数学建模课程设计

合集下载

什么是数学建模课程设计

什么是数学建模课程设计

什么是数学建模课程设计一、课程目标知识目标:1. 理解数学建模的基本概念,掌握数学建模的主要方法。

2. 学会运用数学知识解决实际问题,提高数学应用能力。

3. 了解数学建模在自然科学、社会科学等领域的应用,拓展知识视野。

技能目标:1. 培养学生运用数学语言进行逻辑推理和分析问题的能力。

2. 提高学生运用数学软件和工具进行数据分析和模型构建的技能。

3. 培养学生团队协作和沟通表达能力,提高解决问题的综合素质。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,激发学生主动探索的精神。

2. 培养学生面对复杂问题时,保持积极的心态,勇于克服困难。

3. 增强学生的创新意识,培养将数学知识应用于实际问题的责任感。

课程性质分析:本课程为选修课程,旨在提高学生的数学应用能力和综合素质。

通过数学建模的学习,使学生掌握运用数学知识解决实际问题的方法,培养创新意识和团队协作能力。

学生特点分析:本课程面向初中年级学生,学生在数学基础知识和逻辑思维能力方面有一定基础,但对数学建模的了解相对较少。

因此,课程设计需注重激发学生兴趣,引导学生主动参与。

教学要求:1. 注重理论与实践相结合,让学生在实际问题中感受数学建模的魅力。

2. 创设生动活泼的课堂氛围,鼓励学生提问、讨论,培养学生的创新思维。

3. 加强团队合作,提高学生沟通协作能力,使学生在合作中共同成长。

二、教学内容1. 数学建模基本概念:介绍数学建模的定义、意义和分类,使学生了解数学建模的广泛应用。

教材章节:第一章 数学建模简介2. 数学建模方法:讲解线性规划、非线性规划、整数规划等基本建模方法,以及差分方程、微分方程等在数学建模中的应用。

教材章节:第二章 数学建模方法3. 数据分析与处理:学习如何收集数据、整理数据、分析数据,掌握利用数学软件进行数据处理的方法。

教材章节:第三章 数据分析与处理4. 数学建模实例分析:分析实际案例,让学生了解数学建模在自然科学、社会科学等领域的具体应用。

数学建模活动教学设计完整版精品课件

数学建模活动教学设计完整版精品课件

数学建模活动教学设计完整版精品课件一、教学内容本节课选自《数学建模》教材第五章第三节“线性规划”,内容包括线性规划的基本概念、线性规划的数学模型、求解线性规划问题的图解法以及应用举例。

二、教学目标1. 理解线性规划的基本概念,掌握线性规划的数学模型及其求解方法。

2. 能够运用图解法解决实际问题中的线性规划问题,提高问题分析和解决能力。

3. 培养学生的团队合作意识,提高沟通与交流能力。

三、教学难点与重点教学难点:线性规划问题的求解方法及实际应用。

教学重点:线性规划的基本概念、数学模型及图解法的运用。

四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板。

2. 学具:直尺、圆规、计算器。

五、教学过程1. 导入:通过展示实际生活中的优化问题,如工厂生产安排、物流配送等,引出线性规划的概念。

2. 知识讲解:(1)线性规划的基本概念及数学模型。

(2)线性规划的图解法及求解步骤。

3. 例题讲解:以工厂生产问题为例,讲解线性规划模型的建立和求解过程。

4. 随堂练习:学生分组讨论,解决实际问题中的线性规划问题。

六、板书设计1. 线性规划2. 内容:(1)线性规划的基本概念(2)线性规划的数学模型(3)线性规划的图解法(4)实际应用举例七、作业设计1. 作业题目:max z = 2x + 3ys.t.x + y ≤ 42x + y ≤ 6x ≥ 0, y ≥ 0(2)讨论线性规划在实际问题中的应用。

2. 答案:(1)max z = 7x = 2, y = 3(2)见教材第五章第三节。

八、课后反思及拓展延伸1. 反思:本节课通过实际问题的引入,让学生了解了线性规划的基本概念和求解方法。

在例题讲解和随堂练习中,学生积极参与,提高了问题分析和解决能力。

2. 拓展延伸:(1)研究线性规划的其他求解方法,如单纯形法、内点法等。

(2)探讨线性规划在经济学、工程学等领域的应用。

(3)了解非线性规划的基本概念及其求解方法。

重点和难点解析1. 教学目标的设定2. 教学难点的把握3. 教学过程中的实践情景引入和例题讲解4. 作业设计中的题目难度和答案解析5. 课后反思及拓展延伸的深度和广度详细补充和说明:一、教学目标的设定教学目标应具有可衡量性、具体性和可实现性。

数学建模教案设计

数学建模教案设计

数学建模教案设计第一章:数学建模概述1.1 数学建模的定义与意义1.2 数学建模的方法与步骤1.3 数学建模的应用领域1.4 数学建模的基本技能要求第二章:数学建模的基本技能2.1 数学符号与表达式的应用2.2 数学模型的构建与分析2.3 数学模型的求解与优化2.4 数学建模软件的使用技巧第三章:数学建模实例解析3.1 线性规划模型的构建与求解3.2 非线性规划模型的构建与求解3.3 微分方程模型的构建与求解3.4 差分方程模型的构建与求解第四章:数学建模竞赛与实践4.1 数学建模竞赛的类型与规则4.2 数学建模竞赛的准备与策略4.3 数学建模竞赛的案例分析4.4 数学建模实践项目的选择与实施第五章:数学建模在实际问题中的应用5.2 数学建模在工程学中的应用5.3 数学建模在生物学中的应用5.4 数学建模在社会科学中的应用第六章:数学建模的软件工具6.1 MATLAB 在数学建模中的应用6.2 Python 编程在数学建模中的应用6.3 R 语言在数学建模中的应用6.4 MAThematica 在数学建模中的应用第七章:数学建模的策略与技巧7.1 构建数学模型的策略7.2 模型求解的技巧与方法7.3 模型验证与误差分析7.4 模型优化与调整策略第八章:数学建模竞赛案例分析8.1 国内外数学建模竞赛经典案例8.2 数学建模竞赛案例的解析与评价8.3 数学建模竞赛案例的启示与建议8.4 数学建模竞赛案例的实践与反思第九章:数学建模在科研中的应用9.1 数学建模在自然科学中的应用9.2 数学建模在工程技术中的应用9.4 数学建模在跨学科研究中的应用第十章:数学建模的未来发展趋势10.1 数学建模与的融合10.2 大数据背景下的数学建模10.3 数学建模在生物信息学中的应用10.4 数学建模在其他领域的创新应用重点和难点解析一、数学建模的定义与意义重点:理解数学建模的概念,掌握数学建模在实际问题解决中的应用价值。

