EViews图像与及结果分析报告

合集下载

eview 报告分析

eview 报告分析

F检验的假设、对F值的判断、对F值的概率值的判断。

T检验的假设、对t值的判断、对t值的概率值的判断。

1、Y:社会消费总额X2:国民生产总值X3:城乡储蓄X4:农民人均收入Dependent Variable: YMethod: Least SquaresDate: 12/15/10 Time: 21:33Sample: 1994 2005Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.C -231.7988 1139.887 -0.203353 0.8439X2 0.217218 0.053746 4.041582 0.0037X3 -0.023855 0.148371 -0.160777 0.8763X4 5.774893 3.066526 1.883203 0.0964R-squared 0.998370 Mean dependent var 10516.91 Adjusted R-squared 0.997759 S.D. dependent var 6729.635 S.E. of regression 318.5755 Akaike info criterion 14.62680 Sum squared resid 811922.8 Schwarz criterion 14.78843 Log likelihood -83.76079 F-statistic 1633.508 Durbin-Watson stat 1.823503 Prob(F-statistic) 0.000000(1)、根据T检验,分析哪些解释变量X对被解释变量Y有影响;在t检验中,我们设立原假设0:0iHβ= ()1i k≤≤和对立假设1:0iHβ≠。

根据上面的EVIEWS输出结果,可以看出:1、常数项C、X3、X4的t值较小,且其概率值P>0.05,因此,我们接受原假设0:0iHβ=,即认为常数项C、X3的系数、X4的系数为0,即常数项、城乡储蓄、农民人均收入对被解释变量Y(社会消费总额)无显著影响。

计量经济学eviews实验报告

计量经济学eviews实验报告

大连海事大学实验报告实验名称:计量经济学软件应用专业班级:财务管理2013-1姓名:安妮指导教师:赵冰茹交通运输管理学院二○一六年十一月一、实验目标学会常用经济计量软件的基本功能,并将其应用在一元线性回归模型的分析中。

具体包括:Eview的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,异方差、序列相关模型的检验与处理等。

二、实验环境或2000操作系统下,基于EVIEWS5.1平台。

WINDOWSXP三、实验模型建立与分析案例1:我国1995-2014年的人均国民生产总值和居民消费支出的统计资料(此资料来自中华人民共和国统计局网站)如表1所示,做回归分析。

表1我国1995-2014年人均国民生产总值与居民消费水平情况指标人均国内生产总值(元)居民消费水平(元)1995年5074 23301996年5878 27651997年6457 29781998年6835 31261999年7199 33462000年7902 37212001年8670 39872002年9450 43012003年10600 46062004年12400 51382005年14259 57712006年16602 64162007年20337 75722008年23912 87072009年25963 95142010年30567 109192011年36018 131342012年39544 146992013年43320 161902014年46612 17806(1)做出散点图,建立居民消费水平随人均国内生产总值变化的一元线性回归方程,并解释斜率的经济意义;利用eviews软件输出结果报告如下:Dependent Variable: CONSUMPTIONMethod: Least SquaresDate: 06/11/16 Time: 19:02Sample: 1995 2014Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.C 691.0225 113.3920 6.094104 0.0000AVGDP 0.352770 0.004908 71.88054 0.0000R-squared 0.996528 Mean dependent var 7351.300Adjusted R-squared 0.996335 S.D. dependent var 4828.765S.E. of regression 292.3118 Akaike info criterion 14.28816Sum squared resid 1538032. Schwarz criterion 14.38773Log likelihood -140.8816 Hannan-Quinn criter. 14.30760F-statistic 5166.811 Durbin-Watson stat 0.403709Prob(F-statistic) 0.000000由上表可知财政收入随国内生产总值变化的一元线性回归方程为:(令Y=CONSUMPTION,X=AVGDP(此处代表人均GDP))Y = 691.0225+0.352770* X其中斜率0.352770表示国内生产总值每增加一元,人均消费水平增长0.35277元。

计量经济学-eviews实验报告

计量经济学-eviews实验报告

计量经济学作业院系:商学院国贸三班教室:高辉姓名:***学号:************INDEX问题 (2)模型设定 (3)检验异方差 (4)图形检验 (4)Glejser检验 (5)White检验 (6)调整异方差 (6)习题5.8表5.13给出的是1998年我国重要制造业销售收入与销售利润的数据表5.13试完成以下问题:1)求销售利润与销售收入的样本回归函数,并对模型进行经济意义检验和统计检验;2)分别用图形法、Glejser方法、White方法检验模型是否存在异方差;3)如果模型存在异方差,选用适当的方法对异方差性进行修正。

1)假定销售利润与销售收入之间满足线性约束,则理论模型设定为Y i = β1 + β2X I + u i其中,Y i表示销售利润,表示销售收入。

Dependent Variable: YMethod: Least SquaresDate: 12/26/09 Time: 14:45Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C 12.03564 19.51779 0.616650 0.5428X 0.104393 0.008441 12.36670 0.0000R-squared 0.854696 Mean dependent var 213.4650Adjusted R-squared 0.849107 S.D. dependent var 146.4895S.E. of regression 56.90368 Akaike info criterion 10.98935Sum squared resid 84188.74 Schwarz criterion 11.08450Log likelihood -151.8508 Hannan-Quinn criter. 11.01844F-statistic 152.9353 Durbin-Watson stat 1.212795Prob(F-statistic) 0.000000图1估计结果为Yˆi = 12.03564 + 0.104393X i(0.61665)(12.3667)R2 = 0.8547,F = 152.94括号内为t统计量值。

eviews实验报告总结(范本)

eviews实验报告总结(范本)

eviews实验报告‎总结eviews实‎验报告总结‎篇一:‎Evies‎实验报告实验报告‎一、实验数据:‎1994至2‎01X年天津市城镇居‎民人均全年可支配收入‎数据 1994至20‎1X年天津市城镇居民‎人均全年消费性支出数‎据 1994至201‎X年天津市居民消费价‎格总指数二、‎实验内容:对‎搜集的数据进行回归,‎研究天津市城镇居民人‎均消费和人均可支配收‎入的关系。

