灰色关联度matlab源程序(完整版)讲解
灰色预测模型及MATLAB实例
灰⾊预测模型及MATLAB实例下⾯将主要从三⽅⾯进⾏⼤致讲解,灰⾊预测概念及原理、灰⾊预测的分类及求解步骤、灰⾊预测的实例讲解。
⼀、灰⾊预测概念及原理:1.概述:关于所谓的“颜⾊”预测或者检测等,⼤致分为三⾊:⿊、⽩、灰,在此以预测为例阐述。
其中,⽩⾊预测是指系统的内部特征完全已知,系统信息完全充分;⿊⾊预测指系统的内部特征⼀⽆所知,只能通过观测其与外界的联系来进⾏研究;灰⾊预测则是介于⿊、⽩两者之间的⼀种预测,⼀部分已知,⼀部分未知,系统因素间有不确定的关系。
细致度⽐较:⽩>⿊>灰。
2.原理:灰⾊预测是通过计算各因素之间的关联度,鉴别系统各因素之间发展趋势的相异程度。
其核⼼体系是灰⾊模型(Grey Model,GM),即对原始数据做累加⽣成(或者累减、均值等⽅法)⽣成近似的指数规律在进⾏建模的⽅法。
⼆、灰⾊预测的分类及求解步骤:1.GM(1,1)与GM(2,1)、DGM、Verhulst模型的分类⽐较:预测模型适⽤场景涉及的序列GM(1,1)模型⼀阶微分⽅程,只含有1个变量的灰⾊模型。
适⽤于有较强指数规律的序列。
累加序列均值序列GM(2,1)模型适⽤于预测预测具有饱和的S形序列或者单调的摆动发展序列缺陷。
累加序列累减序列均值序列DGM模型累加序列累减序列Verhulst模型累加序列均值序列2.求解步骤思维导图:其中预测过程可能会涉及以下三种序列、⽩化微分⽅程、以及⼀系列检验,由于⼤致都相同,仅仅是某些使⽤累加和累减,⽽另外⼀些则使⽤累加、累减和均值三个序列的差别⽽已。
于是下⾯笔者将对其进⾏归纳总结再进⾏绘制思维导图,帮助读者理解。
(1)原始序列(参考数据列):(2)1次累加序列(1-AGO):(3)1次累减序列(1-IAGO ):(也就是原始序列中,后⼀项依次减去前⼀项的值,例如,[x(2)-x(1),x(3-x(2),...,x(n)-x(n-1))]。
)(4)均值⽣成序列:(这是对累加序列"(前⼀项+后⼀项)/2"得出的结果。
(完整版)五种灰色关联度分析matlab代码
(完整版)五种灰色关联度分析matlab代码灰色邓氏关联度分析% P12 -- The Study on the Grey Relational Degree and Its Application function r1 = gld_deng(x)s = size(x);len = s(2);num = s(1);ro = 0.5;for i = 1: numx(i,:) = x(i,:)./x(i,1);enddx(num,len) = 0;for i = 2 : numfor k = 1 : lendx(i,k) = abs(x(1,k) - x(i,k));endendmax_dx = max(max(dx));min_dx = min(min(dx));r(1,1:len-1) = 1;for i = 2 : numfor k = 1 : lenr(i,k) = (min_dx + ro*max_dx)/(dx(i,k) + ro*max_dx);endendr1 = sum(r(2:num,:),2)/(len);改进灰色绝对关联度分析% P11 -- The Study on the Grey Relational Degree and Its Application function r1 = gld_gjjd(x)s = size(x);len = s(2);num = s(1);for i = 1: numx(i,:) = x(i,:)./x(i,1);enddx(num,len-1) = 0;for i = 1 : numfor j = 1 : len - 1dx(i,j) = x(i,j+1) - x(i,j);endendc = 1;beta(1,1:len-1) = 0;w(1,1:len-1) = 0;for i = 2 : numtemp = sum(abs(x(i,:) - x(1,:)),2);for k = 1 : len - 1beta(i,k) = atan((dx(i,k) - dx(1,k))/(1 + dx(i,k)*dx(1,k)));if beta(i,k) < 0beta(i,k) = pi + beta(i,k);endw(i,k) = 1 - abs(x(i,k) - x(1,k))/temp;endendr = c./(c + tan(beta./2));wr = w.*r;r1 = sum(wr(2:num,:),2)/(len - 1);灰色绝对关联度分析% P18 -- The Study on the Grey Relational Degree and ItsApplication function r1 = gld_jd(x)s = size(x);len = s(2);num = s(1);for i = 1: numx(i,:) = x(i,:)./x(i,1);enddx(num,len-1) = 0;for i = 1 : numfor j = 1 : len - 1dx(i,j) = x(i,j+1) - x(i,j);endendr(1,1:len-1) = 1;for i = 2 : numfor k = 1 : len - 1r(i,k) = 1/(1 + abs(dx(1,k) - dx(i,k)));endendr1 = sum(r(2:num,:),2)/(len - 1);灰色T型关联度分析% P19 -- The Study on the Grey Relational Degree and Its Application function r1 = gld_t(x)s = size(x);len = s(2);num = s(1);dx(num,len-1) = 0;for i = 1 : numfor j = 1 : len - 1dx(i,j) = abs(x(i,j+1) - x(i,j));d_x = sum(dx(i,:),2)/(len - 1);x(i,:) = x(i,:)./d_x;enddx(num,len-1) = 0;for i = 1 : numfor j = 1 : len - 1dx(i,j) = x(i,j+1) - x(i,j);endendr(1,1:len-1) = 1;for i = 2 : numfor k = 1 : len - 1if dx(1,k)*dx(i,k) == 0r(i,k) = sign(dx(1,k)*dx(i,k));elser(i,k) = sign(dx(1,k)*dx(i,k))*min(abs(dx(1,k)),abs(dx(i,k))) / max(abs(dx(1,k)),abs(dx(i,k)));endendendr1 = sum(r(2:num,:),2)/(len - 1);灰色斜率关联度分析% P20 -- The Study on the Grey Relational Degree and Its Application function r1 = gld_xl(x)s = size(x);len = s(2);num = s(1);for i = 1: numx(i,:) = x(i,:)./x(i,1);dx(num,len-1) = 0;for i = 1 : numfor j = 1 : len - 1dx(i,j) = x(i,j+1) - x(i,j);endendr(1,1:len-1) = 1;for i = 2 : numfor k = 1 : len - 1r(i,k) = 1/(1 + abs(dx(1,k)/x(1,k+1) - dx(i,k)/x(i,k+1))); endendr1 = sum(r(2:num,:),2)/(len - 1);。