数学建模课教学设计

数学建模课教学设计

数学建模课教学设计在数学建模课的教学设计中,教师需要综合考虑学生的实际情况,灵活运用不同的教学方法,激发学生的学习兴趣和动力。

以下是一个针对数学建模课的教学设计方案,旨在帮助教师更好地开展教学工作。

一、课程背景分析1.1 课程目标数学建模课是培养学生分析问题、解决问题的能力,提高数学应用技能的重要途径。

因此,教学目标应该明确,包括培养学生的数学建模意识、提高数学建模能力、促进学生综合运用数学知识解决实际问题的能力等。

1.2 学生特点在进行数学建模课的教学设计时,需要充分考虑学生的年龄特点、认知水平、数学基础等方面因素。

针对不同年级的学生,可以采取不同的教学方法和策略,以便更好地激发他们的学习兴趣和潜能。

二、教学内容安排2.1 理论知识讲解在数学建模课的教学过程中,教师首先要对数学建模的基本理论知识进行讲解,包括建模的概念、建模的基本步骤、常用的数学建模方法等。

通过系统的理论知识讲解,可以帮助学生建立起对数学建模的整体认识。

2.2 实例分析与实践操作除了理论知识讲解外,数学建模课的教学设计中还需要包括实例分析和实践操作环节。

通过对实际问题的案例分析,可以帮助学生将抽象的数学概念与实际问题相联系,培养他们的问题解决能力和创新思维。

2.3 小组合作与讨论数学建模是一个复杂的过程,需要团队协作和集体智慧。

因此,在教学设计中,可以设置小组合作与讨论环节,让学生在团队中相互交流、互相学习,共同解决给定的数学建模问题。

三、教学评估与反馈3.1 定期测验与考核为了及时检测学生的学习情况,教学设计中可以设置定期测验与考核环节。

通过考核,可以评估学生对数学建模知识的掌握程度,及时发现问题并进行调整。

3.2 作业批改与评价学生的作业是了解他们学习情况的重要依据。

因此,在教学设计中需要考虑作业批改与评价环节,及时给予学生反馈,指导他们改进学习方法,提高学习效果。

四、教学反思与优化在进行数学建模课的教学设计和实施过程中,教师需要不断进行反思和总结,发现问题、解决问题,不断优化教学策略和方法,提高教学效果。

数学建模课程设计学什么

数学建模课程设计学什么

数学建模课程设计学什么一、课程目标知识目标:1. 理解数学建模的基本概念和原理,掌握建模的基本方法和步骤。

2. 能够运用所学数学知识解决实际问题,建立数学模型,并运用模型进行分析和预测。

3. 掌握数学软件在数学建模中的应用,能够运用软件工具进行数据处理和模型求解。

技能目标:1. 培养学生的观察能力和问题发现能力,能够从现实问题中抽象出数学模型。

2. 培养学生的数据分析能力,能够运用数学方法对实际问题进行合理假设和简化。

3. 培养学生的团队协作能力,学会与他人合作共同解决问题。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,激发学生主动探索和创新的欲望。

2. 培养学生面对问题的积极态度,敢于挑战困难,善于从失败中吸取经验。

3. 培养学生的科学素养,认识到数学建模在解决实际问题中的重要作用,增强社会责任感。

本课程针对的是高年级学生,他们在数学知识储备和逻辑思维能力方面具备一定的基础。

课程性质为理论与实践相结合,注重培养学生的实际操作能力和创新意识。

在教学过程中,教师应关注学生的个体差异,引导他们运用所学知识解决实际问题,并通过多元化的教学手段激发学生的学习兴趣,确保课程目标的实现。

通过本课程的学习,学生将能够具备运用数学建模方法解决实际问题的能力,为未来的学术研究和职业发展打下坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学建模基本概念:介绍数学建模的定义、作用和基本步骤,使学生了解数学建模的整体框架。

2. 数学建模方法:学习线性规划、非线性规划、差分方程、概率统计等数学建模方法,并结合实际案例进行分析。

3. 数学软件应用:学习数学建模软件(如MATLAB、Lingo等)的基本操作,掌握软件在数据处理、模型求解等方面的应用。

4. 实践案例分析:分析典型的数学建模案例,使学生了解数学建模在各个领域的应用,并学会运用所学知识解决实际问题。

5. 数学建模竞赛:组织学生参加数学建模竞赛,锻炼学生的团队协作能力和实际操作能力。

《数学建模》课程教案

《数学建模》课程教案

《数学建模》课程教案一、教学内容本节课的教学内容选自《数学建模》教材的第五章,主要内容包括线性规划模型的建立、图与网络模型的建立、整数规划模型的建立以及非线性规划模型的建立。

通过本节课的学习,使学生掌握数学建模的基本方法和技巧,培养学生解决实际问题的能力。

二、教学目标1. 让学生掌握线性规划、图与网络、整数规划和非线性规划模型的建立方法。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的团队协作能力和创新意识。

三、教学难点与重点1. 教学难点:线性规划、图与网络、整数规划和非线性规划模型的建立及求解。

2. 教学重点:线性规划模型的建立和求解。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:教材、笔记本、文具。

五、教学过程1. 实践情景引入:以一个工厂生产安排的问题为例,引入线性规划模型的建立和求解。

2. 知识点讲解:(1)线性规划模型的建立:讲解目标函数的设定、约束条件的确定以及线性规划模型的标准形式。

(2)图与网络模型的建立:讲解图的概念、图的表示方法以及网络模型的建立。

(3)整数规划模型的建立:讲解整数规划的概念和建立方法。

(4)非线性规划模型的建立:讲解非线性规划的概念和建立方法。

3. 例题讲解:选取具有代表性的例题,讲解模型建立和求解的过程。

4. 随堂练习:让学生分组讨论并解决实际问题,巩固所学知识。

六、板书设计板书设计如下:1. 线性规划模型:目标函数约束条件标准形式2. 图与网络模型:图的概念图的表示方法网络模型的建立3. 整数规划模型:整数规划的概念整数规划的建立方法4. 非线性规划模型:非线性规划的概念非线性规划的建立方法七、作业设计1. 作业题目:(1)根据给定的条件,建立线性规划模型,并求解。

