷载是对桥梁结构产生重要影响的两个因素。
下面是它们对桥梁结构影响的简要描述:地震波:地震波通常是一种突然的、短时的震动,它能够对桥梁产生很大的影响。
在地震中,桥梁受到的地震力通常由动力荷载和静力荷载组成。
动力荷载源于地震波的振动作用,静力荷载由于结构本身的变形所引起。
地震波如果超过桥梁的承载极限,可能导致桥梁结构的垮塌或者局部破坏。
因此,对于处于地震活动区域的桥梁或者地震烈度较高的地区建设的桥梁,需要充分考虑地震荷载的影响,并采取相应的加固措施。
风荷载:风荷载是桥梁结构设计中必须考虑的因素之一。
在桥梁设计中,风荷载通常分为横向风荷载和纵向风荷载两种。
横向风荷载是指垂直于桥梁方向的侧向风载荷,其作用使得桥梁产生横向振动;纵向风荷载是指平行于桥梁方向的风载荷,其作用使得桥梁产生纵向振动。
对于高大的桥梁,风荷载对其影响更为显著,因此需要采取相应的风振控制措施,如增加桥梁的刚度和耐风能力等。
总的来说,地震波和风荷载都是桥梁结构设计中必须考虑的因素,需要根据实际情况进行充分的分析和设计,以保证桥梁结构的安全和可靠性。
桥梁延性抗震设计
浅析桥梁延性抗震设计[摘要]:大跨度桥梁的抗震设计是一项综合性的工作,需要比较全面的专业知识和功能完善的专用抗震分析软件,从抗震动力学出发来思考问题、解决问题。
[关键词]:桥梁设计延性抗震设计中图分类号:k928.78 文献标识码:k 文章编号:1009-914x(2012)29- 0143 -011.引言:在钢筋混凝土桥梁结构的抗震设计中,必须考虑结构进入弹塑性变形后的动力特性和抗震性能。
我国现行的桥梁设计规范是用对地震作用乘上一个结构综合抗震系数的方法来考虑结构弹塑性变形的影响。
但这一做法在大部分情况下并不能放映桥墩的真实非线性地震影响及破坏失效规律,并且物理概念不明确,所以现在大多数国家普遍采用了延性抗震设计方法。
2桥梁延性抗震设计2.1桥梁震害主要表现:⑴上部结构的破坏:桥梁上部结构本身遭受震害而被毁坏的情形比较少见,往往是由于桥梁结构的其他部位的毁坏而导致上部结构的破坏;⑵支承连接部位的震害:桥梁支承连接部位的震害极为常见。
由于支承连接部位的破坏会引起力传递方式的变化,从而对结构其他部位的抗震产生影响,进一步加重震害。
⑶下部结构和基础的震害:下部结构和基础的严重破坏是引起桥梁倒塌,并在震后难以修复使用的主要原因。
除了地基毁坏的情况,桥梁墩台和基础的震害是由于受到较大的水平地震力,瞬时反复振动在相对薄弱的截面产生破坏而引起的。
2.2桥梁延性抗震设计桥梁延性抗震设计应分两个阶段进行:a.对于逾期会出现塑性铰的部位进行仔细额配筋设计;b.对整个桥梁结构进行抗震能力分析验算,确保其抗震安全性。
阶段可以有反复,直到通过抗震能力验算,或者进行减、隔震设计以提高抗震能力。
2.2.1塑性铰区横向钢筋设计横向钢筋不仅约束混凝土,保证截面延性,而且要保证纵向钢筋不压溃屈曲。
因此,塑性铰区的横向钢筋的配置要同时满足这两个要求。
我国公路桥梁抗震设计规范规定8、9度区桥梁墩柱加密区段箍筋的配置要满足要求;圆形截面应采用螺旋式箍筋,间距不大于10cm,箍筋直径不小于8cm;矩形截面的最小体积含箍筋率,纵向和横向均为0.3%。
延性设计理念及桥梁抗震分析有限元建模要点
