高考热点不等式的证明方法
高考数学中常规的不等式证明思路及技巧
![高考数学中常规的不等式证明思路及技巧](https://img.taocdn.com/s3/m/f1c056ead05abe23482fb4daa58da0116c171f23.png)
高考数学中常规的不等式证明思路及技巧数学是高考中必不可少的一门科目,而数学中的不等式证明题目更是高考难点之一。
不等式证明题目考察的是学生的推理能力、逻辑思维能力和精准计算能力。
本文将介绍常见的不等式证明思路及技巧,以帮助高中生更好地应对高考数学中的不等式证明题目。
一、利用已知条件推出结论在不等式证明题目中,往往会给出一些已知条件,利用这些条件我们可以推出某个结论,从而间接证明不等式的正确性。
在做题时,我们应该把题目中的已知条件先作出标注,理清思路后再进行推导。
例如:给定实数 $x$,$y$,$z$,满足 $x^2+y^2+z^2=1$,求证:$x+y+z\leq \sqrt{3}$。
解析:首先,我们可以根据均值不等式得出 $x+y+z\leq\sqrt{3(x^2+y^2+z^2)}$。
接下来,根据题目中的条件$x^2+y^2+z^2=1$,我们可以将被开方量化简为 $\sqrt{3}$,从而得到 $x+y+z\leq \sqrt{3}$。
因此,我们成功地证明了该不等式的正确性。
二、借助已知不等式证明目标不等式借助已知不等式间接证明目标不等式的正确性是不等式证明中最常用的方法之一。
这种方法需要对不等式理解深入,需要对不等式的性质有全面认知。
可以通过加、减、乘、除等运算方式进行变形,或者通过引理证明的方式来证明目标不等式的正确性。
例如:已知 $ab+bc+ca=1$,证明$\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\geq\dfrac{3\sqrt{3}}{4}$。
解析:首先,我们可以通过柯西不等式将原不等式中的多项式化成分数进行求解。
具体而言,我们有:$$\begin{aligned}&\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\\ &\geq\dfrac{(a+b+c)^2}{a+ab^2+b+b^2c+c+c^2a+a^2}\\ &\geq\dfrac{3}{\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}+1}\\ &\geq\dfrac{3}{\sqrt[4]{\dfrac{abc}{abc}}+1}\\ &=\dfrac{3}{2}\end{aligned}$$由此,我们可以通过制定合适的策略,借助已知不等式成功证明了目标不等式的正确性。
高考数学证明不等式的基本方法
![高考数学证明不等式的基本方法](https://img.taocdn.com/s3/m/d95c11bbcc22bcd126ff0cef.png)
知识网络
要点归纳
题型研修
知识网络
要点归纳
题型研修
1.比较法证明不等式 作差比较法是证明不等式的基本方法,其依据 是:不等式的意义及实数大小比较的充要条件. 证明的步骤大致是:作差——恒等变形——判 断结果的符号.
知识网络
要点归纳
题型研修
2.综合法证明不等式 综合法证明不等式的依据是:已知的不等式以及逻辑推理 的基本理论.证明时要注意的是:作为依据和出发点的几个 重要不等式(已知或已证)成立的条件往往不同,应用时要先 考虑是否具备应有的条件,避免错误,如一些带等号的不 等式,应用时要清楚取等号的条件,即对重要不等式中 “当且仅当……时,取等号”的题型研修
例 1 若 x,y,z∈R,a>0,b>0,c>0.求证:b+a cx2+c+b a
y2+a+c bz2≥2(xy+yz+zx).
证明 ∵b+a cx2+c+b ay2+a+c bz2-2(xy+yz+zx)
=bax2+aby2-2xy+bcy2+bcz2-2yz+acz2+acx2-2zx=
∴0< (n+1)n22+ +11+ +( n n+1)<1,即CCn+n1<1,
从而有 Cn+1<Cn.
知识网络
要点归纳
题型研修
跟踪演练 2 若 a,b,m,n 都为正实数,且 m+n=1, 试证: ma+nb≥m a+n b. 证明 ∵a,b,m,n 均为正数,且 m+n=1, ∴( ma+nb)2-(m a+n b)2 =ma+nb-m2a-n2b-2mn ab =m(1-m)a+n(1-n)b-2mn ab =mn( a- b)2≥0,又 ma+nb>0,m a+n b>0, ∴ ma+nb≥m a+n b.