(2)根据给定的条件,建立图与网络模型,并求解。

(3)根据给定的条件,建立整数规划模型,并求解。

(4)根据给定的条件,建立非线性规划模型,并求解。

2. 答案:(1)线性规划模型的目标函数为:Z = 2x + 3y,约束条件为:x + y ≤ 6,2x + y ≤ 8,x ≥ 0,y ≥ 0。

数学建模课程方案设计模板

数学建模课程方案设计模板

一、课程概述1. 课程名称:数学建模2. 课程性质:专业基础课、实践性课程3. 课程目标:通过本课程的学习,使学生掌握数学建模的基本理论、方法和技巧,培养学生的数学思维能力、创新能力和解决实际问题的能力。

4. 适用对象:理工科专业学生二、课程内容1. 基本概念与理论(1)数学建模的基本概念(2)数学建模的常用方法(3)数学建模的常用软件2. 数理方法(1)线性代数(2)概率论与数理统计(3)微分方程3. 案例分析(1)实际问题背景介绍(2)数学模型建立(3)模型求解与分析(4)模型验证与应用4. 实践与作业(1)课程实验(2)课程设计(3)课后作业三、教学方法1. 讲授法:系统讲解数学建模的基本理论、方法和技巧。

2. 案例分析法:通过分析实际问题,使学生掌握数学建模的思路和方法。

3. 实践操作法:通过课程实验、课程设计和课后作业,培养学生的实际操作能力。

4. 混合式教学法:结合线上与线下教学资源,提高学生的学习效果。

四、教学手段1. 多媒体课件:制作精美、内容丰富的多媒体课件,提高教学效果。

2. 网络教学平台:利用网络教学平台,实现线上教学资源共享和互动交流。

3. 实验室:提供实验设备,让学生进行实际操作,提高实践能力。

4. 校外资源:与相关企业、研究机构合作,为学生提供实习和就业机会。

五、考核方式1. 平时成绩:包括课堂表现、作业完成情况等,占总成绩的30%。

2. 实验成绩:包括实验报告、实验操作等,占总成绩的20%。

3. 课程设计成绩:包括设计报告、设计答辩等,占总成绩的30%。

4. 期末考试成绩:包括笔试、口试等,占总成绩的20%。

六、课程实施1. 制定教学计划:根据课程内容,制定详细的教学计划,确保教学进度和质量。

2. 教学组织:合理安排教学时间,确保教学任务顺利完成。

3. 教学评价:定期对教学效果进行评价,及时调整教学方法和手段。

4. 学生辅导:为学生提供必要的辅导,帮助学生解决学习中遇到的问题。

数学建模课程方案模板

数学建模课程方案模板

一、课程名称数学建模二、课程背景数学建模是现代科学研究和工程技术中一种重要的研究方法,它将实际问题转化为数学模型,通过数学方法求解模型,从而为实际问题提供解决方案。

随着我国科学技术的发展,数学建模在各个领域都得到了广泛应用。

为了培养学生的数学思维能力和解决实际问题的能力,特开设此课程。

三、课程目标1. 使学生掌握数学建模的基本概念、方法和步骤;2. 培养学生运用数学知识解决实际问题的能力;3. 提高学生的团队合作和沟通能力;4. 培养学生的创新意识和实践能力。

四、课程内容1. 数学建模的基本概念和步骤2. 常用数学模型及其应用3. 数值计算和计算机编程4. 数学软件的使用5. 案例分析6. 实践项目五、教学安排1. 理论教学:32课时2. 实践教学:32课时3. 总课时:64课时六、教学方法1. 讲授法:系统讲解数学建模的基本概念、方法和步骤;2. 案例分析法:通过实际案例,引导学生掌握数学建模的技巧;3. 实践教学:组织学生进行数学建模实践,培养学生的动手能力;4. 讨论法:鼓励学生积极参与课堂讨论,提高学生的思考能力和表达能力。

七、考核方式1. 平时成绩(40%):包括课堂表现、作业完成情况等;2. 实践项目成绩(40%):根据学生在实践项目中的表现进行评定;3. 期末考试(20%):考察学生对数学建模知识的掌握程度。

八、教材与参考资料1. 教材:《数学建模》2. 参考资料:- 《数学建模案例分析》- 《MATLAB数值计算与编程》- 《数学软件使用指南》九、课程特色1. 注重理论与实践相结合,提高学生的实际应用能力;2. 强调团队合作,培养学生的沟通能力和协作精神;3. 采用多种教学方法,激发学生的学习兴趣和积极性;4. 跟踪科技发展动态,关注数学建模在各个领域的应用。

十、课程预期效果通过本课程的学习,学生能够:1. 掌握数学建模的基本概念、方法和步骤;2. 具备运用数学知识解决实际问题的能力;3. 提高团队合作和沟通能力;4. 培养创新意识和实践能力。

中学生数学建模课程设计

中学生数学建模课程设计

中学生数学建模课程设计一、课程目标知识目标:1. 让学生掌握数学建模的基本概念和原理,理解数学模型在解决实际问题中的应用。

2. 使学生掌握运用数学知识构建模型、分析问题和解决问题的方法。

3. 培养学生对数学符号、公式和图表的理解和运用能力。

技能目标:1. 培养学生运用数学软件或工具进行数据收集、处理和分析的能力。

2. 培养学生运用数学建模方法解决实际问题的能力,包括模型构建、求解和验证。

3. 培养学生团队合作和沟通协调能力,学会在小组合作中共同解决问题。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,增强其学习数学的自信心。

2. 培养学生严谨、求实的科学态度,使其认识到数学在解决实际问题中的价值。

3. 培养学生面对困难时勇于挑战、不断探索的精神,培养其创新意识和实践能力。

课程性质:本课程为选修课程,旨在提高学生对数学知识的运用能力,培养学生解决实际问题的综合素质。

学生特点:中学生已具备一定的数学基础和逻辑思维能力,但对数学建模的了解较少,需要引导和启发。

教学要求:教师应注重理论与实践相结合,引导学生运用所学知识解决实际问题,关注学生的学习过程和成果,提高学生的数学素养和综合能力。

通过本课程的学习,使学生能够达到以上所述的知识、技能和情感态度价值观目标。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学建模基本概念:介绍数学建模的定义、意义和分类,使学生了解数学建模的广泛应用。