延性设计理念及桥梁抗震分析有限元建模要点摘要:随着近年来我国桥梁设计技术的迅速发展,桥梁抗震分析在桥梁设计中显得愈加重要。
论文简要论述延性抗震设计理论,总结现行规范下两种抗震分析方法的特点,并简述抗震分析建模的要点。
关键词:桥梁抗震;延性设计;有限元建模引言:交通运输在抗震救灾行动中扮演着极为重要的角色,是抢救人民生命财产和开展震后修复工作的重要渠道,所以在桥梁设计阶段,需要熟知延性抗震基本思路和不同抗震分析方法特点,并且在抗震分析的有限元建模过程中要精确有效,采取适当的抗震设计方法和措施,优化桥梁的抗震性能,以保证桥梁的良好抗震能力,发挥其交通枢纽作用。
一、桥梁延性抗震设计基本概念(一)结构延性定义人们从实际地震中观察到的结构反应性能显示,强度不足不一定总是导致结构倒塌,甚至不一定严重破坏,实际上只要结构的初始强度能够基本维持,不出现因非弹性变形的而导致强度过度下降,那么结构就能在地震中幸存,而且震后常只需花少量的费用即可修复,但是如果非弹性变形导致强度急剧降低,则结构的严重破坏甚至倒塌现象是通常可见的,以上便是延性抗震的最初认识。
结构的延性,通常定义为初始强度没有明显退化情况下的非弹性变形的能力,它包括两个方面的能力:承受较大的非弹性变形,同时强度没有明显下降的能力;利用滞回特性吸收能量的能力。
桥梁抗震设计的基本原则之一,是要保证结构在预期的设计地震作用下的安全性。
根据这个原则,按延性概念来设计抗震结构,意味着结构在预期的设计地震作用下必须具有一定可靠度保证的延性储备。
(二)现行桥梁抗震设计基本思路现行桥梁抗震规范《公路桥梁抗震设计细则》(JTG/T B02-01-2008)和《城市桥梁抗震设计规范》(CJJ 166-2011)均采用两水平设防、两阶段设计:A类桥梁的抗震设防目标是中震(E1地震作用)不坏,大震(E2地震作用)可修;B、C类桥梁的抗震设防目标是小震(E1地震作用)不坏,中震(E1地震作用)可修,大震(E2地震作用)不倒。
桥梁结构第5章 桥梁延性抗震设计及基于性能的抗震设计
(3)能力设计方法的主要步骤
(1)在概念设计阶段,选择合理的结构布局; (2)确定地震中预期出现的弯曲塑性铰的合理位置,并保证结 构能形成一个适当的塑性耗能机制; (3)对潜在塑性铰区域,建立截面弯矩-转角之间的对应关系。 这个过程可以通过计算分析或估算进行。而后利用这些关系确 定结构的位移延性和塑性铰区截面的预期抗弯强度; (4)对选定的塑性耗能构件,进行抗弯设计; (5)估算塑性铰区截面在发生设计预期的最大延性范围内的变 形时,其可能达到的最大抗弯强度(弯曲超强强度),以此来 考虑各种设计因素的变异性; (6)按塑性铰区截面的弯曲超强强度,进行塑性耗能构件的抗 剪设计以及能力保护构件的强度设计; (7)对塑性铰区域进行细致的构造设计,以确保潜在塑性铰区 截面的延性能力。
结构的整体延性与结构中构件的局部延性密切相关,但这 并不意味着结构中有一些延性很高的构件,其整体延性就一 定高。实际上,如果设计不合理,即使个别构件的延性很高 ,但结构的整体延性却可能相当低。
ty y
(a)具有可变形的基础和弹性支座
(b)结构屈服位移
图5.6 “单墩模型”桥梁结构的屈服位移