知识网络
【技巧题型】不等式题目的七种证明方法
![【技巧题型】不等式题目的七种证明方法](https://img.taocdn.com/s3/m/1fab24d68ad63186bceb19e8b8f67c1cfad6eed0.png)
【技巧题型】不等式题目的七种证明方法高考的题目中,有80%都是中低档难度,也就是说,要想脱颖而出成为佼佼者,压轴题是无论如何都要攻克的难关!压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
今天,我就来总结一下不等式的证明方法。
1比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
2分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
3反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; 4)肯定原来命题的结论是正确的。
4放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
高考数学复习备战:最新真题解析—不等式选讲
![高考数学复习备战:最新真题解析—不等式选讲](https://img.taocdn.com/s3/m/be33272577c66137ee06eff9aef8941ea76e4bbb.png)
(3)算术平均—几何平均定理(基本不等式的推广):对于n个正数a1,a2,…,an,它们的算术平均数不小于它们的几何平均数,即 ,当且仅当a1=a2=…=an时,等号成立.
(2)法一:利用基本不等式得到 ,再利用不等式的基本性质证明;法二:利用Cauchy不等式证明.
(1)∵ , , 都为正整数,且 .
∴ ,
当且仅当 时“=”成立.
(2)法一:由题意得
①+②+③,得 ,
当且仅当 时“=”成立.
法二:由Cauchy不等式,得 .
令 ,
则 .
令 ,则 在 上单调递增.
∴ ,即 .
(1)当 时, 等价于 ,
该不等式恒成立,所以 ;
当 时, 等价于 ,
解得 ,此时不等式无解;
当 时, 等价于 ,解得 ,所以 .
综上所述,不等式的解为 .
(2)由 ,得 ,
当 时, 恒成立,所以 ;
当 时, 恒成立,
因为 ,
当且仅当 时取等号,所以 .综上所述, 的取值范围是 .
2.(2022·青海·模拟预测(理))已知函数 .
当 时, ,解得 ,
故不等式 的解集为 或 ;
(2)由(1)可知:
当 时, ,
当 时, ,
当 时, ,
故 的最小值为3,即 ,则 ,即
则 ,
当且仅当 时取等号,
故 的最小值为 .
3.(2022·河南·开封市东信学校模拟预测(理))已知函数 .
(1)求不等式 的解集;
(2)设 时, 的最小值为M.若正实数a,b,满足 ,求 的最小值.
备战高考数学复习考点知识与题型讲解23---证明不等式
![备战高考数学复习考点知识与题型讲解23---证明不等式](https://img.taocdn.com/s3/m/9c72c36a00f69e3143323968011ca300a6c3f6c1.png)
备战高考数学复习考点知识与题型讲解第23课时证明不等式考点一构造函数法(多维探究)角度1 移项构造法(2021·高考全国卷乙改编)设函数f(x)=ln(1-x),函数g(x)=x+f(x)xf(x),证明:g(x)<1.【证明】f(x)的定义域为{x|x<1},当0<x<1时,ln(1-x)<0,此时xf(x)<0,当x<0时,ln(1-x)>0,此时xf(x)<0.易知g(x)的定义域为{x|x<1且x≠0},故要证g(x)=x+f(x)xf(x)<1,只需证x+f(x)>xf(x),即证x+ln(1-x)-x ln(1-x)>0.令1-x=t,则t>0且t≠1,则只需证1-t+ln t-(1-t)ln t>0,即证1-t+t ln t>0.令h(t)=1-t+t ln t,则h′(t)=-1+ln t+1=ln t,所以h(t)在(0,1)上单调递减,在(1,+∞)上单调递增,所以h(t)>h(1)=0,即g(x)<1成立.待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”或“右减左”的函数,利用导数研究其单调性等相关函数性质证明不等式.|跟踪训练|(2022·江西赣州模拟)已知函数f(x)=1-ln xx,g(x)=-ee x+1x+x,证明:当x≥1时,f (x )+g (x )≥2x.证明:f (x )+g (x )≥2x ⇔1-ln xx -e e x -1x +x ≥0.令h (x )=1-ln xx -e e x -1x+x (x ≥1), 则h (1)=0,h ′(x )=ln xx 2+ee x +1.因为x ≥1,所以h ′(x )=ln xx 2+ee x+1>0, 所以h (x )在[1,+∞)上单调递增,所以h (x )≥h (1)=0,即1-ln xx -e e x -1x+x ≥0, 所以当x ≥1时,f (x )+g (x )≥2x.角度2 放缩后构造函数证明不等式已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间; (2)证明:当a ≥1e时,f (x )≥0.【解】 (1)f (x )的定义域为(0,+∞),f ′(x )=a e x -1x.由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)证明:当a ≥1e 时,f (x )≥e xe-ln x -1(x >0).设g (x )=e x e -ln x -1(x >0),则g ′(x )=e xe -1x (x >0).当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的极小值点,也是最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.