matlab 灰度算法 -回复
matlab 灰度算法-回复Matlab灰度算法在Matlab中,灰度算法是图像处理中应用最广泛的一种算法之一。
灰度图像通常被用于减少图像的复杂性,保留图像中的重要信息,同时提高图像处理的速度和效率。
本文将介绍Matlab中常用的灰度算法,以及如何逐步实现这些算法。
一、图像的灰度化图像的灰度化是将彩色图像转换为灰度图像的过程。
Matlab中提供了多种灰度化方法,比较常用的是平均值法和加权平均值法。
1. 平均值法平均值法是将RGB三个分量的平均值作为灰度值,公式如下:灰度值= (R + G + B) / 3在Matlab中,可以使用rgb2gray函数将彩色图像转换为灰度图像。
2. 加权平均值法加权平均值法是根据颜色对灰度的贡献程度不同,对RGB分量进行加权求和得到灰度值。
一般情况下,红色对灰度的贡献最高,绿色次之,蓝色最低。
公式如下:灰度值= 0.299 * R + 0.587 * G + 0.114 * B同样地,在Matlab中可以使用rgb2gray函数实现加权平均值法。
二、图像的灰度直方图灰度直方图是衡量图像亮度分布的工具。
它将图像中所有像素的灰度值分布在不同的亮度级别上,并统计每个亮度级别的像素数量。
在Matlab中,可以使用imhist函数计算图像的灰度直方图。
1. 计算灰度直方图matlabim = imread('image.jpg'); 读取图像gray_image = rgb2gray(im); 灰度化imhist(gray_image); 计算灰度直方图这段代码首先读取名为image.jpg的图像,然后将其转换为灰度图像gray_image,最后使用imhist函数计算灰度直方图。
2. 绘制灰度直方图matlabim = imread('image.jpg'); 读取图像gray_image = rgb2gray(im); 灰度化hist_array = imhist(gray_image); 计算灰度直方图bar(hist_array); 绘制直方图xlabel('灰度级别'); x轴标签ylabel('像素数量'); y轴标签title('灰度直方图'); 标题这段代码在计算灰度直方图的基础上,使用bar函数绘制直方图,然后通过xlabel、ylabel和title函数设置相应的标签和标题。
灰色关联分析详解+结果解读
灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。
2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。
输出:反应考核指标与母序列的关联程度。
3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。
其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。
4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。
step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。
当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。
6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。
输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。
图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。
matlab 灰度算法 -回复
matlab 灰度算法-回复【MATLAB灰度算法】灰度算法是一种将彩色图像转化为黑白图像的方法,在计算机视觉和图像处理领域被广泛使用。
MATLAB是一种强大的数学计算工具,它提供了丰富的图像处理函数和工具箱,可用于实现灰度算法。
本文将逐步回答如何使用MATLAB实现灰度算法,并介绍一些常用的灰度算法技术。
# 第一步:图像读取与显示在MATLAB中,可以使用`imread`函数读取图像,使用`imshow`函数显示图像。
我们首先需要读取一张彩色图像,并将其显示出来。
matlab读取彩色图像rgbImage = imread('image.jpg');显示彩色图像imshow(rgbImage);title('Original Image');# 第二步:转化为灰度图像灰度图像是一种每个像素只有一个灰度值(亮度值)的图像。
在MATLAB中,可以使用`rgb2gray`函数将彩色图像转化为灰度图像。
matlab将彩色图像转化为灰度图像grayImage = rgb2gray(rgbImage);显示灰度图像imshow(grayImage);title('Grayscale Image');# 第三步:灰度化算法选择灰度化算法决定了如何将彩色图像中的RGB信息转化为灰度图像中的灰度值。
常用的灰度化算法有平均值法、加权平均法和分量最大法等。
下面分别介绍这些算法并给出MATLAB代码实现。
平均值法平均值法是最简单的灰度化算法之一,它将彩色图像的RGB分量的平均值作为灰度值。
具体实现如下:matlab平均值法灰度化averageGrayImage = (rgbImage(:, :, 1) + rgbImage(:, :, 2) + rgbImage(:, :, 3)) / 3;显示平均值法灰度图像imshow(averageGrayImage);title('Average Grayscale Image');加权平均法加权平均法是一种考虑了RGB分量的亮度影响的灰度化算法。
健康险影响因素灰色关联分析(含代码)
健康险影响因素灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密,曲线越接近,相应序列之间的关联度就越大,反之就越小。
应用灰色关联分析方法对受多种因素影响的事物和现象从整体观念出发进行综合评价是一个被广为接受的方法。
一、灰色关联分析步骤(1)确定参考数据列和比较数据列。
参考数据列是能反映系统行为特征的数据序列,比较数据列是影响系统行为的因素组成的数据序列。
(2)对指标数据进行无量纲化。
由于指标数据的性质不一样,导致他们涉及的数值有的很大有的很小,这不代表数值晓的指标不重要,因此为了减少指标数据绝对值的差异,我们需要先对指标数据进行无量纲化。
常用的无量纲化方法有均值化法和初值化法。
均值化法:xi (k)= x′i(k)1m∑x′i(k)mk=1初值化法:xi (k)= x′i(k)x′i(1)i=0,1,…,n;k=1,2,…,m无量纲化后的数据序列形成如下的矩阵:(X0,X1,…,Xn)=(x0(1)x1(1)⋯x n(1) x0(2)x1(2)⋯x n(2)⋮⋮⋮⋮x0(m)x1(m)⋯x n(m))(3)逐个计算每个比较数据列与参考数据列对应元素的绝对差值。
绝对差值:|x0(k)-xi(k)|(i=0,1,…,n;k=1,2,…,m)(4)确定两级最小差和两级最大差。
两级最小差:mini mink|x0(k)−x i(k)|两级最大差:maxi maxk|x0(k)−x i(k)|(5)计算关联系数。
ζi(k)=minimink|x0(k)−x i(k)|+ρ∙maximaxk|x0(k)−x i(k)||x0(k)−x i(k)|+ρ∙maximaxk|x0(k)−x i(k)|(i=1,2,…,n;k=1,2,…,m)其中,ρ为分辨系数,取值在0-1之间,ρ越小,关联系数间差异越大,区分能力越强,本文中ρ取0.5。
