含参不等式分离变量法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参不等式恒成立问题的求解策略

“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。

一、图像法

若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有

1)0)(>x f 对R x ∈恒成立⎩

⎨⎧<∆>⇔00a ; 2)0)(

⎧<∆<⇔a

例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。

解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有

04)1(22<--=∆a a 解得3

11>-

1()1,(+∞--∞ 。 若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。

例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。

解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;

当0≥∆时,如图,0)(≥x F 恒成立的充要条件为: ⎪⎪⎩

⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。

综上可得实数m 的取值范围为)1,3[-。

二、分离变量法

将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:

1)()a f x <恒成立min )(x f a <⇔

2)()a f x >恒成立max )(x f a >⇔

例3.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,求实数a 的取值范围。

解:设c x x x x g x f x F -++-=-=1232)()()(23,

则由题可知0)(≤x F 对任意]3,3[-∈x 恒成立

令01266)(2'=++-=x x x F ,得21=-=x x 或

而,20)2(,7)1(a F a F -=-=-,9)3(,45)3(a F a F -=-=-

∴045)(max ≤-=a x F

∴45≥a 即实数a 的取值范围为),45[+∞。

例4.函数),1[,2)(2+∞∈++=x x

a x x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。

解:若对任意),1[+∞∈x ,0)(>x f 恒成立,

即对),1[+∞∈x ,02)(2>++=x

a x x x f 恒成立, 考虑到不等式的分母),1[+∞∈x ,只需022

>++a x x 在),1[+∞∈x 时恒成立而得

而抛物线a x x x g ++=2)(2在),1[+∞∈x 的最小值03)1()(min >+==a g x g 得3->a 注:本题还可将)(x f 变形为2)(++

=x

a x x f ,讨论其单调性从而求出)(x f 最小值。

例5.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

x x a 2

4-<对]4,0(∈x 恒成立。 令x

x x x g 2

4)(-=,则min )(x g a < 由144)(2

-=-=x

x x x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0

注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。

三、变换主元法

处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。

例6.对任意]1,1[-∈a ,不等式024)4(2>-+-+a x a x 恒成立,求x 的取值范围。

分析:题中的不等式是关于x 的一元二次不等式,但若把a 看成主元,则问题可转化为一次不等式044)2(2>+-+-x x a x 在]1,1[-∈a 上恒成立的问题。

解:令44)2()(2+-+-=x x a x a f ,则原问题转化为0)(>a f 恒成立(]1,1[-∈a )。 当2=x 时,可得0)(=a f ,不合题意。

当2≠x 时,应有⎩⎨⎧>->0

)1(0)1(f f 解之得31>

故x 的取值范围为),3()1,(+∞-∞ 。

注:一般地,一次函数)0()(≠+=k b kx x f 在],[βα上恒有0)(>x f 的充要条件为⎩⎨⎧>>0

)(0)(βαf f 。

四、数形结合法

数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。我们知道,函数图象和不等式有着密切的联系:

1)⇔>)()(x g x f 函数)(x f 图象恒在函数)(x g 图象上方;

2)⇔<)()(x g x f 函数)(x f 图象恒在函数)(x g 图象下上方。

相关文档
最新文档