三‎、实验步骤:‎1、百度进入“中华人‎民共和国国家统计局”‎中的“统计数据”,找‎到相关数据并输入Ex‎c el,统计结果如下‎表1:表1‎1994年--20‎1X年天津市城镇居民‎消费支出与人均可支配‎收入数据2、‎先定义不变价格(19‎94=1)的人均消费‎性支出(Yt)和人均‎可支配收入(Xt)‎令:Yt=c‎n sum/price‎Xt=ine/pr‎i ce 得出Yt与X‎t的散点图,如图‎1.很明显,Yt和‎X t服从线性相关。

‎图1 Yt和Xt散点‎图3、应用统‎计软件EVies完成‎线性回归解:‎根据经济理论和对实‎际情况的分析也都可以‎知道,城镇居民人均全‎年耐用消费品支出Yt‎依赖于人均全年可支配‎收入Xt的变化,因此‎设定回归模型为 Yt‎=β0+β?Xt﹢μ‎t(1)打开‎E Vies软件,首先‎建立工作文件, Fi‎l e rkfile ‎,然后通过bject‎建立 Y、X系列,并‎得到相应数据。

‎(2)在工作文件窗‎口输入命令:‎l s y c x,按‎E nter键,回归结‎果如表2 :‎表2 回归结果根‎据输出结果,得到如下‎回归方程:‎Y t=977.‎908+0.670X‎t s=(17‎2.3797) (0‎.0122) t=(‎5.673) ‎(54.95‎0) R2=0.99‎5385 Adjus‎t ed R2=0.9‎95055 F-st‎a tistic=30‎19.551 ‎残差平方和Sum s‎q uared res‎i d =125410‎8回归标准差S.E‎.f regress‎i n=299.‎2978(3‎)根据回归方程进行统‎计检验:‎拟合优度检验由上表‎2中的数分别为0.‎995385和0.9‎95055,计算结果‎表明,估计的样本回归‎方程较好地拟合了样本‎观测值。

计量经济学eviews实验报告.doc

计量经济学eviews实验报告.doc

大连海事大学实验报告Array实验名称:计量经济学软件应用专业班级:财务管理2013-1*名:**指导教师:***交通运输管理学院二○一六年十一月一、实验目标学会常用经济计量软件的基本功能,并将其应用在一元线性回归模型的分析中。

具体包括:Eview的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,异方差、序列相关模型的检验与处理等。

二、实验环境WINDOWSXP或2000操作系统下,基于EVIEWS5.1平台。

三、实验模型建立与分析案例1:我国1995-2014年的人均国民生产总值和居民消费支出的统计资料(此资料来自中华人民共和国统计局网站)如表1所示,做回归分析。

表1我国1995-2014年人均国民生产总值与居民消费水平情况2008年23912 87072009年25963 95142010年30567 109192011年36018 131342012年39544 146992013年43320 161902014年46612 17806 (1)做出散点图,建立居民消费水平随人均国内生产总值变化的一元线性回归方程,并解释斜率的经济意义;利用eviews软件输出结果报告如下:Dependent Variable: CONSUMPTIONMethod: Least SquaresDate: 06/11/16 Time: 19:02Sample: 1995 2014Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.C 691.0225 113.3920 6.094104 0.0000AVGDP 0.352770 0.004908 71.88054 0.0000R-squared 0.996528 Mean dependent var 7351.300Adjusted R-squared 0.996335 S.D. dependent var 4828.765S.E. of regression 292.3118 Akaike info criterion 14.28816Sum squared resid 1538032. Schwarz criterion 14.38773Log likelihood -140.8816 Hannan-Quinn criter. 14.30760F-statistic 5166.811 Durbin-Watson stat 0.403709Prob(F-statistic) 0.000000由上表可知财政收入随国内生产总值变化的一元线性回归方程为:(令Y=CONSUMPTION,X=AVGDP(此处代表人均GDP))Y = 691.0225+0.352770* X其中斜率0.352770表示国内生产总值每增加一元,人均消费水平增长0.35277元。

Eviews实验报告4

Eviews实验报告4

【实验目的及要求】● 深刻理解平稳性的要求和arima 建模的思想。

● 学会如何通过观察自相关系数和偏相关系数,确定并建立模型。

● 学会如何利用模型进行预测。

● 熟练掌握EVIEWS 的结果,看懂eviews 的输出结果。

【实验原理】ARIMA(p, q )过程的平稳域和可逆域对于非平稳序列的时变均值函数,最简单的处理方法就是考虑均值函数可以由一个时间的确定性函数来描述,这时,可以用回归模型来描述。

假如均值函数服从于线性趋势我们可以利用确定性的线性趋势模型如果均值函数服从二次函数则我们可以用假如均值函数服从k 次多项式我们可以使用下列模型建模()22012,~0,t t t X t t WN αααεεσ=+++()201,~0,k t k t t X t t WN αααεεσ=++++【实验方案设计】4.2数据和指标的选取我们的模型估计选取了我国1990年1月到2008年12月的CPI月度数据附表(1))作为研究的对象。

度量通货膨胀的指标通常有CPI(消费者价格指生产者物价指数(PPI)、批发物价指数(wholesale price index)、GDP平减指数(deflator)等。

消费者物价指数(CPI)(consumer price index)是用来度量一期内居民所支付消费商品和劳务价格变化程度的相对数指标,它是反映通货水平的重要指标。

CPI指数作为生活成本指数,不仅能够及时和明确地反映子商品和服务价格的变化,而且是定期公布,广为人知,易于获取和明了,被公众理解。

选取CPI作为通货膨胀的指标有利于合理引导公众和市场对经预期,有利于政府综合运用价格和其他经济手段,实现宏观经济调控目标。

为了研究这些问题,笔者搜集了1985-2007年的年度中国消费者物价指数的相关数据,利用EVIEWS软件,将这几个指标数据进行了相关分析。

对于ARIMA(p q)模型,可以利用其样本的自相关函数和样本的偏自相关函数的截尾性判定模型的阶数,若平稳时间序列的偏相而自相关函数是截尾的则可断定此序列适合MA 模型; 若平稳时间序列的偏相关函数和自相关函数均是拖尾的则此序列适合模型。