2. 模型构建方法:讲解线性规划、非线性规划、整数规划等数学规划方法,以及差分方程、微分方程等建模方法。

3. 数据收集与处理:教授学生如何收集、整理和分析实际数据,运用统计学方法进行数据处理。

4. 模型求解与验证:介绍求解数学模型的方法,如单纯形法、拉格朗日乘数法等,并教授学生如何验证模型的正确性。

5. 应用案例分析:分析典型的数学建模案例,如交通运输、经济预测、环境优化等问题,使学生了解数学建模在实际中的应用。

数学建模课程设计论文最新

数学建模课程设计论文最新

数学建模课程设计论文最新一、课程目标知识目标:1. 让学生掌握数学建模的基本概念,理解其在解决实际问题的中的应用价值;2. 使学生掌握数学建模的主要方法,包括建立模型、求解模型和验证模型;3. 引导学生运用所学的数学知识,如函数、方程、不等式等,进行数学建模。

技能目标:1. 培养学生运用数学语言表达实际问题的能力;2. 提高学生运用数学方法分析和解决实际问题的能力;3. 培养学生团队合作和沟通协调能力,学会在小组合作中共同推进数学建模任务的完成。

情感态度价值观目标:1. 培养学生对数学学科的兴趣和热爱,认识到数学在生活中的广泛应用;2. 增强学生面对实际问题时积极寻求解决方案的信心和勇气;3. 培养学生严谨、务实的科学态度,学会用数学的眼光观察世界。

课程性质:本课程为选修课程,旨在提高学生的数学应用能力和综合素质。

学生特点:学生具备一定的数学基础,具有较强的逻辑思维能力和好奇心。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,充分调动学生的主观能动性,培养其创新精神和实践能力。

通过课程学习,使学生能够将所学的数学知识应用于解决实际问题,达到学以致用的目的。

教学过程中,注重分解课程目标为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学建模基本概念:介绍数学建模的定义、作用和一般步骤,使学生了解数学建模的整体框架。

2. 数学建模方法:讲解常见的数学建模方法,如线性规划、非线性规划、差分方程、微分方程等,并结合实际案例进行分析。

3. 数学建模应用:结合教材内容,选择与学生生活密切相关的实际问题进行建模分析,如人口增长、经济增长、环境污染等。

4. 数学建模软件应用:介绍数学建模软件(如MATLAB、Mathematica等)的基本操作,帮助学生熟练运用软件辅助建模和求解。

5. 数学建模实践:组织学生进行小组合作,针对具体实际问题,运用所学方法开展数学建模实践,提高学生解决实际问题的能力。

数学建模软件课程设计报告

数学建模软件课程设计报告

数学建模软件课程设计报告一、课程目标知识目标:1. 学生能够理解数学建模的基本概念和原理,掌握运用数学建模软件解决实际问题的基本步骤。

2. 学生能够运用数学建模软件进行数据输入、处理和分析,建立数学模型,并解释模型结果。

3. 学生能够运用所学的数学建模知识,结合实际问题,构建合适的数学模型,为决策提供依据。

技能目标:1. 学生能够熟练运用数学建模软件进行数据操作,包括数据导入、清洗、处理和可视化。

2. 学生能够运用数学建模软件进行模型构建、求解和优化,具备一定的模型分析能力。

3. 学生能够通过小组合作,有效沟通与协作,共同解决复杂问题,提高团队协作能力。

情感态度价值观目标:1. 学生能够培养对数学建模的兴趣,认识到数学建模在解决实际问题中的重要性。

2. 学生能够在数学建模过程中,培养勇于尝试、积极探究的精神,增强自信心和自主学习能力。

3. 学生能够通过数学建模课程,体会数学与现实生活的紧密联系,提高数学素养,形成正确的价值观。

本课程针对高年级学生,结合数学建模软件,以提高学生解决实际问题的能力为核心,注重培养学生的动手操作能力、团队协作能力和创新思维。

课程目标具体、可衡量,旨在使学生在掌握数学建模基本知识的基础上,能够运用所学技能解决实际问题,提升数学素养,为未来的学习和工作打下坚实基础。

二、教学内容本章节教学内容围绕数学建模软件的应用,结合以下教材章节进行组织:1. 数学建模基本概念与原理(教材第1章)- 数学模型的分类与构建方法- 数学建模的基本步骤和注意事项2. 数据处理与分析(教材第2章)- 数据导入、清洗、处理和可视化方法- 数据分析的基本技巧和软件操作3. 建立数学模型(教材第3章)- 线性规划模型、非线性规划模型及其应用- 微分方程模型、差分方程模型及其应用4. 模型求解与优化(教材第4章)- 模型求解的算法和软件实现- 模型优化的基本策略和方法5. 实际案例分析与讨论(教材第5章)- 结合实际问题,运用数学建模软件进行案例分析和讨论- 团队合作,展示和评价各组案例成果教学内容安排和进度如下:1. 第1周:数学建模基本概念与原理2. 第2周:数据处理与分析3. 第3周:建立数学模型4. 第4周:模型求解与优化5. 第5周:实际案例分析与讨论教学内容科学性和系统性较强,旨在使学生通过本章节学习,能够熟练运用数学建模软件解决实际问题,培养其创新能力和团队协作精神。

课程设计数学建模

课程设计数学建模

课程设计数学建模一、教学目标本课程的教学目标是使学生掌握数学建模的基本概念、方法和技巧,培养学生运用数学知识解决实际问题的能力。

具体目标如下:知识目标:1. 理解数学建模的基本概念,包括模型、参数、方程等;2. 掌握数学建模的基本方法,如归纳法、假设法、建立方程组等;3. 了解数学建模在各领域的应用。

技能目标:1. 能够运用数学知识建立简单的数学模型;2. 能够运用数学软件或手工计算方法求解数学模型;3. 能够对数学模型的结果进行分析和解释。

情感态度价值观目标:1. 培养学生的团队合作意识,能够与他人共同解决问题;2. 培养学生的创新思维,敢于尝试新的方法和技术;3. 培养学生的责任感,对所解决问题的结果负责并进行反思。