构造函数法证明不等式的关键某些不等式,直接构造不易求最值,可利用条件与不等式性质,适当放缩后,再构造函数,通过研究构造函数的单调性,利用函数的最值证明结论.|跟踪训练|求证:x ∈(0,1)时,-ln x e x+x 2-1x<0. 证明:因为当x ∈(0,1)时,e x∈(1,e),-ln x >0,所以-ln xe x <-ln x ,所以只需要证-ln x +x 2-1x<0在(0,1)上恒成立.令g (x )=-ln x +x 2-1x,x ∈(0,1),所以g ′(x )=-1x +2x +1x 2=2x 3-x +1x 2>0,则函数g (x )在(0,1)上单调递增,于是g (x )<-ln 1+1-1=0, 所以当x ∈(0,1)时,-ln x e x +x 2-1x<0.考点二 隔离分析法(综合研析)(2022·福州模拟)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解】 (1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <e a 时,f ′(x )>0,当x >ea时,f ′(x )<0,故f (x )在⎝ ⎛⎭⎪⎫0,e a 上单调递增,在⎝ ⎛⎭⎪⎫e a ,+∞上单调递减.(2)证明:方法一:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以f (x )max =f (1)=-e. 令g (x )=e xx-2e(x >0),则g ′(x )=(x -1)e xx 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减, 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ), 即f (x )≤e xx-2e ,即xf (x )-e x +2e x ≤0.方法二:由题意知,即证e x ln x -e x 2-e x+2e x ≤0, 从而等价于ln x -x +2≤e xe x.设函数m (x )=ln x -x +2(x >0),则m ′(x )=1x-1.所以当x ∈(0,1)时,m ′(x )>0,当x ∈(1,+∞)时,m ′(x )<0,故m (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而m (x )在(0,+∞)上的最大值为m (1)=1. 设函数h (x )=e x e x (x >0),则h ′(x )=e x (x -1)e x 2.所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0, 故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 从而h (x )在(0,+∞)上的最小值为h (1)=1. 综上,当x >0时,m (x )≤h (x ),即xf (x )-e x +2e x ≤0.(1)在证明不等式中,若无法转化为一个函数的最值问题,则可以考虑转化为两个函数的最值问题.(2)在证明过程中,“隔离化”是关键.如果证g (x )≥f (x )恒成立,只需证g (x )min ≥f (x )max 恒成立,但只有当f (x )与g (x )取到最值的条件是同一个x 的值时,取等号,否则只能得到g (x )>f (x ).|跟踪训练|已知f (x )=x ln x . (1)求函数f (x )的最小值;(2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.解:(1)由f (x )=x ln x ,x >0,得f ′(x )=ln x +1, 令f ′(x )=0,得x =1e.当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增. 所以当x =1e 时,f (x )取最小值为f (1e )=-1e.(2)证明:问题等价于x ln x >x e x -2e (x >0),设m (x )=xe x -2e (x ∈(0,+∞)),则m ′(x )=1-xe x, 由m ′(x )<0得x >1时,m (x )为减函数, 由m ′(x )>0得0<x <1时,m (x )为增函数, 易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),x ln x ≥-1e ≥x e x -2e,两个等号不能同时取到,即对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.[A 基础达标]1.(2022·泰州中学第一次月检)已知函数f (x )=x -a 4ln xa ,a >0.(1)求函数f (x )的单调区间; (2)求证:f (x )≥a4(4-a ).解:(1)f ′(x )=12x -a 4x =2x -a 4x ,当0<x <a 24时,f ′(x )<0;当x >a 24时,f ′(x )>0,所以f (x )在⎝ ⎛⎭⎪⎫0,a 24上单调递减,在⎝ ⎛⎭⎪⎫a 24,+∞上单调递增.(2)证明:由(1)得f (x )≥f ⎝ ⎛⎭⎪⎫a 24=a 2-a 4ln a4,要证f (x )≥a 4(4-a )=a -a a 4,即证a -ln a4≥2,设函数h (x )=2x -ln x ,h ′(x )=1x -1x=x -1x,当0<x <1时,h ′(x )<0,当x >1时,h ′(x )>0, 故h (x )在(0,1)上为减函数,在(1,+∞)上为增函数, 故h (x )min =h (1)=2,即2x -ln x ≥2恒成立, 所以a -ln a 4=2×a4-ln a4≥2, 综上,f (x )≥a4(4-a ).2.已知函数f (x )=x 2e 2x -2.(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求证:f (x )≥-2x 2+8x -5. 