EViews计量经济学实验报告异方差的诊断及修正

EViews计量经济学实验报告异方差的诊断及修正

姓名 学号实验题目 异方差的诊断与修正一、实验目的与要求:要求目的:1、用图示法初步判断是否存在异方差,再用White 检验异方差;2、用加权最小二乘法修正异方差。

二、实验内容根据1998年我国重要制造业的销售利润与销售收入数据,运用EV 软件,做回归分析,用图示法,White 检验模型是否存在异方差,如果存在异方差,运用加权最小二乘法修正异方差。

三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等) (一) 模型设定为了研究我国重要制造业的销售利润与销售收入是否有关,假定销售利润与销售收入之间满足线性约束,则理论模型设定为:i Y =1β+2βi X +i μ其中,i Y 表示销售利润,i X 表示销售收入。

由1998年我国重要制造业的销售收入与销售利润的数据,如图1:1988年我国重要制造业销售收入与销售利润的数据 (单位:亿元)Dependent Variable: YMethod: Least Squares Date: 10/19/05 Time: 15:27 Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.??C 12.03564 19.517790.6166500.5428 X0.1043930.00844112.366700.0000R-squared0.854696 ????Mean dependent var 213.4650Adjusted R-squared 0.849107 ????S.D. dependent var 146.4895 S.E. of regression 56.90368 ????Akaike info criterion 10.98935 Sum squared resid 84188.74 ????Schwarz criterion 11.08450 Log likelihood -151.8508 ????F-statistic 152.9353 Durbin-Watson stat1.212795 ????Prob(F-statistic)0.000000估计结果为: iY ˆ = 12.03564 + 0.104393i X (19.51779) (0.008441) t=(0.616650) (12.36670)2R =0.854696 2R =0.849107 S.E.=56.89947 DW=1.212859 F=152.9353这说明在其他因素不变的情况下,销售收入每增长1元,销售利润平均增长0.104393元。

(完整word版)实验一Eviews软件的基本操作-学生实验报告

(完整word版)实验一Eviews软件的基本操作-学生实验报告

实验报告课程名称: 计量经济学实验项目:实验一EViews软件的基本操作实验类型:综合性□设计性□验证性专业班别:姓名:学号:实验课室:指导教师:石立实验日期:广东商学院华商学院教务处制一、实验项目训练方案小组合作:是□否小组成员:无实验目的:了解熟悉EViews软件的基本操作对象,掌握软件的基本操作。

实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。

实验训练内容(包括实验原理和操作步骤):【实验内容】1.打开运行并认识Eviews软件;2.EViews软件的数据输入、编辑与序列生成;3.图形分析与描述统计分析;4.数据文件的存储与调用。

【实验数据】实验以附件“数据”所列出数据资料为例进行操作。

【实验步骤】一、打开运行软件实验中采用Eviews软件6.0版本绿色版,实验计算机上已安装,请找到图标,点击即可打开软件的操作界面.【注意:FTP中上传了软件的压缩包,同学们可以拷贝到自己的电脑,将压缩包解压后,打开文件夹,双击注册表,进行注册,注册成功后即可使用。

】二、认识软件界面Eviews软件窗口有无部分组成:标题栏、主菜单、命令窗口、状态栏、工作区.三、输入数据1.创建工作文件(1)菜单方式在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。

注:根据数据的不同类型,应创建不同的工作文件,Eviews提供的数据工作文件可分为三种:a、无结构数据/截面数据:Unstructured/Undatedb、时间序列数据:Dated-regular frequency具体有:年度数据(Annual)、半年数据(Semi-annual)、季度数据(Quarterly)、月度数据(Monthly)、周数据(Weekly)、一周五天的数据(Daily-5days week)、一周七天的数据(Daily-7days week)、每日数据(Daily/integer date)c、面板数据Balanced Panel在本例中,按照下图的方式选取选项和填写数据:(2)命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件.命令格式为:CREATE 时间频率类型起始期终止期(时间频率类型以该类型英文首字母标记)则本例实验中的程序可写为:CREATE A 1978 2005在创建的工作文件中,一开始其就包含了两个对象:(如图)*系数向量C(保存估计系数用)*残差序列RESID(实际值与拟合值之差)2.输入数据并命名(1)添加新序列..点击Objects/New Object(或在工作区右击鼠标,选取New Object),对象类型选择Series,并给定序列名,一次只能创建一个新序列。

计量经济学eviews实验报告精编版

计量经济学eviews实验报告精编版

大连海事大学实验报告Array实验名称:计量经济学软件应用专业班级:财务管理2013-1*名:**指导教师:***交通运输管理学院二○一六年十一月一、实验目标学会常用经济计量软件的基本功能,并将其应用在一元线性回归模型的分析中。

具体包括:Eview的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,异方差、序列相关模型的检验与处理等。

二、实验环境WINDOWSXP或2000操作系统下,基于EVIEWS5.1平台。

三、实验模型建立与分析案例1:我国1995-2014年的人均国民生产总值和居民消费支出的统计资料(此资料来自中华人民共和国统计局网站)如表1所示,做回归分析。

表1我国1995-2014年人均国民生产总值与居民消费水平情况2008年23912 87072009年25963 95142010年30567 109192011年36018 131342012年39544 146992013年43320 161902014年46612 17806 (1)做出散点图,建立居民消费水平随人均国内生产总值变化的一元线性回归方程,并解释斜率的经济意义;利用eviews软件输出结果报告如下:Dependent Variable: CONSUMPTIONMethod: Least SquaresDate: 06/11/16 Time: 19:02Sample: 1995 2014Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.C 691.0225 113.3920 6.094104 0.0000AVGDP 0.352770 0.004908 71.88054 0.0000R-squared 0.996528 Mean dependent var 7351.300Adjusted R-squared 0.996335 S.D. dependent var 4828.765S.E. of regression 292.3118 Akaike info criterion 14.28816Sum squared resid 1538032. Schwarz criterion 14.38773Log likelihood -140.8816 Hannan-Quinn criter. 14.30760F-statistic 5166.811 Durbin-Watson stat 0.403709Prob(F-statistic) 0.000000由上表可知财政收入随国内生产总值变化的一元线性回归方程为:(令Y=CONSUMPTION,X=AVGDP(此处代表人均GDP))Y = 691.0225+0.352770* X其中斜率0.352770表示国内生产总值每增加一元,人均消费水平增长0.35277元。