桥梁结构的位移延性系数,一般与桥墩的位移延性系数不相 等。考虑最为简单的一种情况,即桥梁结构可以理想化为单墩 模型的情况,如上图所示。在这种情况下,水平地震惯性力作 用在上部结构质量中心,结构的屈服位移和极限位移分别定义 为墩底截面到达屈服曲率和极限曲率状态时上部结构质量中心 处的位移。从图中可见,结构的屈服位移由三部分组成:
t≥ X0
tan
X0
(2)支座抗滑稳定性验算
d Rb≥Ehzb
对于D 类桥梁、圬工拱桥、重力式桥墩和桥台
(1)支座厚度验算
t≥ X E
第7章桥梁延性抗震设计
能力设计方法进行延性设计的步骤
1)在概念设计阶段,选择合理的结构布局; 2)确定地震中预期出现的弯曲塑性铰的合理位置,并保证结构能形
成一个适当的塑性耗能机制; 3)对潜在塑性铰区域,通过计算分析或估算建立截面“弯矩一转角”
从能量的观点看,结构延性抗震设计的基本原理, 是将结构部分构件设计成具有较好的滞回延性, 在预期的地震动作用下,通过延性构件发生的反 复弹塑性变形循环耗散掉大量的地震输入能量, 从而保证结构的抗震安全。
必须指出的是,延性抗震在经济上的优势是以结 构出现一定程度的损坏为代价的。这也是延性抗 震设计的一个主要缺陷。
2延性桥墩中横向钢筋的考虑
横向箍筋有延性桥墩中起到三个方面的作 用:—、用于约束塑性铰区混凝土;二、 提供抗剪能力;三、防止纵向钢筋压屈。 因此,各国规范对延性桥墩中横向箍筋的 有关规定也是最多的。
为了能提供更好的约束效果,Caltrans规范 还规定纵筋之间的最大间距不得超过20cm;
欧洲规范规定纵筋之间的最大间距不得超 过核心混凝土最小尺寸的1/3或35cm,但 可以超过20cm;新西兰规范规定,对矩形
从变形的角度看,地震造成结构损坏的原因,在 于它激起的变形超出了结构的弹性极限变形;同 样,地震造成结构倒塌的原因,在于它激起的反
复的弹塑性变形,超出了结构的滞回延性。因此,
如果通过设计,使结构具有能够适应大震弹塑性
变形的滞回延性,则结构在遭遇大地震时,尽管 可能严重损坏,但结构抗震设防的最低目标—— 免于倒塌破坏,却始终能得到保证。这种思想即 为延性抗震设计的基本思想。
7.3.2 潜在塑性铰位置的选择
桥梁抗震设计原则及方法论述
桥梁抗震设计原那么及方法论述桥梁抗震设计原那么及方法论述【摘要】随着我国交通业的开展,桥梁工程的重要性日益突出,加上近年来地震灾害频发,给国家和人民造成巨大的经济损失,因此要不断提高桥梁的抗震能力。
本文首先分析了地震对桥梁的破坏,进而就桥梁抗震设计原那么及具体方法进行了论述。
【关键词】桥梁;抗震设计;原那么;类型地震对桥梁的破坏桥梁是交通生命线工程中的重要组成局部,一旦桥梁在地震的时候发生坍塌,就会中断交通,影响人员疏离和物资运输,将非常不利于地震的救援工作。
地震对桥梁的破坏主要有以下几种常见的形式:1.支座损伤地震会造成支座的荷载强度过大,超过其承载,从而出现损伤、破坏。
由于支座的损伤地震的惯性力便不会传到下部结构,就可以防止地震荷载传到桥墩从而破坏桥梁,同时支座损伤也会造成桥梁落梁受到破坏。
2.剪切破坏当地震发生时,桥梁在地震水平倚戟的作用下,桥梁受到的剪切力超过了自身的剪切强度便会发生剪切破坏。
剪切破坏主要有以下四个阶段:第一,当桥梁截面的剪切弯矩超过自身的强度时,截面便会出现裂缝;第二,由于地震时荷载强度越来越高,桥梁柱内会逐渐出现斜方向的剪切裂缝;第三,随着地震的继续发生,箍筋会慢慢开始屈服便会导致剪切裂缝越来越大;最后桥梁便会因地震而发生脆性的剪切破坏。