解:(1)f ′(x )=2e 2x -2(x 2+x ),f ′(1)=4,f (1)=1, 则曲线y =f (x )在点(1,1)处的切线方程为y -1=4(x -1), 即y =4x -3.(2)证明:当x ∈[0,2]时, 令g (x )=x 2e 2x -2+2x 2-8x +5, 则g ′(x )=2e 2x -2(x 2+x )+4x -8, 令h (x )=g ′(x ),则h ′(x )=2e 2x -2(2x 2+4x +1)+4>0, 所以g ′(x )在[0,2]上单调递增, 且g ′(1)=0,所以g (x )在[0,1]上单调递减, 在(1,2]上单调递增, 所以g (x )的最小值为g (1)=0,所以g (x )≥0, 即f (x )≥-2x 2+8x -5.[B 综合应用]3.(2022·浙江高考模拟卷(二))已知函数f (x )=ln x .(1)设函数g (x )=t x-ln x (t ∈R ),且g (x )≤f (x )恒成立,求实数t 的取值范围; (2)求证:f (x )>1e x -2e x.解:(1)由g (x )≤f (x )可得t x-ln x ≤ln x ,可得t ≤2x ln x , 令h (x )=2x ln x ,其中x >0,则h ′(x )=2(1+ln x ), 当0<x <1e 时,h ′(x )<0,此时函数h (x )单调递减,当x >1e 时,h ′(x )>0,此时函数h (x )单调递增,所以,h (x )min =h ⎝ ⎛⎭⎪⎫1e =-2e ,所以t ≤-2e .(2)证明:要证f (x )>1e x -2e x ,即证x ln x >x e x -2e ,由(1)可知,x ln x ≥-1e ,当且仅当x =1e时,等号成立,令m (x )=x e x -2e ,其中x >0,则m ′(x )=1-xe x ,当0<x <1时,m ′(x )>0,此时函数m (x )单调递增, 当x >1时,m ′(x )<0,此时函数m (x )单调递减, 所以,m (x )max =m (1)=-1e,因为x ln x ≥-1e 和m (x )≤-1e 取等号的条件不同,故x ln x >x e x -2e ,即f (x )>1e x -2e x.4.(2022·山东省高三联考)已知f (x )=e x -1-sin x . (1)求证:当x >0时,f (x )>0;(2)求证:∑i =2n⎝⎛⎭⎪⎫1i +1ln i <14n 2-14n ,n ≥2,n ∈N *. 证明:(1)令g (x )=e x -1-x (x >0),g ′(x )=e x -1-1,令g ′(x )=0,得x =1, 列表如下:所以g (x )min =g (1)=e 0-1=0, 所以e x -1≥x ,当且仅当x =1时取等号, 再令h (x )=x -sin x (x >0),h ′(x )=1-cos x ≥0在(0,+∞)上恒成立, 所以h (x )在(0,+∞)上单调递增, 所以h (x )>h (0)=0, 所以x >sin x (x >0),所以当x >0时,e x -1≥x >sin x , 所以当x >0时,f (x )>0.(2)由(1)知,当x >0时,e x -1≥x ,即ln x ≤x -1(x >0), 当且仅当x =1时取等号, 因为n ∈N *,且n ≥2, 所以ln n 2<n 2-1, 所以ln n n +1<n -12,所以∑i =2n⎝ ⎛⎭⎪⎫ln i i +1<12(1+2+3+…+n -1)=n 2-n 4,所以当n ∈N *,且n ≥2时, ∑i =2n⎝⎛⎭⎪⎫ln i i +1<n 2-n4成立.。
考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版
![考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版](https://img.taocdn.com/s3/m/bdab427d2e60ddccda38376baf1ffc4fff47e209.png)
考点20利用导数证明不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果【核心题型】题型一 将不等式转化为函数的最值问题待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.【例题1】(2024·陕西咸阳·模拟预测)已知1201x x <<<,下列不等式恒成立的是( )A .1221e e x xx x <B .2112ln ln x x x x >C .1122ln ln x x x x <D .11e ln x x >【变式1】(2024·全国·模拟预测)下列正确结论的个数为( )①13sin1010π> ②141sin sin 334< ③16tan 16> ④()tan π3sin 3->A .1B .2C .3D .4【变式2】(2024·四川成都·三模)已知函数2()ln ,f x ax x a =-ÎR .(1)讨论函数()f x 的单调性;(2)设0,()()a g x f x bx >=+,且1x =是()g x 的极值点,证明:2+ln 12ln 2b a £-.【变式3】(2024·四川成都·三模)已知函数()()()e sin 1,0,πxf x ax x x x =---Î.(1)若12a =,证明:()0f x >;(2)若函数()f x 在()0,π内有唯一零点,求实数a 的取值范围.题型二 将不等式转化为两个函数的最值进行比较若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.