计量经济学eviews实验报告

计量经济学eviews实验报告

大连海事大学实验报告Array实验名称: 计量经济学软件应用专业班级:财务管理2013-1姓名: 安妮指导教师:赵冰茹交通运输管理学院二○一六年十一月一、实验目标学会常用经济计量软件得基本功能,并将其应用在一元线性回归模型得分析中。

具体包括:Eview得安装,样本数据基本统计量计算,一元线性回归模型得建立、检验及结果输出与分析,多元回归模型得建立与分析,异方差、序列相关模型得检验与处理等。

二、实验环境WINDOWSXP或2000操作系统下,基于EVIEWS5、1平台。

三、实验模型建立与分析案例1:我国1995-2014年得人均国民生产总值与居民消费支出得统计资料(此资料来自中华人民共与国统计局网站)如表1所示,做回归分析。

表1我国1995—2014年人均国民生产总值与居民消费水平情况(1)做出散点图,建立居民消费水平随人均国内生产总值变化得一元线性回归方程,并解释斜率得经济意义;利用eviews软件输出结果报告如下: Dependent Variable:CONSUMPTIONMethod: Least SquaresDate:06/11/16Time: 19:02Sample: 1995 2014Included observations:20Variable Coefficient Std、Errort—Statistic Prob、C 691、0225113、3920 6、0941040、0000AVGDP 0、352770 0、004908 71、88054 0、0000R-squared 0、996528 Mean dependent var 7351、300Adjusted R-squared 0、996335 S、D、dependent var4828、765S、E、of regression292、3118 Akaike info criterion 14、28816Sum squaredresid 1538032、 Schwarz criterion14、38773Log likelihood -140、8816Hannan-Quinn criter、14、30760F-statistic 5166、811Durbin-Watsonstat0、403709Prob(F—statistic)0、000000由上表可知财政收入随国内生产总值变化得一元线性回归方程为:(令Y=CONSUMPTION,X=AVGDP(此处代表人均GDP))Y = 691、0225+0、352770* X其中斜率0、352770表示国内生产总值每增加一元,人均消费水平增长0、35277元.检验结果R2=0、996528,说明99、6528%得样本可以被模型解释,只有0、3472%得样本未被解释,因此样本回归直线对样本点得拟合优度很高.(2)对所建立得回归方程进行检验:(5%显著性水平下,t(18)=2、101)对于参数c假设: H0:c=0、对立假设:H1:c≠0对于参数GDP假设: H0: GDP=0、对立假设:H1: GDP≠0由上表知:对于c,t=6、094104>t(n-2)=t(18)=2、101因此拒绝H0: c=0,接受对立假设:H1: c≠0对于GDP, t=71、88054﹥t(n—2)=t(18)=2、101因此拒绝H0: GDP=0,接受对立假设: H1: GDP≠0此外F统计量为5166、811,数值很大,可以判定,人均国内生产总值对居民消费水平在5%得显著性水平下有显著性影响。