二、教学内容本课程的教学内容主要包括数学建模的基本概念、方法和应用。

具体安排如下:第1-2节:数学建模的基本概念,包括模型、参数、方程等;第3-4节:数学建模的基本方法,如归纳法、假设法、建立方程组等;第5-6节:数学建模在各领域的应用,如物理、经济、生物等;第7-8节:数学建模实例讲解与分析。

三、教学方法本课程的教学方法包括讲授法、讨论法、案例分析法和实验法。

具体使用方法如下:1.讲授法:用于讲解数学建模的基本概念、方法和应用;2. 讨论法:用于引导学生主动思考和探讨数学建模问题;3. 案例分析法:用于分析数学建模实例,让学生学会分析问题和解决问题;4. 实验法:用于让学生动手实践,培养学生的实际操作能力。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。

具体使用如下:1.教材:用于引导学生学习数学建模的基本知识和方法;2. 参考书:用于拓展学生的知识面,了解数学建模在各领域的应用;3. 多媒体资料:用于辅助教学,使学生更直观地了解数学建模的方法和应用;4. 实验设备:用于让学生动手实践,培养学生的实际操作能力。

五、教学评估本课程的评估方式包括平时表现、作业和考试等,以全面客观地评价学生的学习成果。

《数学建模》课程教案

《数学建模》课程教案

《数学建模》课程教案教学文档一、教学内容本节课选自《数学建模》教材第四章:线性规划及其应用。

详细内容包括线性规划的基本概念、线性规划模型的建立、单纯形方法及其应用。

二、教学目标1. 理解线性规划的基本概念,掌握线性规划模型的建立方法。

2. 学会运用单纯形方法求解线性规划问题,并能将其应用于实际问题。

3. 培养学生的数学建模能力,提高解决实际问题的能力。

三、教学难点与重点难点:线性规划模型的建立、单纯形方法的运用。

重点:线性规划的基本概念、线性规划模型的求解。

四、教具与学具准备教具:黑板、粉笔、PPT课件。

学具:教材、笔记本、计算器。

五、教学过程1. 导入:通过一个实际情景,引出线性规划问题。

实践情景:某工厂生产两种产品,产品A和产品B。

生产每个产品A需要2小时工时和3平方米厂房面积,生产每个产品B需要4小时工时和1平方米厂房面积。

工厂每天有8小时工时和6平方米厂房面积可用。

如何分配生产时间和厂房面积,使得工厂每天的生产利润最大?2. 知识讲解:1) 线性规划的基本概念。

2) 线性规划模型的建立。

3) 单纯形方法及其应用。

3. 例题讲解:例题1:求解导入环节提出的实际线性规划问题。

例题2:求解一个标准形式的线性规划问题。

4. 随堂练习:让学生独立求解一个线性规划问题,并给出解答。

六、板书设计1. 线性规划基本概念2. 线性规划模型的建立3. 单纯形方法4. 例题解答七、作业设计1. 作业题目:习题4.1:求解线性规划问题。

习题4.2:应用单纯形方法求解实际问题。

2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对线性规划的基本概念和求解方法掌握程度,以及对实际问题的建模能力。

2. 拓展延伸:探讨线性规划的其他求解方法,如内点法、对偶问题等。

引导学生关注线性规划在实际问题中的应用,如物流、生产计划等。

重点和难点解析1. 线性规划模型的建立。

2. 单纯形方法的运用。

3. 例题讲解与随堂练习的设置。

2024年数学建模活动教学设计完整版课件

2024年数学建模活动教学设计完整版课件

2024年数学建模活动教学设计完整版课件一、教学内容本节课的内容选自《数学建模》教材第五章第三节,详细内容主要包括数学建模的基本概念、建模方法及步骤、常用的数学建模软件等。

通过本节课的学习,使学生了解数学建模的实际意义,掌握数学建模的基本方法,并能运用所学知识解决实际问题。

二、教学目标1. 知识与技能:掌握数学建模的基本概念、方法及步骤,了解常用的数学建模软件。

2. 过程与方法:通过实践情景引入,培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生的团队协作能力和创新精神。

三、教学难点与重点教学难点:数学建模方法及步骤的理解与应用。

教学重点:数学建模的基本概念、常用的数学建模软件。

四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。

五、教学过程1. 导入:通过一个实际问题的引入,让学生了解数学建模的实际意义。

2. 新课内容:(1)数学建模的基本概念及分类。

(2)数学建模的方法及步骤。

(3)常用的数学建模软件及其应用。

3. 例题讲解:(1)以一个简单的实际问题为例,引导学生分析问题,建立数学模型。

(2)根据建立的数学模型,运用数学方法求解。

4. 随堂练习:(1)给出一个实际问题,让学生分组讨论,建立数学模型。

(2)针对建立的数学模型,运用所学方法求解。

(2)拓展数学建模在实际生活中的应用。

六、板书设计1. 数学建模的基本概念2. 数学建模的方法及步骤3. 常用的数学建模软件4. 例题解析七、作业设计1. 作业题目:(1)根据所学内容,选择一个实际问题,建立数学模型。