【例题2】(2023·河南开封·模拟预测)已知13a =,13e 1b =-,4ln 3c =,则( )A .a b c <<B .a c b <<C .c<a<bD .b<c<a【变式1】(2024·全国·模拟预测)已知1e 1ln ,0aa b =+>,则下列结论正确的是( )A .e 2a b<-B .1lna b<C .1a b<-D .1e lnba<【变式2】(2024·浙江杭州·模拟预测)已知函数()()1122e ,e e e 1xxx x f x m m g x -=+-=++.(1)当0m =时,证明:()e xf x -<;(2)当0x <时,()g x t ³,求t 的最大值;(3)若()f x 在区间()0,¥+存在零点,求m 的取值范围.【变式3】(2024·贵州黔西·一模)已知函数29()ln 22f x x x x x =--.(1)判断()f x 的单调性;(2)证明:1352193ln(21)35721n n n n -æö++++>-+ç÷+èøL .题型三 适当放缩证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)ln x ≤x -1,当且仅当x =1时取等号.【例题1】(2024·河北沧州·一模)已知等比数列{}n a 的前n 项和为413,1,e Sn S a S >=,则数列{}n a 的公比q 满足( )A .01q <£B .10q -<<C .1q >D .1q £-【变式1】(2024·广东·模拟预测)令()sin 0.5cos1cos 2cos ,N n a n n °°°°+=+++ÎL .则n a 的最大值在如下哪个区间中( )A .(0.49,0.495)B .(0.495,0.5)C .(0.5,0.505)D .(0.505,0.51)【变式2】(2024·全国·模拟预测)设整数1p >,1x >-且0x ¹,函数()(1)1p f x x px =+--.(1)证明:()0f x >;(2)设0x >,证明:ln(1)x x +<;(3)设*n ÎN ,证明:111321232ln(1)n n n n ++++<-+L .【变式3】(23-24高三下·河南·阶段练习)已知函数()(1)1(1)r f x x rx x =+-->-,0r >且1r ¹.(1)讨论()f x 的单调性;(2)6332的大小,并说明理由;(3)当*n ÎN时,证明:2sin 176n kk n =<+å.【课后强化】基础保分练一、单选题1.(22-23高三上·四川绵阳·开学考试)若1201x x <<<,则( )A .2121e e ln ln x xx x ->-B .2121e e ln ln x xx x -<-C .1221e e x xx x >D .1221e e x xx x <2.(2023·陕西咸阳·三模)已知12023a =,20222023eb -=,1cos 20232023c =,则( )A .a b c >>B .b a c >>C .b c a>>D .a c b>>3.(23-24高三上·云南保山·期末)已知16a =,7ln 6b =,1tan 6c =,则( )A .b a c <<B .a b c <<C .a c b<<D .c<a<b4.(2024·全国·模拟预测)设13ln4,tan tan1,22a b c ==+=,则( )A .a b c <<B .b c a<<C .c<a<bD .a c b<<二、多选题5.(23-24高三上·广西百色·阶段练习)函数()21ln 2f x x ax a x =-+的两个极值点分别是12,x x ,则下列结论正确的是( )A .4a >B .22128x x +<C .1212x x x x +=D .()()()221212164f x f x x x +<+-6.(2023·福建·模拟预测)机械制图中经常用到渐开线函数inv tan x x x =-,其中x 的单位为弧度,则下列说法正确的是( )A .inv x x ×是偶函数B .inv x 在ππ(π,π)22k k --+上恰有21k +个零点(N k Î)C .inv x 在ππ(π,π)22k k --+上恰有41k +个极值点(N k Î)D .当π02x -<<时,inv sin x x x <-三、填空题7.(2023·海南·模拟预测)已知函数()1ln e x x af x --=,()1x a g x x--=,若对任意[)1,x ¥Î+,()()f x g x £恒成立,则实数a 的取值范围是 .8.(2023·河南开封·模拟预测)实数x ,y 满足()23e 31e x y x y -£--,则3xy -的值为 .四、解答题9.(2023·吉林长春·模拟预测)已知函数()21()1ln 2f x x x =--.(1)求()f x 的最小值;(2)证明:47ln332>.10.(2024·广东佛山·二模)已知()21e 4e 52x xf x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.11.(2023·四川成都·二模)已知函数()e sin xf x x -=.(1)求()f x 在()()0,0f 处的切线方程;(2)若0x 是()f x 的最大的极大值点,求证:()01f x <<综合提升练一、单选题1.(22-23高三上·河南·阶段练习)若32e 3ln 22x yx y +-=+,其中2,2x y >>,则( )A .e x y<B .2x y>C .24e xy>D .2e x y>2.(2023·福建·模拟预测)已知ln 2a =,1e b a=-,2a c a =-,则( )A .b c a>>B .b a>C .c a b>>D.c b a>>3.(2023·河北衡水·三模)若a =1b =-,c =则( )A .c a b <<B .c b a <<C .b c a<<D .a c b<<4.(2023·新疆·三模)已知数列{}n a 中,11a =,若1nn nna a n a +=+(N n *Î),则下列结论中错误的是( )A .325a =B .1111n na a +-£C .1ln 1nn a <-(2,N n n *³Î)D .2111112n n a a ++-<5.