eviews实验心得与体会

eviews实验心得与体会

eviews实验心得与体会在进行eviews实验的过程中,我获得了许多宝贵的经验和深刻的体会。

通过这次实验,我不仅对eviews软件有了更深入的了解,还学到了许多实证分析的方法和技巧。

接下来,我将分享我在eviews实验中的心得和体会。

一、实验前的准备在开始实验之前,充分的准备工作是非常重要的。

首先,需要了解eviews软件的基本操作和功能,熟悉主要的菜单和工具栏等界面元素。

其次,需要掌握实证研究的基本步骤和方法,如数据收集、数据处理和模型建立等。

最后,要对所要研究的课题有充分的理解和背景知识,这有助于更好地进行实证分析。

二、数据处理与分析在eviews实验中,数据处理和分析是非常关键的步骤。

首先,需要对收集到的原始数据进行处理和清洗,去除异常值和缺失值,并进行数据转换和变量定义等操作。

然后,根据研究的目的和假设,选择合适的模型进行建立和分析。

在建立模型时,要注意变量的选择和处理,合理设置模型的形式和参数。

在进行模型分析时,要注意对结果的解读和推断,切勿随意得出结论,应该根据实际情况进行合理的解释和评价。

三、模型诊断与改进在进行eviews实验中,模型诊断和改进是不可忽视的环节。

通过模型的诊断,可以评估模型的拟合程度和可靠性,进而判断模型的有效性和适用性。

常用的模型诊断方法包括残差分析、异方差性检验和模型稳定性检验等。

根据模型诊断的结果,可以对模型进行相应的改进和优化,进一步提高模型的准确性和可靠性。

在进行模型改进时,要注意避免过度拟合和过度修正的问题,应该保持适度和合理的修正。

四、结果分析与报告撰写在完成实验后,要对结果进行充分的分析和总结。

首先,要对实验的结果进行详细的描述和解释,包括模型的参数估计和显著性检验等。

其次,要根据实验的结果,对研究的目的和假设进行深入的讨论和分析,阐述实验的结论和发现。

最后,要将实验的结果整理成报告的形式,并进行适当的图表展示,使得报告更加直观和易于理解。

在撰写报告时,要注意语言表达的准确性和条理性,合理组织内容结构,使得报告具有一定的逻辑性和可读性。

eviews图像及结果分析报告

eviews图像及结果分析报告

EViews图像及结果分析EViews软件提供了序列(Series)和序列组(Group)等对象的各种视图、统计分析方法和过程。

当序列对象中输入数据后,就可对序列对象中输入的数据进行统计分析,并且可以通过图、表等形式进行描述。

本章将介绍序列和序列组对象图形的生成和描述性统计量及其检验。

4.1 图形对象图形(Graph)对象可以形成序列和序列组等对象的各种视图,如线图(Line)、散点图(Scatter)以及饼图(Pie)等。

通过图形可以进一步观察和分析数据的变化趋势和规律。

下面介绍图形对象的基本操作。

4.1.1 图形(Graph)对象的生成图形对象也是工作文件中的基本对象之一。

要生成图形对象需首先打开序列对象窗口或序列组对象窗口,选择对象窗口工具栏中的“View”|“Graph”选项。

选择的对象类型不同,将弹出不同的窗口。

如果在序列对象窗口下选择“View”|“Graph”选项,将弹出如图4-1所示的界面。

图4-1 序列窗口下图形对象的生成此时“Graph”弹出的菜单中有6种图形可供选择。

“Line”表示生成的是折线图,如图4-2所示,其横轴表示时间或序列的顺序,纵轴表示序列对象观测值的大小。

“Area”表示生成面积图,其图形的形状与“Line”(折线图)相同,不同的是“Area”(面积图)曲线下方是被填满的,而“Line”(折线图)下方是空白。

图4-2 “Line”折线图“Bar”表示为条形图,用条状的高度表示观测值的大小。

“Spike”表示尖峰图,由竖线组成,每根竖线的高度代表观测值的大小。

“Seasonal Stacked Line”表示生成的是季节性堆叠图,“Seasonal Split Line”表示生成的是季节性分割线。

如果在序列组(群)对象窗口下选择“View”|“Graph”选项,将弹出如图4-3所示的界面。

这里有9种图形可供选择。

其前4种与上面讲述的相同。

图4-3 序列组(群)窗口下图对象的生成其中,“Scatter”表示生成散点图。

eviews多元线性回归案例分析报告报告材料

eviews多元线性回归案例分析报告报告材料

中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。

为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。

影响中国税收收入增长的因素很多,但据分析主要的因素可能有:〔1〕从宏观经济看,经济整体增长是税收增长的基根源泉。

〔2〕公共财政的需求,税收收入是财政的主体,社会经济的开展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。

〔3〕物价水平。

我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。

〔4〕税收政策因素。

我国自1978年以来经历了两次大的税制改革,一次是1984—%。

但是第二次税制改革对税收的增长速度的影响不是非常大。

因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。

二、模型设定为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收〞〔简称“税收收入〞〕作为被解释变量,以反映国家税收的增长;选择“国内生产总值〔GDP〕〞作为经济整体增长水平的代表;选择中央和地方“财政支出〞作为公共财政需求的代表;选择“商品零售物价指数〞作为物价水平的代表。

由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。

所以解释变量设定为可观测“国内生产总值〔GDP〕〞、“财政支出〞、“商品零售物价指数〞从《中国统计年鉴》收集到以下数据年份财政收入〔亿元〕Y国内生产总值(亿元〕X2财政支出〔亿元〕X3商品零售价格指数〔%)X419781979 102 1980 106 1981198219831984 717119851986 106 1987198819891990199119921993199419951996199719981999 97 200020012002设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三、参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X4的散点图:Dependent Variable: YMethod: Least SquaresDate: 12/01/09 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.CX2X3X4R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 1463163. Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)模型估计的结果为:Y i=+0.022067X2+X3+X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21四、模型检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。

eviews图像及结果分析(同名23076)

eviews图像及结果分析(同名23076)

eviews图像及结果分析(同名23076)EViews图像及结果分析EViews软件提供了序列(Series)和序列组(Group)等对象的各种视图、统计分析方法和过程。

当序列对象中输入数据后,就可对序列对象中输入的数据进行统计分析,并且可以通过图、表等形式进行描述。

本章将介绍序列和序列组对象图形的生成和描述性统计量及其检验。

4.1 图形对象图形(Graph)对象可以形成序列和序列组等对象的各种视图,如线图(Line)、散点图(Scatter)以及饼图(Pie)等。

通过图形可以进一步观察和分析数据的变化趋势和规律。

下面介绍图形对象的基本操作。

4.1.1 图形(Graph)对象的生成图形对象也是工作文件中的基本对象之一。

要生成图形对象需首先打开序列对象窗口或序列组对象窗口,选择对象窗口工具栏中的“View”|“Graph”选项。

选择的对象类型不同,将弹出不同的窗口。

如果第4章图形和统计量分析• 43 •在序列对象窗口下选择“View”|“Graph”选项,将弹出如图4-1所示的界面。

图4-1 序列窗口下图形对象的生成此时“Graph”弹出的菜单中有6种图形可供选择。

“Line”表示生成的是折线图,如图4-2所示,其横轴表示时间或序列的顺序,纵轴表示序列对象观测值的大小。

“Area”表示生成面积图,其图形的形状与“Line”(折线图)相同,不同的是“Area”(面积图)曲线下方是被填满的,而“Line”(折线图)下方是空白。

• 44 •第4章图形和统计量分析图4-2 “Line”折线图“Bar”表示为条形图,用条状的高度表示观测值的大小。

“Spike”表示尖峰图,由竖线组成,每根竖线的高度代表观测值的大小。

“Seasonal Stacked Line”表示生成的是季节性堆叠图,“Seasonal Split Line”表示生成的是季节性分割线。

如果在序列组(群)对象窗口下选择“View”|“Graph”选项,将弹出如图4-3所示的界面。

eviews统计分析报告

eviews统计分析报告

姓名:刘金玉学院:经济管理学院学号:20121002942指导教师:李奇明日期:2014年12月14日基于eviews软件的湖北省人均GDP时间序列模型构建与预测1、选题背景改革开放以来,中国的经济得到飞速发展。