(2)根据建立的数学模型,求解问题,并给出详细的解答过程。

2. 答案:(1)数学模型建立:根据实际问题,选择合适的数学方法建立模型。

(2)求解过程:运用数学方法求解,给出详细的计算步骤。

八、课后反思及拓展延伸1. 反思:本节课学生对数学建模的基本概念、方法及步骤掌握程度,以及对实际问题的解决能力。

数学建模教案设计

数学建模教案设计

数学建模教案设计第一章:数学建模概述1.1 数学建模的定义与意义1.2 数学建模的基本步骤1.3 数学建模的应用领域1.4 数学建模的方法与技巧第二章:数学建模的基本技能2.1 数学符号与表达式的运用2.2 数学模型的构建与分析2.3 数学模型的求解与验证2.4 数学建模软件的使用第三章:数学建模实例解析3.1 线性规划问题3.2 微分方程问题3.3 概率论与统计问题3.4 网络优化问题第四章:数学建模竞赛与实践4.1 数学建模竞赛简介4.2 数学建模竞赛的准备与策略4.3 数学建模竞赛案例分析4.4 数学建模实践活动的组织与实施第五章:数学建模在实际问题中的应用5.1 数学建模在经济学中的应用5.2 数学建模在工程问题中的应用5.3 数学建模在生物学中的应用5.4 数学建模在其他领域中的应用第六章:数学建模中的数学方法6.1 初等数学方法6.2 微分方程方法6.3 差分方程方法6.4 概率论与数理统计方法第七章:数学建模中的模型构建7.1 连续模型7.2 离散模型7.3 随机模型7.4 混合模型第八章:数学建模中的数据分析8.1 数据整理与描述8.2 数据分析方法8.3 数据可视化8.4 模型验证与拟合第九章:数学建模软件与应用9.1 MATLAB 在数学建模中的应用9.2 Python 在数学建模中的应用9.3 R 在数学建模中的应用9.4 其他数学建模软件简介第十章:数学建模竞赛案例解析10.1 国内外数学建模竞赛简介10.2 数学建模竞赛题目类型与解题策略10.3 数学建模竞赛案例分析10.4 数学建模竞赛经验分享与启示第十一章:数学建模在自然科学中的应用11.1 物理学中的数学建模11.2 化学中的数学建模11.3 生物学中的数学建模11.4 地球科学中的数学建模第十二章:数学建模在社会科学与人文学科中的应用12.1 经济学中的数学建模12.2 政治学中的数学建模12.3 社会学中的数学建模12.4 人文学科中的数学建模第十三章:数学建模在工程技术中的应用13.1 电子与信息技术中的数学建模13.2 机械工程中的数学建模13.3 建筑学中的数学建模13.4 交通运输工程中的数学建模第十四章:数学建模在商业与管理中的应用14.1 运筹学中的数学建模14.2 金融学中的数学建模14.3 营销学中的数学建模14.4 管理科学中的数学建模第十五章:数学建模的挑战与发展趋势15.1 数学建模面临的挑战15.2 数学建模的新方法与新技术15.3 数学建模在跨学科研究中的应用15.4 数学建模的未来发展趋势重点和难点解析本文主要介绍了数学建模教案设计,包括数学建模的基本概念、方法、技巧以及在不同领域的应用。

2024年数学建模活动教学设计完整版课件

2024年数学建模活动教学设计完整版课件

2024年数学建模活动教学设计完整版课件一、教学内容本节课选自教材《数学建模》第四章第三节:线性规划及其应用。

主要内容包括线性规划的基本概念、数学模型、求解方法以及实际应用。

二、教学目标1. 理解线性规划的基本概念,掌握线性规划问题的数学模型。

2. 学会使用单纯形法解决线性规划问题,并了解其适用范围。

3. 能够将实际问题抽象为线性规划模型,并利用所学知识解决实际问题。

三、教学难点与重点教学难点:线性规划模型的构建及单纯形法的应用。

教学重点:线性规划的基本概念、数学模型及求解方法。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:教材、计算器、草稿纸。

五、教学过程1. 实践情景引入通过展示2024年数学建模活动的背景,引出线性规划在实际问题中的应用。

2. 知识讲解(1)线性规划的基本概念及数学模型。

(2)单纯形法的原理及步骤。

(3)线性规划在实际问题中的应用。

3. 例题讲解讲解线性规划的经典例题,引导学生理解并掌握线性规划模型的构建及求解方法。

4. 随堂练习布置与例题相似的练习题,让学生独立完成,巩固所学知识。

5. 互动讨论针对学生在练习中遇到的问题,进行互动讨论,共同解决疑惑。

7. 课堂小结对本节课的学习效果进行评价,了解学生对知识的掌握情况。

六、板书设计1. 线性规划的基本概念及数学模型。

2. 单纯形法的原理及步骤。

3. 线性规划在实际问题中的应用。

4. 例题及解答过程。

七、作业设计1. 作业题目:max z = 3x + 4ys.t. x + 2y ≤ 82x + y ≤ 6x, y ≥ 0某工厂生产甲、乙两种产品,生产甲产品需要2小时,乙产品需要3小时。

生产一个甲产品获利3元,生产一个乙产品获利4元。

工厂每天有8小时的工作时间,问如何安排生产计划,才能使工厂获利最大?2. 答案:(1)max z = 3x + 4y = 16x = 2, y = 3(2)max z = 3x + 4y = 28x = 3, y = 2八、课后反思及拓展延伸1. 反思:本节课学生对线性规划的基本概念、数学模型及求解方法掌握情况良好,但在实际问题中的应用能力有待提高。

课程设计与数学建模教案

课程设计与数学建模教案

课程设计与数学建模教案一、引言在现代教育中,课程设计是培养学生综合能力的重要手段之一。

而数学建模作为一种综合性的数学活动,能够帮助学生发展解决实际问题的能力。

因此,本文将探讨如何进行课程设计与数学建模的教案。

二、教学目标1. 帮助学生了解数学建模的概念和基本原理;2. 培养学生的问题分析与解决问题的能力;3. 提高学生的数学应用能力和创新思维。

三、教学内容1. 数学建模的概念和基本原理介绍数学建模的定义和目的,解释数学建模的基本原理,包括建立模型、选择数学方法、求解和验证等。

2. 数学建模的基本步骤详细介绍数学建模的步骤,包括问题的提出、问题的分析、建立模型、求解和验证模型等。

3. 数学建模与实际问题的联系通过具体的实例,让学生理解数学建模与实际问题之间的联系,明确数学建模在解决实际问题中的重要性。

4. 数学建模的常用数学方法介绍数学建模中常用的数学方法,如线性规划、最优化、统计分析等,并讲解其应用领域和基本原理。

5. 数学建模的实践操作让学生进行实际的数学建模操作,选择合适的实际问题,进行问题分析、建立模型、求解和验证等步骤,并给予指导和反馈。

四、教学方法1. 教师讲授与示范通过讲授和示范,对数学建模的基本概念、原理和方法进行讲解,同时展示实际问题的数学建模过程。

2. 学生合作学习和研究组织学生进行小组合作学习和研究,通过合作解决实际问题,培养学生的团队合作能力和解决问题的能力。

3. 实践操作让学生亲自参与数学建模的实践操作,选取合适的实际问题,进行问题分析、建立模型、求解和验证等步骤。

五、教学评价1. 组织小组讨论,评价学生在问题分析、建模和求解过程中的表现。

2. 设计评价任务,要求学生运用数学建模的方法解决实际问题,并评价其建模和解决问题的能力。

六、教学资源1. 数学建模教材和参考书籍提供数学建模相关的教材和参考书籍供学生学习和参考。

2. 实际问题案例收集和准备与不同领域的实际问题相关的案例,供学生进行数学建模实践。

数学建模课程设计实验目的

数学建模课程设计实验目的

数学建模课程设计实验目的一、课程目标知识目标:1. 让学生掌握数学建模的基本概念和原理,理解其在解决实际问题中的应用;2. 使学生能够运用所学的数学知识和方法,建立简单的数学模型,解决实际生活中的问题;3. 帮助学生了解数学建模的步骤和技巧,提高他们运用数学工具分析问题和解决问题的能力。