灰色模型 matlab 代码
function GM1_1(X0)%format long ;[m,n]=size(X0);X1=cumsum(X0); %累加X2=[];for i=1:n-1X2(i,:)=X1(i)+X1(i+1);endB=-0.5.*X2 ;t=ones(n-1,1);B=[B,t] ; % 求B矩阵YN=X0(2:end) ;P_t=YN./X1(1:(length(X0)-1)) %对原始数据序列X0进行准光滑性检验,%序列x0的光滑比P(t)=X0(t)/X1(t-1)A=inv(B.'*B)*B.'*YN.' ;a=A(1)u=A(2)c=u/a ;b=X0(1)-c ;X=[num2str(b),'exp','(',num2str(-a),'k',')',num2str(c)];strcat('X(k+1)=',X)%syms k;for t=1:length(X0)k(1,t)=t-1;endkY_k_1=b*exp(-a*k)+c;for j=1:length(k)-1Y(1,j)=Y_k_1(j+1)-Y_k_1(j);endXY=[Y_k_1(1),Y] %预测值CA=abs(XY-X0) ; %残差数列Theta=CA %残差检验绝对误差序列XD_Theta= CA ./ X0 %残差检验相对误差序列AV=mean(CA); % 残差数列平均值R_k=(min(Theta)+0.5*max(Theta))./(Theta+0.5*max(Theta)) ;% P=0.5 R=sum(R_k)/length(R_k) %关联度Temp0=(CA-AV).^2 ;Temp1=sum(Temp0)/length(CA);S2=sqrt(Temp1) ; %绝对误差序列的标准差%----------AV_0=mean(X0); % 原始序列平均值Temp_0=(X0-AV_0).^2 ;Temp_1=sum(Temp_0)/length(CA);S1=sqrt(Temp_1) ; %原始序列的标准差TempC=S2/S1*100; %方差比C=strcat(num2str(TempC),'%') %后验差检验%方差比%----------SS=0.675*S1 ;Delta=abs(CA-AV) ;TempN=find(Delta<=SS);N1=length(TempN);N2=length(CA);TempP=N1/N2*100;P=strcat(num2str(TempP),'%') %后验差检验%计算小误差概率调用例子:X0=[2.874,3.278,3.337,3.39,3.679];GM1_1(X0)参考资料:我自己想的,算法不是很优,希望你自己改进吧。
灰色预测MATLAB代码
function hsyc(x0)%灰色模型GM(1,1)matlab代码在建立灰色模型前应对原始数据进行求%%%级比%%%%重要%输入原始时序列x0,输出各种所需参数%%%%实际使用该程序时应改变图像坐标轴%%%%%x0代表原始数据;x1代表x0经累加后;B代表所够造的矩阵B;Y代表向量Yn;au代表系数a,u构成的矩阵n=size(x0,2); %计算x0的列数x1=cumsum(x0,2); %将x0进行累加得到矩阵x1for k=1:n-1;b(k)=-0.5*(x1(k+1)+x1(k));y(k)=x0(k+1); %计算得到向量Y的转置矩阵yenda=ones(n-1,1);B=[b',a]; %计算得到矩阵BY=y'; %计算得到向量Yau=inv(B'*B)*B'*Y; %计算得到系数a,u构成的矩阵auA=au';k=1:n+10;X1(k)=(x0(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1); %计算预测累加数列的值X0(1)=X1(1);k=1:n+9;X0(k+1)=X1(k+1)-X1(k); %计算预测累加数列的还原值,即预测值for k=2:n;e(k)=X0(k)-x0(k); %计算残差E(k)=(X0(k)-x0(k))/x0(k); %计算预测值与实测值的差值跟实测值的比值,即残差与实测值的比值j(k)=x0(k-1)/x0(k); %计算实测数据的级比endk=1:n;p(k)=1-(1-0.5*A(1))*j(k)/(1+0.5*A(1)); %计算级比偏差e(k)、p(k)<0.1则说明模型达到较高要求,0.2>e(k)、p(k)>0.1则说明模型达到一般要求m=min(abs(e)); %计算残差中的最小值M=max(abs(e)); %计算残差中的最大值k=1:n;g(k)=(m+0.5*M)./(abs(e(k))+0.5*M); %计算关联系数R=sum(g')/(n-1); %计算关联度v=[1,5,120,185];axis(v);grid onplot([1996:2005],x0,'o-',[1996:2015],X0,'*:'); %画出原始数据跟时间序列的图像及预测数据跟时间序列的图像legend('原始数据','预测数据',4)au %输出参数a,u的值X0 %输出预测数列e %输出残差E %输出残差与原始数据的比值,定义的残差j %输出原始数据的级比p %输出偏比差R %输出关联度程度X1end。
灰色关联度matlab源程序(完整版)
灰色关联度matlab源程序(完整版)近几天一直在写算法,其实网上可以下到这些算法的源程序的,但是为了搞懂,最搞清楚,还是自己一个一个的看了,写了,作为自身的积累,而且自己的的矩阵计算类库也迅速得到补充,以后关于算法方面,基本的矩阵运算不用再重复写了,挺好的,是种积累,下面把灰关联的matlab程序与大家分享。
灰色关联度分析法是将研究对象及影响因素的因子值视为一条线上的点,与待识别对象及影响因素的因子值所绘制的曲线进行比较,比较它们之间的贴近度,并分别量化,计算出研究对象与待识别对象各影响因素之间的贴近程度的关联度,通过比较各关联度的大小来判断待识别对象对研究对象的影响程度。
简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成“局部性灰色关联度”与“整体性灰色关联度”两类。
主要的差别在于局部性灰色关联度有一参考序列,而整体性灰色关联度是任一序列均可为参考序列。
关联度分析是基于灰色系统的灰色过程, 进行因素间时间序列的比较来确定哪些是影响大的主导因素, 是一种动态过程的研究。
关联度计算的预处理,一般初值化或者均值化,根据我的实际需要,本程序中使用的是比较序列与参考序列组成的矩阵除以参考序列的列均值等到的,当然也可以是其他方法。