1978年至今,中国GDP年均增长超过9%。

中国的经济实力明显增强。

2001年GDP超过1.1万亿美元,排名升到世界第六位。

外汇储备已达2500亿美元。

市场在资源配置中已经明显地发挥基础性作用。

公有、私有、外资等多种所有制经济共同发展的格局基本形成。

宏观调控体系初步建立。

我国社会生产力、综合国力、年1983 543.27 7.30% 1995 3671.41 22.74% 2007 16386 22.65% 1984 670.97 23.51% 1996 4310.98 17.42% 2008 19858 21.19% 1985 800.69 19.33% 1997 4883.8 13.29% 2009 22677 14.20% 1986 881.61 10.11% 1998 5287.03 8.26% 2010 27906 23.06% 1987 1018.42 15.52% 1999 5452.46 3.13% 2011 34197.27 22.54% 1988 1215.93 19.39% 2000 6293.41 15.42% 2012 38572.33 12.79% 1989 1373.22 12.94% 2001 6866.99 9.11% 2013 42612.7 10.47%2、数据准备首先我们对数据进行预处理,建立工作文件并导入数据如图1:图1图中year代表年份,per GDP代表湖北省的人均GDP。

导入数据后我们根据时间和人均GDP绘制时序图,选择序列然后点Quick,选择Scatter,或者XYline ;绘制完成后后可以双击图片对其进行修饰。

绘制图形如图2:图2由图2我们不难看出,根据描点,湖北省的人均GDP基本在时间上呈一种指数增长。

Eviews实验报告

Eviews实验报告

Eviews实验报告一1启动程序双击桌面上EViews快捷图标,打开EViews2新建一个workfire点击EViews主窗口顶部命令菜单file\new\Workfile (如图1.1.2),弹出Workfile Create对话框(图1.1.3)。

在右边frequency下拉菜单中可选数据类型,Annual为默认的数据类型。

Workfile中有两个默认的对象,名称分别为c 、resid,分别为参数估计值向量和残差序列。

在没做回归估计之前,向量c的每个元素的值都为0,残差序列的每个值为NA,表示还没有赋值。

以后每做一次回归估计,c和resid就会被重新赋值(被分别赋予最新回归估计的参数估计值向量和残差序列)。

3录入数据点击EViews主窗口顶部菜单命令Object\new Object或者Workfile上面的菜单命令Object ,弹出New Object对话框,在Type of Object中选择Group类型,然后在右边文本框中为新建的group对象(Object)命名,比如为g1,然后点击OK,弹出一个表格形式的Group对话框,同时在Workfile中出现了新建的这个group对象g1。

在g1对话框的obs栏可输入多个序列对象名并在表格中录入这些序列的数据在group对象(g1)表格中录入数据表格右端的滑块拖到顶端,这时看到表格左侧出现两个obs。

建立序列对象Y:点击g1表格中第一列顶部的灰色条(第一个obs右侧),该列全部变蓝,输入变量名Y,回车,点OK即可。

如此便建立了序列Y(这时可在Workfile中发现多了一个序列Y),不过此时还没有给序列对象Y赋值(即录入数据),序列Y中每个年度的值现在都为NA。

在g1数据表格中Y所在列录入序列Y的各年观测值。

仿上可在g1第二列建立序列X(人均可支配收入),并录入各年人均可支配收入X。

这样便在g1中定义了两个序列对象(Y、X)并录入了数据双击Workfile中序列对象Y,点击序列对象Y的数据表上菜单命令edit +\-,将编辑状态切换为“可编辑”,然后在其单元格中录入数据。

Eviews软件数据分析例文剖析

Eviews软件数据分析例文剖析

小学期作业影响财政收入的主要因素学院:经济学院班级:统计学班**:***学号:**********影响财政收入的主要因素摘要:财政收入是一国政府实现政府职能的基本保障,主要有资源配置、收入再分配和宏观经济调控三大职能。

财政收入的增长情况关系着一个国家经济的发展和社会的进步。

我国财政收入主要受国民经济发展、预算外资金收入、税收收入等因素的影响。

本文针对我国财政收入影响因素建立了计量经济模型,并利用Eviews软件对收集到的数据进行相关回归分析,排除简单多元回归模型存在的严重多重共线性等问题,建立财政收入影响因素更精确的模型,分析了影响财政收入主要因素及其影响程度,预测我国财政收入增长趋势。

二、模型设定研究财政收入的影响因素离不开一些基本的经济变量。

大多数相关的研究文献中都把总税收、国内生产总值这两个指标作为影响财政收入的基本因素,还有一些文献中也提出了其他一些变量, 比如其他收入、经济发展水平等。

影响财政收入的因素众多复杂, 但是通过研究经济理论对财政收入的解释以及对实践的观察, 对财政收入影响的因素主要是税收收入。

下面我们就以税收收入、能源消费总量、和预算外资金收入作为影响财政收入的主要研究因素。

从中国统计局网站上可以查询到1993年至2008年的相关数据,对其进行计算整理可得:4.、模型的建立根据1978—2008年每年的财政收入Y( 亿元) , 能源消费总量X1( 亿元),预算外资金收入X2( 亿元) ,税收收入X3( 亿元) 的统计数据,由E-views软件得到y,x1,x2,x3的线性图,如下:由图可知,y,x1, x3都是逐年增长的,但增长速率有所变动,而x2呈现水平波动,说明变量间不一定是线性关系,可探索将模型设定为以下形式:lnY=β0+β1lnX1+β2X2+β3lnX3+U三,模型估计与调整利用Eviews软件对模型进行最小二乘法全回归,结果如下:第一步,进行模型的检验。

(一),进行多重共线性的检验方程的修正后的R平方值很高,说明变量对因变量的拟合程度很好,但是应该注意到c,lnx1,x2三者的t值很低(在此选择置信度为0.05),未通过检验,因此怀疑其中存在变量之间的多重共线问题。

eviews实验心得与体会

eviews实验心得与体会

eviews实验心得与体会eViews是一种广泛使用的经济学和财务分析软件,它提供了许多功能和工具用于数据分析和建模。

在使用eViews进行实验和数据分析的过程中,我得出以下实验心得和体会:1. 熟悉软件界面和基本功能:在开始使用eViews之前,熟悉软件的界面和基本功能是非常重要的。