(2023·河南·模拟预测)设a ,b 为正数,且2ln ab a b=-,则( ).A .112a b<<B .12a b<<C .112ab <<D .12ab <<6.(2024·上海虹口·二模)已知定义在R 上的函数()(),f x g x 的导数满足()()f x g x ¢£¢,给出两个命题:①对任意12,x x ÎR ,都有()()()()1212f x f x g x g x -£-;②若()g x 的值域为[]()(),,1,1m M f m f M -==,则对任意x ÎR 都有()()f x g x =.则下列判断正确的是( )A .①②都是假命题B .①②都是真命题C .①是假命题,②是真命题D .①是真命题,②是假命题7.(2024·四川泸州·三模)已知0x >,e ln 1x y +=,给出下列不等式①ln 0x y +<;②e 2x y +>;③ln e 0y x +<;④1x y +>其中一定成立的个数为( )A .1B .2C .3D .48.(2024·四川攀枝花·三模)已知正数,,a b c 满足ln e c a b b ca ==,则( )A .a b c >>B .a c b>>C .b a c>>D .b c a>>二、多选题9.(2023·福建龙岩·二模)已知函数()ln n f x x n x =-(*n ÎN )有两个零点,分别记为n x ,n y (<n n x y );对于0a b <<,存在q 使)()()(()n n n f f f a q b a b -=-¢,则( )A .()n f x 在()1,+¥上单调递增B .e n >(其中e 2.71828=L 是自然对数的底数)C .11n n n n x x y y ++-<-D .2q a b<+10.(2023·河南信阳·模拟预测)已知,,,a b c d ÎR ,满足0a b c d >>>>,则( )A .sin sin a b >B .sin sin a a b b ->-C .a bd c>D .ad bc ab cd+>+11.(2024·河北沧州·一模)已知函数()e xf x =与函数()211g x x =+-的图象相交于()()1122,,,A x y B x y 两点,且12x x <,则( )A .121y y =B .211exy =C .21211y y x x ->-D .221x y =三、填空题12.(2023·四川成都·三模)已知函数()2()2ln 32f x x a x x =+-+,a ÎR .当1x >时,()0f x >,则实数a 的取值范围为.13.(23-24高三下·广东云浮·阶段练习)若实数a ,b 满足()()221ln 2ln 1a b a b -³+-,则a b += .14.(2024·全国·模拟预测)若实数a ,b ,c 满足条件:()2e e 2e 1a b ca b c a -++-+=-,则444abca b c ++的最大值是 .四、解答题15.(2024·青海西宁·二模)已知函数()()()2222ln R f x x a x a x a =+--Î.(1)若2a =,求()f x 的极值;(2)若()()2222ln g x f x a x x =+-+,求证:()12g x ³.16.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-ÎR .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +³.17.(2024·上海松江·二模)已知函数ln y x x a =×+(a 为常数),记()()y f x x g x ==×.(1)若函数()y g x =在1x =处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:()()()ln 2f x f t x f t t a +-³-+;(3)当1a =时,求证:e ()cos x g x x x+<.18.(2024·上海嘉定·二模)已知常数m ÎR ,设()ln mf x x x=+,(1)若1m =,求函数()y f x =的最小值;(2)是否存在1230x x x <<<,且1x ,2x ,3x 依次成等比数列,使得()1f x 、()2f x 、()3f x 依次成等差数列?请说明理由.(3)求证:“0m £”是“对任意()12,0,x x Î+¥,12x x <,都有()()()()1212122f x f x f x f x x x ¢¢+->-”的充要条件.19.(2024·全国·模拟预测)已知函数()()2e ln 1xf x a x =-+.(1)若2a =,讨论()f x 的单调性.(2)若0x >,1a >,求证:()1ln 2f x a a >-.拓展冲刺练一、单选题1.(2023·上海奉贤·二模)设n S 是一个无穷数列{}n a 的前n 项和,若一个数列满足对任意的正整数n ,不等式11n n S S n n +<+恒成立,则称数列{}n a 为和谐数列,有下列3个命题:①若对任意的正整数n 均有1n n a a +<,则{}n a 为和谐数列;②若等差数列{}n a 是和谐数列,则n S 一定存在最小值;③若{}n a 的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有( )个A .0B .1C .2D .32.(2023·新疆乌鲁木齐·三模)已知0.19e a -=,0.9b =,2ln0.91c =+,则( )A .b c a>>B .a c b>>C .c b a>>D .b a c>>3.(2023·湖南长沙·一模)已知()e 0.1e 0.1a +=-,e e b =,()e 0.1e 0.1c -=+,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b a c<<D .a c b<<4.