%注意:由于需要,均值化方法采用各组值除以样本的各列平均值clear;clc;yangben=[47.924375 25.168125 827.4105438 330.08875 1045.164375 261.37437516.3372 6.62 940.2824 709.2752 962.1284 84.87455.69666667 30.80333333 885.21 275.8066667 1052.42 435.81]; %样本数据fangzhen=[36.27 14.59 836.15 420.41 1011.83 189.5464.73 35.63 755.45 331.32 978.5 257.8742.44 23.07 846 348.05 1025.4 296.6959.34 39.7 794.31 334.63 1016.4 317.2752.91 17.14 821.79 306.92 1141.94 122.044.21 4.86 1815.52 2584.68 963.61 0.006.01 2.43 1791.61 2338.17 1278.08 30.873.01 1.58 1220.54 956.14 1244.75 3.9125.65 7.42 790.17 328.88 1026.01 92.82115.80 27 926.5 350.93 1079.49 544.3812.63 8.75 1055.50 1379.00 875.10 1.65]; %待判数据[rows,cols]=size(fangzhen);p=0.5; %分辨系数[m,n]=size(yangben);R=[];for irow=1:rowsyy=fangzhen(irow,:);data=[yy;yangben];data_gyh1=mean(yangben)for i=1:m+1for j=1:ndata_gyh(i,j)=data(i,j)/data_gyh1(j);endendfor i=2:m+1for j=1:nDij(i-1,j)=abs(data_gyh(1,j)-data_gyh(i,j));endendDijmax=max(max(Dij));Dijmin=min(min(Dij));for i=1:mfor j=1:nLij(i,j)=(Dijmin+p*Dijmax)/(Dij(i,j)+p*Dijmax); endendLijRowSum=sum(Lij');for i=1:mRij(i)=LijRowSum(i)/n;endR=[R;Rij];endRmatlab求灰色关联度矩阵源代码2010-12-11 22:57 function greyrelationaldegree(X,c)%GRAYRELATIONALDEGREE this function is used for calculating the gery %relation between squence%rememeber that the first column of the input matrix is the desicion %attribution squences.what we want to calculate is the grey ralational degree between%it and other attributions%X is the squence matrix, c is the parameter used in the function%in most of the time, the value of c is 0.5firstrow = X(1,:);reci_firstrow = 1./firstrow;reci_convert = diag(reci_firstrow);initialMIRROR = X*reci_convert;% find the initial value mirror of the sequce matrixA = initialMIRROR'[nrow,ncolumn] = size(A);for (i=2:nrow)C = A(i,:)-A(1,:)D=abs(C);eval(['B' num2str(i) '=D']);amax = max(eval(['B' num2str(i)]))amin = min(eval(['B' num2str(i)]))maxarray(i-1)=amaxminarray(i-1)=aminend %find the difference squence and the max value and min value of each squencemaxmax = max(maxarray)minmin = min(minarray)for(i=2:nrow)for(j=1:ncolumn)eval(['greyrelationdegree' num2str(i)'(j)=(minmin+c*maxmax)/(B' num2str(i) '(j)+c*maxmax)'])endend % calculate the greyralational degree of each datafor(i=2:nrow)eval(['greyrelatioanaldegree_value' num2str(i) '= mean (greyrelationdegree' num2str(i) ')' ])end基于matlab灰色关联度计算的实现2006年07月28日星期五上午 11:06 function r=incident_degree(x0,x1)%compute the incident degree for grey model.%Designed by NIXIUHUI,DalianFisherUniversity.%17 August,2004,Last modified by NXH at 21 August,2004%数据初值化处理x0_initial=x0./x0(1);temp=size(x1);b=repmat(x1(:,1),[1 temp(2)]);x1_initial=x1./b;%分辨系数选择K=0.1;disp('The grey interconnect degree is: ');x0_ext=repmat(x0_initial,[temp(1) 1]);contrast_mat=abs(x0_ext-x1_initial);delta_min=min(min(contrast_mat));%delta_min在数据初值化后实际为零delta_max=max(max(contrast_mat));a=delta_min+K*delta_max;incidence_coefficient=a./(contrast_mat+K*delta_max);%得到关联系数r=(sum(incidence_coefficient'))'/temp(2); %得到邓氏面积关联度我们根据图1的步骤和图2的数据进行编程实现,程序如下:%清除存空间等clear;close all;clc;%载入源数据 %其实这里可以载入execl表格的n=15; %参与评价的人数m=4; %参与评价的指标个数X_0=zeros(n,m); % 数据矩阵X_2=zeros(n,m); %偏差结果的求取矩阵X_3=zeros(n,m); % 相关系数计算矩阵a1_0=[13 18 17 18 17 17 18 17 13 17 18 13 18 13 18];a2_0=[18 18 17 17 18 13 17 13 18 13 17 13 13 17 17];a3_0=[48.67 43.33 43.56 41.89 39.47 43.44 37.97 41.14 39.67 39.83 34.11 40.58 34.19 30.75 21.22];a4_0=[10 10.7 3 5.4 5.4 0.7 4.2 0.5 9.3 0.85 2.9 5.45 4.2 2.7 6]; %指标数X_1=[a1_0',a2_0',a3_0',a4_0']; %最后使用到的数据矩阵%1 寻找参考列x0=[max(a1_0),max(a2_0),max(a3_0),max(a4_0)]; %取每列的最大值(指标的最大值)%2 计算偏差结果i=1;while(i~=m+1) %为什么这个地方会出问题呢for j=1:1:nX_2(j,i)=abs(X_1(j,i)-x0(i));end;i=i+1;end%3 确定偏差的最值error_min=min(min(X_2));error_max=max(max(X_2));%4 计算相关系数i=1;p=0.5;while(i~=m+1)for j=1:1:nX_3(j,i)=(error_min+p*error_max)/(X_2(j,i)+p*error_max); end;i=i+1;end%X_3 %可以在此观察关联矩阵%5 计算各个学生的关连序a=zeros(1,n);for j=1:1:nfor i=1:1:ma(j)=a(j)+X_3(j,i); %%%%其实可以直接用sumend;a(j)=a(j)/m; %%%%%%%%%可以改进%%%%%%%%%%123下一页%end%a %在此可以观测各个学生的序%改进:如果各个指标的所占权重不一样的话,可以添加相应的权系数%6 排序b=a';[c,s]=sort(b);for i=1:1:nd(i)=i;endd=d';result=[d b c s]%7 将结果显示出来figure(1);plot(a);figure(2)bar(a); %柱状图最后所得到的结果如图3到图5所示。