技能目标:1. 培养学生运用数学软件进行数据分析和模型构建的能力;2. 培养学生团队协作和沟通表达能力,能在小组合作中发挥各自优势,共同完成数学建模任务;3. 提高学生自主学习和解决问题的能力,培养创新思维和批判性思维。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,增强他们对数学学科的实际应用价值的认识;2. 培养学生面对实际问题时,敢于挑战、勇于探索的精神风貌;3. 培养学生具有合作、尊重、诚信的价值观,提高他们的社会责任感和公民素养。

课程性质:本课程为实验课程,注重理论与实践相结合,强调学生在实践中掌握数学建模的方法和技巧。

学生特点:学生具备一定的数学基础,具有较强的逻辑思维能力和动手操作能力,但对数学建模的了解有限。

教学要求:教师需结合学生实际情况,采用启发式、探究式教学方法,引导学生主动参与,注重培养学生的实践能力和创新精神。

通过本课程的学习,使学生能够将数学知识应用于解决实际问题,提高数学素养和综合素质。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学建模基本概念:介绍数学建模的定义、作用和分类,使学生了解数学建模的意义和在实际中的应用。

2. 数学建模方法与步骤:学习数学建模的基本方法,包括问题分析、假设建立、模型构建、模型求解和模型检验等步骤。

3. 数学建模软件应用:教授学生使用数学软件(如MATLAB、Mathematica 等)进行数据分析和模型构建的方法。

4. 实际案例分析与讨论:分析典型的数学建模案例,让学生了解数学建模在各个领域的应用,提高他们分析问题和解决问题的能力。

5. 小组合作与实践:组织学生进行小组合作,针对实际问题进行数学建模,培养学生的团队协作能力和实践操作能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模考试题请各位同学在如下问题中任选一题做建模解答,可以三个人为一小组,结果以论文形式用a4 纸张正反打印,主题栏写提交者的班级和姓名作业时间总共一周,请务必在19 周星期五提交,否则做不及格处理.提交论文的要求: 论文基本内容和格式大致分三大部分:一、标题、摘要部分1 •题目:应写出较确切的题目;(不能只写A题、B题等,后面附的9道题目任选其一)2 .姓名、班级、学号、联系方式;3 •摘要(含关键词)200-300 字,包括模型的主要特点、建模方法和主要结果;二、正文正文要求把求解的思路与过程描述清除, 注意排版格式的整齐美观。

大致可包括以下部分:1 •问题分析2 •模型假设即补充一些假设条件,使问题简化,但需合理(是此次比赛论文好坏的关键)3•符号说明4 •模型建立与求解(必要时包括计算方法设计或计算机实现)5 .结果分析与检验(简述)6•讨论模型的优缺点,改进方向,推广新思想(简述)7.参考文献三、附录部分(如果有下列内容的话)1 •计算程序,框图;2•各种求解演算过程,计算中间结果。

数学建模》课程设计供选试题1题4 万亿投资与劳动力就业2008 以来,世界性的金融危机席卷全球,给我国的经济发展带来很大的困难。

沿海地区许多中小企业纷纷裁员,造成大量的人员失业。

据有关资料估计,从2008 年底,相继有2000 万人被裁员,其中有1000 万人是民工。

部分民工返乡虽然能够从一定程度上缓解就业压力,但2009 年的600 多万毕业大学生给我国就业市场带来巨大压力。

但可喜的是,我国有庞大的外汇储备,民间资本实力雄厚,居民储蓄充足。

中国还是发展中国家,许多方面的建设还处于落后水平,建设投资的潜力巨大。

为保持我国经济快速发展,特别是解决就业问题带来希望,实行政府投资理所当然。

在2009 年两代会上,我国正式通过了 4 万亿的投资计划,目的就是保GDP增长,保就业,促和谐。

但是有几个问题一直困扰着我们,请你运用数学建模知识加以解决。

问题如下:1 、GDP增长8%到底能够安排多少人就业?如果要实现充分就业,2009年的GDP到底要增长多少?2 、要实现GDP增长8% 4万亿的投资够不够?如果不够,还需要投资多少?3 、不同的产业(或行业)吸纳的劳动力就业能力不同,因此投资的流向会有所不同。

请你决策,要实现劳动力就业最大化,4 万亿的投资应该如何分配到不同的产业(或行业)里?4 、请你给出相关的政策与建议。

2题深洞的估算假如你站在洞口且身上仅带着一只具有跑秒功能的计算器,你出于好奇心想用扔下一块石头听回声的方法来估计洞的深度,假定你捡到一块质量是1KG的石头,并准确的测定出听到回声的时间T=5S,就下面给定情况,分析这一问题,给出相应的数学模型,并估计洞深。

1 、不计空气阻力;2、受空气阻力,并假定空气阻力与石块下落速度成正比,比例系数k1=0.05;3、受空气阻力,并假定空气阻力与石块下落速度的平方成正比,比例系数k2=0.0025 ;4、在上述三种情况下,如果再考虑回声传回来所需要的时间。

3题优秀论文评选在某数学建模比赛的评审过程中,组委会需要在一道题目的150 篇参赛论文中选择4篇论文作为特等奖论文。

评审小组由10 名评委组成,包括一名小组组长(出题人), 4 名专业评委(专门从事与题目相关问题研究的评委), 5 名普通评委(从事数学建模的教学和组织工作,参与过数学建模论文的评审)。

组委会原先制定的评审步骤如下:step1: 首先由普通评委阅读所有150 篇论文,筛选出20 篇作为候选论文。

Step2: 然后由小组内的所有评委阅读这些候选论文,每人选择4 篇作为推荐的论文。

Step3:接着进入讨论阶段,在讨论阶段中每个评委对自己选择的4篇论文给出理由,大家进行讨论,每个评委对论文的认识都会受到其他评委观点的影响。

Step4:在充分讨论后,大家对这些推荐的论文进行投票,每个评委可以投出4票,获得至少6票的论文可以直接入选,如果入选的论文不足,对剩余的论文(从20篇候选论文中除去已经入选的论文)重复step2至step4步的评审工作。