(2024·青海·二模)定义在R 上的函数()f x 满足()()2231218f x f x x x --=-+,()f x ¢是函数()f x 的导函数,以下选项错误的是( )A .()()000f f ¢+=B .曲线()y f x =在点()()1,1f 处的切线方程为210x y --=C .()()f x f x m -¢³在R 上恒成立,则2m £-D .()()74ee xf x f x -³-¢-二、多选题5.(2024·全国·模拟预测)已知n S 为正项数列{}n a 的前n 项和,且221n n n a S a -=,则( )A .=n aB .1n na a +>C .1ln n nS n S -³D .212n n n S S S +++>6.(2024·全国·模拟预测)已知1e 1ln ,0aa b=+>,则下列结论正确的是( )A .e 2a b >-B .1lna b<C .1e lnb a<D .1a b>-三、填空题7.(2023·浙江温州·二模)已知函数e e()ln ln f x x x x x=++-,则()f x 的最小值是 ;若关于x 的方程()22f x ax =+有1个实数解,则实数a 的取值范围是.8.(2023·福建福州·模拟预测)已知定义在()0,¥+上函数()f x 满足:()()ln 1x f x x +<<,写出一个满足上述条件的函数()f x = .四、解答题9.(2024·辽宁·模拟预测)已知函数()()sin ln sin f x x x =-,()1,2x Î(1)求()f x 的最小值;(2)证明:()sin sin eln sin 1x xx x -×->.10.(2024·四川攀枝花·三模)已知函数()()ln 1R af x x a x=+-Î.(1)当2a =时,求函数()f x 在1x =处的切线方程;(2)设函数()f x 的导函数为()f x ¢,若()()()1212f x f x x x ¢¢=¹,证明:()()1211f x f x a++>.11.(2024·山西晋城·二模)已知函数()()e x f x x a x a =-++(a ÎR ).(1)若4a =,求()f x 的图象在0x =处的切线方程;(2)若()0f x ³对于任意的[)0,x Î+¥恒成立,求a 的取值范围;(3)若数列{}n a 满足11a =且122nn n a a a +=+(*n ÎN ),记数列{}n a 的前n 项和为n S ,求证:[]1ln (1)(2)3n S n n +<++.。
不等式的证明方法经典例题
![不等式的证明方法经典例题](https://img.taocdn.com/s3/m/ae0dac243169a4517723a367.png)
不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。
注意ab b a 222≥+的变式应用。
常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。
一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。
1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。
2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。
6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。
7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。
四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。
9、1<b ,求证:1)1)(1(22≤--+b a ab 。
10、122=+y x ,求证:22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3.13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10. 14、解不等式15+--x x >21 15、-1≤21x --x ≤2.五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。
专题14 利用导数证明一元不等式--《2023年高考数学命题热点聚焦与扩展》【解析版】
![专题14 利用导数证明一元不等式--《2023年高考数学命题热点聚焦与扩展》【解析版】](https://img.taocdn.com/s3/m/649f4cc318e8b8f67c1cfad6195f312b3169eb13.png)
【热点聚焦】从高考命题看,通过研究函数性质与最值证明一元不等式,是导数综合题常涉及的一类问题. 导数是研究函数的工具,利用导数我们可以方便地求出函数的单调性、极值、最值等,在证明与函数有关的不等式时,我们可以把不等式问题转化为函数的最值问题,也常构造函数,把不等式的证明问题转化为利用导数研究函数的单调性或最值问题【重点知识回眸】(一)证明方法的理论基础(1)若要证()f x C <(C 为常数)恒成立,则只需证明:()max f x C <,进而将不等式的证明转化为求函数的最值(2)已知()(),f x g x 的公共定义域为D ,若()()min max f x g x >,则()(),x D f x g x ∀∈> 证明:对任意的1x D ∈,有()()()()11min max ,f x f x g x g x ≥≤∴由不等式的传递性可得:()()()()11min max f x f x g x g x ≥>>,即()(),x D f x g x ∀∈>(二)证明一元不等式主要的方法1.方法一:将含x 的项或所有项均移至不等号的一侧,将一侧的解析式构造为函数,通过分析函数的单调性得到最值,从而进行证明. 