了解如何导入数据、创建变量和操作数据,以及如何进行基本的统计分析是至关重要的。

通过熟悉软件的界面和功能,可以更高效地进行实验和分析。

2. 数据处理和清洗:在进行实验和分析之前,对数据进行处理和清洗是必不可少的。

eViews提供了许多功能和工具,例如数据导入、数据变换和缺失值处理等,可以帮助我们对数据进行清洗和准备。

通过使用这些功能,我们可以确保数据的质量和准确性。

3. 统计分析和建模:eViews提供了丰富的统计分析和建模功能,可以帮助我们进行经济学和财务分析。

例如,可以使用eViews进行回归分析、时间序列分析和面板数据分析等。

通过使用这些功能,我们可以对数据进行更深入的分析,并得出准确的结论。

4. 图形展示和报告生成:除了统计分析和建模功能,eViews还提供了图形展示和报告生成功能。

通过使用eViews的图形和报告功能,我们可以将分析结果以可视化的方式展示出来,并生成专业的报告。

这对于向他人传达分析结果和研究发现非常有用。

在实验和数据分析过程中,我发现eViews是一种强大而灵活的软件工具,可以帮助我们高效地进行经济学和财务分析。

它提供了许多功能和工具,可以满足不同研究需求,并帮助我们对数据进行深入的分析和解释。

然而,在使用eViews进行实验和数据分析时,也存在一些挑战和注意事项,例如数据质量和模型选择等。

因此,在使用eViews进行实验和数据分析时,我们需要谨慎评估和处理数据,并灵活选择和应用合适的模型和方法。

总之,通过使用eViews进行实验和数据分析,我积累了丰富的经验和知识。

它是一种功能强大且灵活的软件工具,可以帮助我们进行经济学和财务分析,并得出准确的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EViews图像与及结果分析报告EViews软件提供了序列(Series)和序列组(Group)等对象的各种视图、统计分析方法和过程。

当序列对象中输入数据后,就可对序列对象中输入的数据进行统计分析,并且可以通过图、表等形式进行描述。

本章将介绍序列和序列组对象图形的生成和描述性统计量及其检验。

4.1 图形对象图形(Graph)对象可以形成序列和序列组等对象的各种视图,如线图(Line)、散点图(Scatter)以及饼图(Pie)等。

通过图形可以进一步观察和分析数据的变化趋势和规律。

下面介绍图形对象的基本操作。

4.1.1 图形(Graph)对象的生成图形对象也是工作文件中的基本对象之一。

要生成图形对象需首先打开序列对象窗口或序列组对象窗口,选择对象窗口工具栏中的“View”|“Graph”选项。

选择的对象类型不同,将弹出不同的窗文案大全口。

如果在序列对象窗口下选择“View”|“Graph”选项,将弹出如图4-1所示的界面。

图4-1 序列窗口下图形对象的生成此时“Graph”弹出的菜单中有6种图形可供选择。

“Line”表示生成的是折线图,如图4-2所示,其横轴表示时间或序列的顺序,纵轴表示序列对象观测值的大小。

“Area”表示生成面积图,其图形的形状与“Line”(折线图)相同,不同的是“Area”(面积图)曲线下方是被填满的,而“Line”(折线图)下方是空白。

图4-2 “Line”折线图“Bar”表示为条形图,用条状的高度表示观测值的大小。

“Spike”表示尖峰图,由竖线组成,每根竖线的高度代表观测值的大小。

“Seasonal Stacked Line”表示生成的是季节性堆叠图,“Seasonal Split Line”表示生成的是季节性分割线。

如果在序列组(群)对象窗口下选择“View”|“Graph”选项,将弹出如图4-3所示的界面。

这里有9种图形可供选择。

其前4种与上面讲述的相同。

图4-3 序列组(群)窗口下图对象的生成其中,“Scatter”表示生成散点图。

在“Scatter”弹出的菜单中有5个选项,分别是“Simple Scatter”(简单散点图)、“Scatter with Regression”(带有回归线的散点图)、“Scatter with NearestNeighbor Fit”(近邻匹配散点图)、“Scatter with Kernel Fit”(核心匹配散点图)、“XY Pairs”(XY成对散点图)。

当序列组中包含两个序列对象时,第一个序列对象的观测值构成散点图的横坐标,第二个序列对象的观测值构成散点图的纵坐标,如图4-4所示。

当序列组中有三个以上的序列对象时,第一个序列对象构成散点图的横坐标,其余序列对象构成散点图的纵坐标。

图4-4 简单散点图(“Simple Scatter”) “XY line”表示X与Y的折线图,横纵坐标分别表示两个序列对象的观测值。

“Error Bar”表示误差长条图,“High-Low”表示高低图,“Pie”表示饼图。

另外,在序列组(群)对象窗口下还可通过选择“View”|“Multiple Graphs”选项来生成图形。

此时图形显示在不同的坐标系中,即每个序列对象各形成一个图形,并显示在同一个窗口中。

除上面介绍的在序列对象窗口中生成图对象外,还可以通过选择EViews主菜单中的“Quick”|“Graph”选项来生成。

在“Graph”的菜单中选择图的类型,将弹出图4-5所示的文本框。

在文本框内输入序列或序列组的名称,例如“fdi”,然后单击“OK”按钮,即可打开相应的图。

此时所生成的图对象未被命名,单击图对象窗口中的“Name”按钮即可命名。

图4-5 生成图对象的文本框4.1.2 图形的冻结在上面所介绍的两种图对象生成方法中,通过“Quick”|“Graph”选项生成图形对象,单击图对象窗口工具栏中的“Name”选项,在弹出的对话框中输入该对象的名称,单击“OK”按钮后该对象即可被保存,并在工作文件窗口中显示图对象的图标。