灰色预测模型的matlab运行代码(讲解)
1灰色预测模型 GM(1,1)的matlab 运行代码例 由1990—2001年中国蔬菜产量,建立模型预测 2002年中国蔬菜产量,并对预测结果作检验。
分析建模:给定原始时间1990—2001年资料序列X (0)(k),对X (0)(k) 生成1-AGO(累加)序列X (1)(k)及Y n。
见下表K 1 2 3 4 5 6 7 8 9 10 11 12 X ⑼19519 ,19578 ,19637,19695,16602, 25723, 30379, 34473, 38485, 40514, 42400, 48337 X (1)19519, 39097, 58734, 264605,307005,355342Y n 19578 19637 40514 42400 48337其中 X ⑴(k):x (0)(i);i 1Y n = [X (0)(2),X (0)(3), ,X (0) (12)]TX (0)(k)的 GM(1,1),得到z (1^2) 10.5 X⑴(1) X (。
⑵1 -29308.0 z ⑴(3) 1 0.5 X ⑴(2) X "(3)1 -48915.5 z (1)(4) 10.5 X ⑴(3) X (1^4)1 -68581.5 z ⑴(5) 1 0.5 X(4) X (1^5)1 -86730.0 z (1)(6) 10.5 X ⑴(5) X⑴⑹ 1 -107892.5 z ⑴(7) 1 0.5 X ⑴(6) X ("(7)1 -135943.5 z ⑴(8) 1 0.5 X ⑴(7) X "(8)1 -168369.5 z ⑴(9) 1 0.5 X ⑴(8) X ⑴(9)1-204848.5 z ⑴(10) 1 0.5 X ⑴(9) X ⑴(10) 1 244348.0 z ⑴(11) 10.5 X ⑴(10) X ("(11) 1 -331173.5 z ⑴(12) 10.5 X ⑴(11)X ("(12) 1-5236.21 1 1 1 1 1 1 1 1 1 将B 和Y n 代入辨识算式,有:对上述 ka(B TB) 1B T?Y n b得灰色GM(1,1)模型为0.1062105 13999.9(1)灰微分方程 X (0) (k)-0.1062105 Z ⑴(k)=13999.9刃⑼亿 1) 15248.968e 0.1062105t(5)残差检验:(6)后验差检验:12[X ( 0)(i) X (0)]2112L , X (0)丄 X (0)(i) n 1 12 i 1 C<0.35好;C<0.5合格;00.6不合格。
灰色预测及MATLAB实现
(3)对累加生成数据做均值生成 B 矩阵与常数项向量Yn ,即
0.5(x(1) (1) x(1) (2))
B
0.5(
x(1)
(2)
x(1)
(3))
,Yn
(x(0) (2), x(0) (3),
, x(0) (n))T
0.5(x(1) (n 1) x(1) (n))
3.2 灰色预测的MATLAB程序
3.2.1 典型程序结构
(1)对原始数据进行累加。
矩阵处理, MATLAB的长
处
(2)构造累加矩阵B与常数向量。
(3)求解灰参数。
(4)将参数代入预测模型进行数据预测。
【例】某公司1999-2008年利润为(元/年):[89677 99215 109655 120333 135823 159878 182321 209407 246619 300670], 预测该公司未来几年的利润情况。
已知本届会议的回执情况(表1),往几届会议代表回执和 与会情况(表2),根据这些数据预测本届与会代表。
表1 回执中对住房的要求
要求 男 女
合住1 154 78
合住2 104 48
合住3 32 17
独住1 107 59
独住2 68 28
独住3 41 19
表2 以往几届代表的回执参会情况表
届次
第一届
第二届
dx
由于aˆ 是通过最小二乘法求出的近似值,因此 xˆ(1) (t 1)事近似表达
式,与原序列区分,多了一个“帽子”。
(6)对函数表达式 xˆ(1) (t 1)及 xˆ(1) (t)进行离散,将二者作差以便还
基于熵权灰色关联的开放式基金综合评价模型Matlab程序
基于熵权灰色关联的开放式基金综合评价模型Matlab程序详细算法流程请见我的文库-《Garch-Var开放式基金风险度量及综合评价体系》的第二部分,综合评价体系,程序中的变量请对应文章的算法涉及变量。
输入的表格字段如下:其中第一个变量代表基金的名称(这里总共选取了100只基金,只截取了部分数据),后面的变量根据影响基金表现的因素分别建立模型并收集数据计算得到。
输出是一系列的基金的权重,按照大小排序既可以得到基金的综合评分:程序:function FuzzyEvalue(FileName)clc;fid = fopen(FileName);head_ = textscan(fid, '%s %s %s %s %s %s',1,'delimiter', ',');head = {{zeros(length(head_) - 1)}};for i = 2:length(head_)head{i-1}(1) = head_{i}(1);endclear head_%for i = 1:length(head)% head{i}(1)% end%headinputMatrix_ = textscan(fid, '%s %f32 %f32 %f32 %f32 %f32','delimiter', ','); fclose(fid);for j = 2:length(inputMatrix_)inputMatrix(:,j - 1) = double(inputMatrix_{:,j});endalpha = 0.5;[n,m] = size(inputMatrix);optimalMat = zeros(1,m);for i = 1:m%inputMatrix(:,i)if isempty(cell2mat(strfind(head{i}(1), 'max'))) == 0optimalMat(i) = max(inputMatrix(:,i));elseif isempty(cell2mat(strfind(head{i}(1), 'min'))) == 0optimalMat(i) = min(inputMatrix(:,i));endendoptimalMat;D = [optimalMat;inputMatrix];R = zeros(n+1,m);for i = 1:mif isempty(cell2mat(strfind(head{i}(1), 'max'))) == 0R(:,i) = 1.0*(D(:,i) - min(D(:,i)))/(max(D(:,i)) - min(D(:,i)));elseif isempty(cell2mat(strfind(head{i}(1), 'min'))) == 0R(:,i) = 1.0*(max(D(:,i)) - D(:,i))/(max(D(:,i)) - min(D(:,i)));endendclearvars D inputMatrix;R;F = zeros(n+1,m);H = zeros(1,m);W = zeros(1,m);for i = 1:mF(:,i) = R(:,i)/sum(R(:,i));endF;F(F == 0) = 1;for j = 1:mH(j) = -1/log(n)*sum(F(:,j).