如果三轮讨论后入选的论文仍然不够,则由评选小组组长确定剩下名额的归属。

如果有超过4篇的论文获得了至少6票,则由评选小组组长确定最终的名额归属。

问题:1请建立数学模型定量地讨论上面的评审规则的公平性。

2、假设小组组长、专业评委、普通评委受超过半数人的观点影响的概率分别为0.3,0.4,0.6。

组委会希望给每个评委的投票设置一定的权重,应该如何设置才最合理,用数学模型支持你的观点。

4题送货问题某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1 )。

货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。

每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。

运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。

一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。

卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1 )。

问题:1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。

2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数?应如何调度?3、(1)如果有载重量为4吨、6吨、8吨三种运输车,载重运费都是 1.8元/吨公里,空载费用分别为0.2 , 0.4 , 0.7元/公里,其他费用一样,又如何安排车辆数和调度方案?(2)当各个公司间都有或者部分有道路直接相通时,分析运输调度的难度所在,给出你的解决问题的想法(可结合实际情况深入分析)。

表1 各公司所需要的货物量5题生产与存贮问题一个生产项目,在一定时期内,增大生产量可以降低成本费,但如果超过市场的需求量,就会因积压增加存贮费而造成损失。

相反,如果减少生产量,虽然可以降低存贮费,但又会增加生产的成本费,同样会造成损失。

因此,如何正确地制定生产计划,使得在一定时期内,生产的成本费与库存费之和最小,这是厂家最关心的优化指标,这就是生产与存贮问题。

假设某车间每月底都要供应总装车间一定数量的部件。

但由于生产条件的变化,该车间每月生产单位部件所耗费的工时不同,每月的生产量除供本月需要外,剩余部分可存入仓库备用。

今已知半年内,各月份的需求量及生产该部件每单位数所需工时数如下所示:月份(k): 1 2 3 4 5 6月需求量(bk)8 5 3 2 7 4单位工时(ak)11 18 1317 20 10设库存容量H ==9,开始时库存量为2,期终库存量为0。

要求制定一个半年逐月生产计划,使得既满足需求和库存容量的限制,又使得总耗费工时数最少。

6题人民币的汇率问题人民币汇率对经济的影响近年来成为人们议论的热点,有不少经济学家在探讨人民币汇率对我国及世界经济发展的影响。

一些学者希望提高人民币对一些主要货币的汇率,另些学者则希望稳定人民币的汇率。

试建立数学模型解决下列问题:1、以英镑汇率或日元汇率为例研究其变化对该国经济的影响;2、人民币汇率与主要货币(如英镑、日元、欧元等)的汇率关系;3、人民币汇率变化对我国及世界经济的影响。

7题宠物狗销售背景:一家宠物店卖小狗。

这家店每天需要在每只小狗身上花费10元钱,因此宠物店不想在店里存储太多的小狗。

通过调查研究,在给定的天数x内,所卖出的小狗的数量服从泊松分布(入=0.1)。

宠物店每十天平均能卖出一只小狗,而每卖出一只小狗的利润是20元。

当一个顾客来到宠物店里时,如果店里没有宠物卖,那么该顾客就会到别的宠物店去。

如果宠物店预定小狗的话,则所预定的小狗需要到6天后才能到店里。

现在该宠物店正在考虑一种预定小狗的最好策略。

策略A:每卖出一只小狗,宠物店就新预定一只。

这个策略意味着每次店里只有一个小狗,因此宠物店就不会花费太多在小狗身上。

策略B:宠物店每隔10天就预定一只新的小狗,该狗6天后到。

使用这个策略后,如果顾客连续几个星期没有光顾宠物店,则宠物店必须花大量的钱在小狗上。

问题:1、编写程序,来模拟这两种策略,并比较哪一种策略好。

2、请提出第三种更好的策略,写出数学证明,并用软件模拟。

8题列车售餐问题长途列车由于时间漫长,需要提供车上的一些服务。

提供一天三餐是主要的服务。

由于火车上各方面的成本高,因此车上食物的价格也略高。

以T238次哈尔滨到广州的列车为例,每天早餐为一碗粥、一个鸡蛋及些许咸菜,价格10元;中午及晚上为盒饭,价格一律15元。

由于价格偏贵,乘客一般自带食品如方便面、面包等。

列车上也卖方便面及面包等食品,但价格也偏贵。

如一般售价3元的方便面卖5元。

当然,由于列车容量有限,因此提供的用餐量及食品是有限的,适当提高价格是正常的。

但高出的价格应有一个限制,不能高得过头。

假如车上有乘客1000人,其中500人有在车上买饭的要求,但车上盒饭每餐只能供给200人;另外,车上还可提供每餐100人的方便面。

请你根据实际情况设计一个价格方案,使列车在用餐销售上效益最大。

9题居民区供水问题某居民区的民用自来水是由圆柱形水塔提供,水塔高12.2米,直径17.4米.水塔是由水泵根据水塔内水位高低自动加水,一般每天水泵工作两次•现在需要了解居民区用水规律与水泵的工作功率•按照设计,当水塔的水位降至最低水位,约8.2米,水泵自动启动加水;当水位升高到一个最高水位,约10.8米,水泵停止工作.可以考虑采用用水率(单位时间的用水量)来反映用水规律,并通过间隔一段时间测量水塔里的水位来估算用水率,表1是某一天的测量记录数据,测量了28个时刻,但是由于其中有3个时刻遇到水泵正在向水塔供水,而无水位记录(表1中用//表示).试建立合适的数学模型,推算任意时刻的用水率,一天的总用水量和水泵工作功率表1原始数据(单10题导弹攻击东方向行驶•该基地立即发射导弹跟踪追击敌艇,导弹速度为450千米/小时,自动导航系统使导弹在任一时刻都能对准敌艇。

试问导弹在何时何地击中敌艇?如果当基地发射导弹的同时,敌艇立即仪器发现•假定敌艇即刻以135千米/小时的速度向与导弹方向垂直方向逃逸,问导弹何时何地击中敌艇?敌艇与导弹方向成何夹角逃逸最好?结论中有何启示?11题城市供水量预测为了节约能源和水源,供水公司需要根据日供水量记录估计未来一时间段(未来一天或一周)的用水量,以便安排未来(该时间段)的生产调度计划。

相关文档
最新文档