但直接在序列对象窗口中形成的图形未被保存,当序列对象中的观测值发生改变时,或当前工作文件的样本范围发生变化时,图形也将随之改变。

如果要保留所建立的图形,使之不随样本及观测值的改变而发生变化,则可以通过序列对象窗口中的“Freeze”键来冻结图形。

EViews 软件将被冻结的图形以一个图(Graph)对象的形式保存在工作文件中。

当选择序列对象窗口中的“Freeze”键时,会弹出图对象窗口。

其中有几个键值得关注,一个是“AddText”功能键,通过它可以将文字显示在图形中,并且可以选择显示的位置。

一个是“Line/Shade”功能键,通过它可以改变图形的背景颜色,横纵坐标轴的线条类型和颜色等。

还有一个是“Remove”功能键,可以用来删除图形中的一些附加要素。

例如,将在图形中所建立的文字删除,应首先用鼠标单击所需删除的内容,使其被选中,然后单击“Remove”键,则文字即被删除。

用同样的方法也可以删除为图形所设置的颜色等。

4.1.3 图形的复制如果需要将图形保存到其他文件中,例如放在Word文档中,则选择图对象窗口中的“Proc”|“Copy”选项,然后在弹出的对话框中单击“OK”按钮。

或者将鼠标移动到图形上,右击,在弹出的快捷菜单中选择“Copy”命令。

再打开需要粘贴的文件,进行粘贴即可。

4.2 描述性统计量EViews软件中包含一些基本的描述性统计量,有直方图、均值、方差、协方差、自相关等。

本节主要介绍序列和序列组对象窗口下的描述性统计量及其检验。

4.2.1 描述性统计量概述序列窗口下的描述性统计量和序列组窗口下的描述性统计量有所不同。

在序列窗口下有4种描述性统计量,分别是“Histogram and Stats”(直方图和统计量)、“Stats Table”(统计表)、“Stats by Classification”(分类统计量)和“Boxplots by Classification”(箱线图/箱尾图分类)。

序列组窗口下有3种描述性统计量,分别是“Common Sample”(普通样本)、“Individual Samples”(个体样本)和“Boxplots”(箱线图/箱尾图)。

下面分别进行详细介绍。

(1) 序列窗口下的描述性统计量在序列(Series)对象窗口下选择工具栏中的“View”|“Descriptive Statistics”(描述性统计量)选项,将出现4个选项。

第一个选项是“Histogram and Stats”(直方图和统计量),能显示序列对象的直方图和描述性统计量的值。

下面以建立好的序列对象“fdi”为例来进行说明。

如图4-6所示,图的左侧显示的是该序列对象的直方图,为观测值的频率分布。

右侧分三个部分,最上面显示的是序列对象的名称、样本的范围和样本数量。

中间部分显示的是各统计量的值。

其中,“Mean ”表示均值,即序列对象观测值的平均值;“Median ”表示中位数,即从小到大排列的序列对象观测值的中间值,是对序列分布中心的一个大致估计;“Maximum ”和“Minimum ”表示的是该序列观测值中的最大值和最小值;“Std.Dev ”表示标准差,用来衡量序列观测值的离散程度。

其计算公式为∑=--=N i x x N i 1)(112σ (4-1)式中,σ为标准差,N 为样本观测值个数,x i 是样本观测值,x 为样本均值。

图4-6 序列对象“fdi ”的直方图分布形状和相关统计量的描述“Skewness ”表示偏度,用来衡量观测值分布偏离均值的状况。

其计算公式为31ˆ1∑=⎪⎭⎫ ⎝⎛-=N i x x N S i σ (4-2)式中,σˆ是变量方差的有偏估计。

当S =0时,序列的分布是对称的,如正态分布;当S >0时,序列分布为右偏;当S <0时,序列分布为左偏。

例如图4-6中的偏度为1.422 500>0,所以我国的外商直接投资(fdi)的分布是不对称的,为右偏分布形态。

“Kurtosis ”表示峰度,用来衡量序列分布的凸起状况。

其计算公式为41ˆ1∑=⎪⎭⎫ ⎝⎛-=N i x x N K i σ (4-3)正态分布的K 值为3,当K >3时,序列对象的分布凸起程度大于正态分布的凸起程度;当K <3时,序列对象的分布凸起程度要比正态分布小。

例如,图4-6中的峰度为4.898 917 >3,外商直接投资(fdi)的分布呈尖峰状态。

最下方是JB(Jarque-Bera)统计量及其相应的概率(Probability)。

JB 统计量用来检验序列观测值是否服从正态分布,该检验的零假设为样本服从正态分布。

在零假设下,JB 统计量服从χ2(2)分布。

根据第1章所介绍的假设检验,P(Probability)值为拒绝原假设所犯第Ⅰ类错误的概率。

在本例中P 值接近于0,因而可在1%的显著性水平下拒绝零假设,即序列不服从正态分布。

第二个选项是“Stats Table”(统计表),它将描述性统计量值通过电子表格的形式显示在对象窗口中。

第三个选项是“Stats by Classification”(分类统计量),它将样本分为若干组后再对各组观测值分别进行描述统计。

选择此项后将弹出如图4-7所示的对话框,其中包括三部分内容。

在左边“Statistics”选项中勾选需要显示的统计量,其中“# of NAs”为无观测个数,“Observations”为观测值个数。

在“Series/Group for classify”中输入需分类的序列或序列组对象名称,右侧“Output Layout”为输出结果的显示形式。

选择好后单击“OK”按钮即可。

图4-7 “Stats by Classification”(分类统计量)对话框第四个选项是“Boxplots by Classification”(分类箱线图/箱尾图),将序列分布按照箱线图/箱尾图进行分类。

箱线图(Boxplot)也称为箱尾图,是利用数据统计量来描述数据的一种方法,它可以粗略地看出数据是否具有对称性,分布的分散程度等。

图4-8所示为fdi序列的分类箱线图。

图4-8 fdi序列对象的分类箱线图(“Boxplots byClassification”)(2) 序列组窗口下的描述性统计量在序列组(Group)对象窗口下选择工具栏中的“View”| “Descriptive Statistics”(描述性统计量)选项,将弹出3个选项。

第一个选项是“Common Sample”(普通样本),选择该项将得到含有均值、中位数、最大/小值等统计量的一张电子表格。

“Common Sample”要求各序列对象的样本范围相同,不能含有NA符(空值)。

相关文档
最新文档