*log(F(:,j)));endH;W = (1 - H)/(m - sum(H));%sum(W)clearvars F H;Eps = zeros(n,m);for j = 1:mEps(:,j) = (min(abs(R(1,j) - R(2:n+1,j))) + alpha*max(abs(R(1,j) - R(2:n+1,j))))./(abs(R(1,j) - R(2:n+1,j)) + alpha*max(abs(R(1,j) - R(2:n+1,j))));endEps;FundsWeight = Eps*W';fileId = fopen('weight.csv','w');fprintf(fileId,'%s \n','FundsWeight');fprintf(fileId,'%f \n',FundsWeight);fclose(fileId);end。
Matlab学习系列28.-灰色关联分析
Matlab学习系列28.-灰色关联分析28. 灰色关联分析一、灰色系统理论简介若系统的内部信息是完全已知的,称为白色系统;若系统的内部信息是一无所知(一团漆黑),只能从它同外部的联系来观测研究,这种系统便是黑色系统;灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统为研究对象,其特点是:(1)认为不确定量是灰数,用灰色数学来处理不确定量,使之量化,灰色系统理论只需要很少量的数据序列;(2)观测到的数据序列看作随时间变化的灰色量或灰色过程,通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析;(3)通过累加生成和累减生成逐步使灰色量白化,从而建立相应于微分方程解的模型,从而预测事物未来的发展趋势和未来状态。
二、灰色关联度分析1. 要定量地研究两个事物间的关联程度,可以用相关系数和相似系数等,但这需要足够多的样本数或者要求数据服从一定概率分布。
在客观世界中,有许多因素之间的关系是灰色的,分不清哪些因素之间关系密切,哪些不密切,这样就难以找到主要矛盾和主要特性。
灰因素关联分析,目的是定量地表征诸因素之间的关联程度,从而揭示灰色系统的主要特性。
关联分析是灰色系统分析和预测的基础。
关联分析源于几何直观,实质上是一种曲线间几何形状的分析比较,即几何形状越接近,则发展变化趋势越接近,关联程度越大。
如下图所示:xABCDt曲线A与B比较平行,则认为A与B的关联程度大;曲线C与A随时间变化的方向很不一致,则认为A 与C 的关联程度较小;曲线A 与D 相差最大,则认为两者的关联程度最小。
2. 关联度分析是分析系统中各因素关联程度的方法步骤:(1) 计算关联系数设参考序列为0000{(1),(2),...,()}X x x x n =比较序列为{(1),(2),...,()}, 1,,i i i i X x x x n i m ==比较序列X i 对参考序列X 0在k 时刻的关联系数定义为:0000min min ()() max max ()()()()() max max ()()s s s t s ti i s s t x t x t x t x t k x k x k x t x t ρηρ-+-=-+- 其中,0min min ()()s s t x t x t -和0max max ()()s s tx t x t -分别称为两级最小差、两级最大差,[0,1]ρ∈称为分辨系数,ρ越大分辨率越大,一般采用0.5ρ=对单位不一,初值不同的序列,在计算关联系数之前应首先进行初值化,即将该序列的所有数据分别除以第一数据,将变量化为无单位的相对数值。
灰色预测系统基于GM(1-1)的matlab程序
function GM1_1(X0)%format long ;X0=input('请输入实测数据');%实测值[m,n]=size(X0);X1=cumsum(X0); %累加X2=[];for i=1:n-1X2(i,:)=X1(i)+X1(i+1);endB=-0.5.*X2 ;t=ones(n-1,1);B=[B,t] ; % 求B矩阵YN=X0(2:end) ;Pt=YN./X1(1:(length(X0)-1)) %对原始数据序列X0进行准光滑性检验, %序列X0的光滑比P(t)=X0(t)/X1(t-1)A=inv(B.'*B)*B.'*YN.' ;a=A(1)u=A(2)c=u/a ;b=X0(1)-c ;X=[num2str(b),'exp','(',num2str(-a),'k',')',num2str(c)];strcat('X(k+1)=',X)%syms k;for t=1:length(X0)k(1,t)=t-1;endkY_k_1=b*exp(-a*k)+c;for j=1:length(k)-1Y(1,j)=Y_k_1(j+1)-Y_k_1(j);endXY=[Y_k_1(1),Y] %预测值CA=abs(XY-X0) ; %残差数列Theta=CA %残差检验绝对误差序列XD_Theta= CA ./ X0 %残差检验相对误差序列AV=mean(CA); % 残差数列平均值R_k=(min(Theta)+0.5*max(Theta))./(Theta+0.5*max(Theta)) ;% P=0.5R=sum(R_k)/length(R_k) %关联度Temp0=(CA-AV).^2 ;Temp1=sum(Temp0)/length(CA);S2=sqrt(Temp1) ; %绝对误差序列的标准差%----------AV_0=mean(X0); % 原始序列平均值Temp_0=(X0-AV_0).^2 ;Temp_1=sum(Temp_0)/length(CA);S1=sqrt(Temp_1) ; %原始序列的标准差TempC=S2/S1*100; %方差比C=strcat(num2str(TempC),'%') %后验差检验 %方差比%----------SS=0.675*S1 ;Delta=abs(CA-AV) ;TempN=find(Delta<=SS);N1=length(TempN);N2=length(CA);TempP=N1/N2*100;P=strcat(num2str(TempP),'%') %后验差检验 %计算小误差概率m=input('请输入预测期数:');for g=1:(length(X0)+m)v(1,g)=g-1;endvm=b*exp(-a*v)+c;for j=1:length(v)-1l(1,j)=m(j+1)-m(j);endxyz=[m(1),l]%预测值disp(['小误差概率为:',num2str(P)]);disp(['后验方差比为:',num2str(C)]);disp(['预测值为:',num2str(xyz)]);。