3.弯曲破坏在地震的荷载的作用下,桥梁结构发生变形,变形过大导致桥梁混凝土脱落、内部混凝土崩裂以及钢筋屈服的现象的发生,从而导致桥梁结构丧失承载能力。
弯曲破坏主要有四个阶段:地震造成的水平弯矩超过桥梁自身的开裂强度,便会产生裂缝;然后随着地震荷载强度的增加,裂缝慢慢增大;随后桥梁的变形变得越来越厉害,从而导致桥梁塑性铰范围增大以及混凝土保护层的脱落;最后桥梁出现弯曲破坏。
桥梁抗震设计的原那么合理的抗震设计,要求设计出来的结构在强度、刚度和延性等指标上有最正确的组合,使结构能够经济的实现抗震设防的目标。
抗震设计应遵循以下原那么:1.桥梁抗震结构设计体系的争整体性和标准性桥梁的上部结构需是连续的,整体性能好,可以有效防止地震地震来临时抗震的结构构件的掉落,同时结构体系的整体性对于抗震结构发挥空间作用也是十分关键的。
Midas 城市桥梁抗震分析及验算
SRSS(平方和平方根法)适用: 平动的振型分解反应谱法 CQC (完全二次项平方根法)适 用:扭转耦联的振型分解反应谱 法。
模型特征值分析
在进行反应谱分析之前要计算模型的振型:首先c在结构类型中将模型定义为3D的,勾选将自重 转化为质量,同时还要将外荷载转化为质量(自重不必要转化)。
采用多重Ritz向量法进行特征值分析,水平向 各取40阶振型,保证振型参与质量达到90% 以上。
类型 Ⅰ
类型 Ⅱ
规范流程图参照:11抗震设 计规范81-83页
规范中延性设计理念的体现
目 录
• 一、延性设计理念
• 二、Midas 抗震分析前处理 • 三、Midas 抗震分析后处理 • 四、结论
1. 工程案例
城市主干路上的混凝土空心板结构,桥梁上部结构为2孔20米的简支梁, 下部结构为柱式墩台,墩柱一体。顶部设有盖梁,柱高30米。
Midas 城市桥梁抗震分析及验算
目 录
• 一、延性设计理念
• 二、Midas 抗震分析前处理 • 三、Midas 抗震分析后处理 • 四、结论
目 录
• 一、延性设计理念
• 二、Midas 抗震分析前处理 • 三、Midas 抗震分析后处理 • 四、结论
1. 抗震设计规范
《公路桥梁抗震细则》 2008年
2. 反应谱分析
A 类规则桥梁 , E1 பைடு நூலகம் E2 地震 均选择MM法
地震反应谱的确定
根据设计参数,选择 E1 地震 动反应谱参数。
E1地震作用下反应谱设计参数
E2地震作用下反应谱设计参数
反应谱荷载工况定义
一般情况下,城市桥梁可只考虑水平向地震作用,直线桥可分别考虑顺桥向X和横桥向Y的地震 作用,横桥向在输入的时候,地震角度填写90度。
《桥梁延性抗震设计》学习
《桥梁延性抗震设计》——学习摘录北京地铁亦庄线高架桥所处的地震区划为VIIl度,因此根据《铁路抗震设计规范》GB50111-2006的要求,桥梁结构应满足规定的延性要求;关于延性设计的概念,在“规范”中未予以详述,根据范立础教授等人编著的《桥梁延性抗震设计》一书展开系统学习,以期对北京地铁亦庄线的高架桥梁设计,尤其是墩一桩的合理设计予以把握。