matlab灰色关联初值化量纲化处理方法
matlab灰色关联初值化量纲化处理方法《MATLAB灰色关联初值化量纲化处理方法》一、概述MATLAB灰色关联初值化量纲化处理方法是一种用于将指标数据从跨地域、跨时间和跨行业的不同量纲转换为统一量纲标准的数据处理方法。
其原理是:灰色关联分析是一种基于模糊推理的系统,将原始数据作为输入,通过灰色关联分析计算出的系数作为输出,用于实现输入和输出量纲的转换。
灰色关联分析的基本思想是:通过灰色关联分析计算出的系数可以用来描述不同量纲的指标数据之间的关系,从而将不同量纲的指标数据进行统一量纲标准的处理。
二、MATLAB灰色关联初值化量纲化处理步骤1.首先,将原始数据输入MATLAB环境中,设置指标数据的最大值和最小值;2.设置初值,将指标数据标准化为范围[0,1],量纲化处理;3.计算灰色关联系数,使用MATLAB命令计算出灰色关联分析的系数;4.设置输出量纲,采用MATLAB命令设置指标数据的最大值和最小值,以及灰色关联分析的系数,实现量纲化处理;5.检验标准量纲,使用MATLAB命令检验指标数据是否满足统一量纲标准。
三、MATLAB灰色关联初值化量纲化处理优缺点(1)优点1. MATLAB灰色关联初值化量纲化处理方法具有较强的适用性,可以用于跨地域、跨时间和跨行业的指标数据处理;2.该方法具有较强的灵活性和可操作性,可以根据用户的实际需求,灵活设置指标数据的最大值和最小值,以及灰色关联分析的系数,从而实现量纲化处理;3.该方法具有较强的可靠性,用户可以根据计算出的灰色关联系数,使用MATLAB命令进行量纲化处理,从而实现输入和输出量纲的转换;4.该方法可以有效提高指标数据的精确度,从而提高实际应用的可靠性和准确性。
(2)缺点1.MATLAB灰色关联初值化量纲化处理方法运算速度较慢;2.该方法需要一定的统计学基础,计算出的灰色关联系数可能会受多种因素的影响,不一定准确;3.该方法可能会受到某些指标数据缺失或异常值的影响,从而影响量纲化处理的准确性。
灰色关联度分析讲解
第五章灰色关联度分析目录壹、何谓灰色关联度分析-------------------- 5-2贰、灰色联度分析实例详说与练习--------------- 5-8第五章灰色关联度分析壹、何谓灰色关联度分析一.关联度分析灰色系统分析方法针对不同问题性质有几种不同做法,灰色关联度分析(Grey Relational Analysis) 是其中的一种。
基本上灰色关联度分析是依据各因素数列曲线形状的接近程度做发展态势的分析。
灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。
简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成「局部性灰色关联度」与「整体性灰色关联度」两类。
主要的差别在于「局部性灰色关联度」有一参考序列,而「整体性灰色关联度」是任一序列均可为参考序列。
二.直观分析依据因素数列绘制曲线图,由曲线图直接观察因素列间的接近程度及数值关系,表一某老师给学生的评分表数据数据为例,绘制曲线图如图一所示,由曲线图大约可直接观察出该老师给分总成绩主要与考试成绩关联度较高。
表一某一老师给学生的评分表单位:分/%由曲线图直观分析,是可大略分析因素数列关联度,可看出考试成绩与总成绩曲线形状较接近,故较具关联度,但若能以量化分析予以左证,将使分析结果更具有说服力。
三.量化分析量化分析四步曲:1.标准化(无量纲化):以参照数列(取最大数的数列)为基准点,将各数据标准化成介于0至1之间的数据最佳。
2.应公式需要值,产生对应差数列表,内容包括:与参考数列值差(绝对值)、最大差、最小差、Z (Zeta)为分辨系数,0VZV1,可设Z = 0.5(采取数字最终务必使关联系数计算:E i (k)小于1为原则,至于分辨系数之设定值对关联度并没影响,请参考p14例)3.关联系数E i (k)计算:应用公式i(k)mi n maxAoi(k)+』max 计算比较数列X上各点k与参考数列X参照点的关联系数,最后求各系数的平均值即是X与X o的关联度r i。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰色关联度matlab源程序(完整版)最近几天一直在写算法,其实网上可以下到这些算法的源程序的,但是为了搞懂,搞清楚,还是自己一个一个的看了,写了,作为自身的积累,而且自己的的矩阵计算类库也迅速得到补充,以后关于算法方面,基本的矩阵运算不用再重复写了,挺好的,是种积累,下面把灰关联的matlab程序与大家分享。
灰色关联度分析法是将研究对象及影响因素的因子值视为一条线上的点,与待识别对象及影响因素的因子值所绘制的曲线进行比较,比较它们之间的贴近度,并分别量化,计算出研究对象与待识别对象各影响因素之间的贴近程度的关联度,通过比较各关联度的大小来判断待识别对象对研究对象的影响程度。
简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。
因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。
灰色关联度可分成“局部性灰色关联度”与“整体性灰色关联度”两类。
主要的差别在于局部性灰色关联度有一参考序列,而整体性灰色关联度是任一序列均可为参考序列。
关联度分析是基于灰色系统的灰色过程, 进行因素间时间序列的比较来确定哪些是影响大的主导因素, 是一种动态过程的研究。
关联度计算的预处理,一般初值化或者均值化,根据我的实际需要,本程序中使用的是比较序列与参考序列组成的矩阵除以参考序列的列均值等到的,当然也可以是其他方法。
%注意:由于需要,均值化方法采用各组值除以样本的各列平均值clear;clc;yangben=[47.924375 25.168125 827.4105438 330.08875 1045.164375 261.37437516.3372 6.62 940.2824 709.2752 962.1284 84.87455.69666667 30.80333333 885.21 275.8066667 1052.42 435.81]; %样本数据fangzhen=[36.27 14.59 836.15 420.41 1011.83 189.5464.73 35.63 755.45 331.32 978.5 257.8742.44 23.07 846 348.05 1025.4 296.6959.34 39.7 794.31 334.63 1016.4 317.2752.91 17.14 821.79 306.92 1141.94 122.044.21 4.86 1815.52 2584.68 963.61 0.006.01 2.43 1791.61 2338.17 1278.08 30.873.01 1.58 1220.54 956.14 1244.75 3.9125.65 7.42 790.17 328.88 1026.01 92.82115.80 27 926.5 350.93 1079.49 544.3812.63 8.75 1055.50 1379.00 875.10 1.65]; %待判数据[rows,cols]=size(fangzhen);p=0.5; %分辨系数[m,n]=size(yangben);R=[];for irow=1:rowsyy=fangzhen(irow,:);data=[yy;yangben];data_gyh1=mean(yangben)for i=1:m+1for j=1:ndata_gyh(i,j)=data(i,j)/data_gyh1(j);endendfor