以下为《桥梁延性抗震设计》主要内容:1.延性设计概念(1)地震灾害与国策1998年3月1日开始,我国政府正式实施了第一部规范防震减灾工作的重要法律一《防震减灾法》,在《防震减灾法》中规定,“新建、扩建、改建建设工程,必须达到抗震设防要求;重大建设工程和可能发生严重次生灾害的建设工程,必须进行地震安全性评价,并根据地震安全性评价的结果,确定抗震设防要求,进行抗震设防”。
根据现行的地震烈度区划图,我国地震烈度在6度及以上的地震区面积占全国的60%,7度和7度以上的地震区面积占全国面积的1/3;我国有46%的城市位于基本烈度7度或7度以上的地震区。
(2)工程震害现象与教训A.地震灾害(直接震害和次灾害)◊地表的破坏主要有地表断裂、滑坡、砂土液化、软土震陷等。
①地表断裂(地裂缝)分为构造地裂缝和重力地裂缝。
构造地裂缝与地质构造有关,是地震断层错动后在地表留下的痕迹,一般说来,构造地裂缝切割很深,可以从地壳内的岩层断裂开始直达地表,而且不受地形地貌的影响。
沿着震源体的错动方向,构造地裂缝可延绵数十或上百公里。
如美国的圣•安德列斯(SanAndress)断层为典型的构造地裂缝。
重力地裂缝是由于地表土质软硬不均匀及微地面重力影响,在地震作用下形成的。
它与震前土质的稳定状态密切相关,其规模不能反映地震动的强烈程度。
这种地裂缝在地震区分布极广,在道路、古河道、河岸、堤上等松软潮湿土壤处常可看见。
可引起房屋开裂以及道路、桥梁等工程设施的破坏,并对地下管道造成严重的破坏。
®滑坡:略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥梁的抗震设计
人类要遭受地震、干旱、洪涝、台风、冰雹、暴雪、沙尘暴等自然灾害,需要认识它们,预防它们。
之前有幸设计过西北地区铁路抗震及华北地区城市桥梁抗震,均采用延性设计方法,提到桥梁的抗震设计,得先从以下几个关于地震的概念说起。
地震震级
衡量一次地震大小的等级,定义为离震中100km处用Wood-Anderson式标准地震仪所记录的最大水平地动位移的常用对数值,震级一般分为9级,8级及以上称为巨大地震。
地震烈度
衡量地震破坏作用大小的一个指标,标明某一地区地面和各类建筑物遭受某一次地震影响的强弱程度,烈度分为12度,一次具体的地震,只有一个震级,而不同的地区有不同的烈度,一般离震中越近,烈度越高。
汶川地震震级后期修正为8级,但是距离震中最近的汶川县映秀镇和北川县县城为两个中心呈长条状区域烈度为11度,地震损害影响最大。
青川县烈度为10度,西南端至四川省宝兴县与芦山县,东北端达到陕西省略阳县和宁强县区域烈度为8度。
《中国地震动参数区划图》已经将中国每个地区今后一个时期内在一般场地条件下可能遭遇到的最大地震烈度区划,是规范中抗震设防烈
度的选取依据。
中国主要地震分布
我国处于世界上全球环太平洋地震带和欧亚地震带之间,主要分布在
1)东南部台湾和福建广东沿海
2)华北太行山沿海和京津塘地区
3)青藏高原和四川、云南西部
4)西北新疆、甘肃和宁夏
看看你得家乡是否在潜在震区,人类在自然灾害面前有时显得是无奈无助
桥梁主要震害
1)上部结构破坏
上部结构遭受直接震害被破坏的情形较少,往往是由于其它部位毁坏而导致上部结构破坏,主要防止落梁或者伸缩缝处撞梁破坏,所
以抗震规范中基本都是下构(桥墩(盖梁)、承台、基础的抗震验算规定要求),
2)支承连接部位震害
桥梁支承连接部位震害极为常见,支承破坏后引起传力方式改变,从而进一步加大震害。