i=2:m+1for j=1:nDij(i-1,j)=abs(data_gyh(1,j)-data_gyh(i,j));endendDijmax=max(max(Dij));Dijmin=min(min(Dij));for i=1:mfor j=1:nLij(i,j)=(Dijmin+p*Dijmax)/(Dij(i,j)+p*Dijmax);endendLijRowSum=sum(Lij');for i=1:mRij(i)=LijRowSum(i)/n;endR=[R;Rij];endRmatlab求灰色关联度矩阵源代码2010-12-11 22:57function greyrelationaldegree(X,c)%GRAYRELATIONALDEGREE this function is used for calculating the gery %relation between squence%rememeber that the first column of the input matrix is the desicion %attribution squences.what we want to calculate is the grey ralational degree between%it and other attributions%X is the squence matrix, c is the parameter used in the function%in most of the time, the value of c is 0.5firstrow = X(1,:);reci_firstrow = 1./firstrow;reci_convert = diag(reci_firstrow);initialMIRROR = X*reci_convert;% find the initial value mirror of the sequce matrixA = initialMIRROR'[nrow,ncolumn] = size(A);for (i=2:nrow)C = A(i,:)-A(1,:)D=abs(C);eval(['B' num2str(i) '=D']);amax = max(eval(['B' num2str(i)]))amin = min(eval(['B' num2str(i)]))maxarray(i-1)=amaxminarray(i-1)=aminend %find the difference squence and the max value and min value of each squencemaxmax = max(maxarray)minmin = min(minarray)for(i=2:nrow)for(j=1:ncolumn)eval(['greyrelationdegree' num2str(i)'(j)=(minmin+c*maxmax)/(B' num2str(i) '(j)+c*maxmax)'])endend % calculate the greyralational degree of each datafor(i=2:nrow)eval(['greyrelatioanaldegree_value' num2str(i) '= mean (greyrelationdegree' num2str(i) ')' ])end基于matlab灰色关联度计算的实现2006年07月28日星期五上午 11:06function r=incident_degree(x0,x1)%compute the incident degree for grey model.%Designed by NIXIUHUI,Dalian Fisher University.%17 August,2004,Last modified by NXH at 21 August,2004%数据初值化处理x0_initial=x0./x0(1);temp=size(x1);b=repmat(x1(:,1),[1 temp(2)]);x1_initial=x1./b;%分辨系数选择K=0.1;disp('The grey interconnect degree is: ');x0_ext=repmat(x0_initial,[temp(1) 1]);contrast_mat=abs(x0_ext-x1_initial);delta_min=min(min(contrast_mat));%delta_min在数据初值化后实际为零delta_max=max(max(contrast_mat));a=delta_min+K*delta_max;incidence_coefficient=a./(contrast_mat+K*delta_max);%得到关联系数r=(sum(incidence_coefficient'))'/temp(2); %得到邓氏面积关联度我们根据图1的步骤和图2的数据进行编程实现,程序如下:%清除内存空间等clear;close all;clc;%载入源数据%其实这里可以载入execl表格的n=15; %参与评价的人数m=4; %参与评价的指标个数X_0=zeros(n,m); % 数据矩阵X_2=zeros(n,m); %偏差结果的求取矩阵X_3=zeros(n,m); % 相关系数计算矩阵a1_0=[13 18 17 18 17 17 18 17 13 17 18 13 18 13 18];a2_0=[18 18 17 17 18 13 17 13 18 13 17 13 13 17 17];a3_0=[48.67 43.33 43.56 41.89 39.47 43.44 37.97 41.14 39.67 39.8334.11 40.58 34.19 30.75 21.22];a4_0=[10 10.7 3 5.4 5.4 0.7 4.2 0.5 9.3 0.85 2.9 5.45 4.2 2.7 6]; %指标数X_1=[a1_0',a2_0',a3_0',a4_0']; %最后使用到的数据矩阵%1 寻找参考列x0=[max(a1_0),max(a2_0),max(a3_0),max(a4_0)]; %取每列的最大值(指标的最大值)%2 计算偏差结果i=1;while(i~=m+1) %为什么这个地方会出问题呢for j=1:1:nX_2(j,i)=abs(X_1(j,i)-x0(i));end;i=i+1;end%3 确定偏差的最值error_min=min(min(X_2));error_max=max(max(X_2));%4 计算相关系数i=1;p=0.5;while(i~=m+1)for j=1:1:nX_3(j,i)=(error_min+p*error_max)/(X_2(j,i)+p*error_max);end;i=i+1;end%X_3 %可以在此观察关联矩阵%5 计算各个学生的关连序a=zeros(1,n);for j=1:1:nfor i=1:1:ma(j)=a(j)+X_3(j,i); %%%%其实可以直接用sumend;a(j)=a(j)/m; %%%%%%%%%可以改进%%%%%%%%%%1 2 3 下一页%end%a %在此可以观测各个学生的序%改进:如果各个指标的所占权重不一样的话,可以添加相应的权系数%6 排序b=a';[c,s]=sort(b);for i=1:1:nd(i)=i;endd=d';result=[d b c s]%7 将结果显示出来figure(1);plot(a);figure(2)bar(a); %柱状图最后所得到的结果如图3到图5所示。