例如:,可通过导数求出,由此可得到对于任意的,均有,即不等式.其优点在于目的明确,构造方法简单,但对于移项后较复杂的解析式则很难分析出单调性2.方法二:利用不等式性质对所证不等式进行等价变形,转化成为()()f x g x >的形式,若能证明()()min max f x g x >,即可得:()()f x g x >,本方法的优点在于对x 的项进行分割变形,可将较复杂的解析式拆成两个简单的解析式.但缺点是局限性较强,如果()min f x 与()max g x 不满足()()min max f x g x >,则无法证明()()f x g x >.(三)常见构造函数方法(1)直接转化为函数的最值问题:把证明f (x )<g (a )转化为f (x )max <g (a ).(2)移项作差构造函数法:把不等式f (x )>g (x )转化为f (x )-g (x )>0,进而构造函数h (x )=f (x )-g (x ).(3)构造双函数法:若直接构造函数求导,难以判断符号,导函数零点不易求得,即函数单调性与极值点都不易获得,可转化不等式为f (x )>g (x )利用其最值求解.()ln 1f x x x =-+()()min 10f x f ==0x >()()min 0f x f x ≥=ln 1x x ≤-(4)换元法,构造函数证明双变量函数不等式:对于f (x 1,x 2)≥A 的不等式,可将函数式变为与x 1x 2或x 1·x 2有关的式子,然后令t =x 1x 2或t =x 1x 2,构造函数g (t )求解. (5)适当放缩构造函数法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x ≤x -1,e x ≥1+x ,当且仅当x =0时取等号,ln x <x <e x (x >0),1xx +≤ln(x +1)≤x (x >-1). e x ≥e x ,当且仅当x =1时取等号;当x ≥0时,e x ≥1+x +12x 2,当且仅当x =0时取等号;当x ≥0时,e x ≥2e x 2+1, 当且仅当x =0时取等号; 1x x -≤ln x ≤x -1≤x 2-x ,当且仅当x =1时取等号;当x ≥1时,2(1)1x x -+≤ln x x,当且仅当x =1时取等号.(6)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数等.把不等式左、右两边转化为结构相同的式子,然后根据“相同结构”,构造函数.(7)赋值放缩法:函数中对与正整数有关的不等式,可对已知的函数不等式进行赋值放缩,然后通过多次求和达到证明的目的.【典型考题解析】热点一 直接将不等式转化为函数的最值问题【典例1】(2017·全国·高考真题(文))已知函数2()ln (21)f x x ax a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a≤--. 【答案】(1)见解析;(2)见解析. 【分析】(1)先求函数导数(21)(1)'()(0)ax x f x x x++=>,再根据导函数符号的变化情况讨论单调性:当0a ≥时,'()0f x >,则()f x 在(0,)+∞单调递增;当0a <时,()f x 在1(0,)2a-单调递增,在1(,)2a-+∞单调递减. (2)证明3()24f x a≤--,即证max 3()24f x a ≤--,而max 1()()2f x f a =-,所以需证11ln()1022a a-++≤,设g (x )=ln x -x +1 ,利用导数易得max ()(1)0g x g ==,即得证. 【详解】(1)()f x 的定义域为(0,+∞),()()‘1211)22(1x ax f x ax a x x++=+++=. 若a ≥0,则当x ∈(0,+∞)时,’)(0f x >,故f (x )在(0,+∞)单调递增.若a <0,则当10,2x a ⎛⎫∈- ⎪⎝⎭时,()0f x '>时;当x ∈1()2a ∞-+,时,’)(0f x <. 故f (x )在’)(0f x >单调递增,在1()2a∞-+,单调递减. (2)由(1)知,当a <0时,f (x )在12x a =-取得最大值,最大值为111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设g (x )=ln x -x +1,则’1(1)g x x=-. 当x ∈(0,1)时,';当x ∈(1,+∞)时,'.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,11ln()1022a a -++≤,即3()24f x a ≤--.【典例2】(2018年新课标I 卷文)已知函数()e 1x f x a lnx =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.【答案】(1) a =212e ;f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析. 【详解】分析:(1)先确定函数的定义域,对函数求导,利用f ′(2)=0,求得a =212e ,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a ≥1e 时,f (x )≥e ln 1exx --,之后构造新函数g (x )=e ln 1exx --,利用导数研究函数的单调性,从而求得g (x )≥g (1)=0,利用不等式的传递性,证得结果.详解:(1)f (x )的定义域为()0+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则()e 1'e x g x x=-.当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1a e≥时,()0f x ≥.(1)若证f (x )>g (a )或f (x )<g (a ),只需证f (x )min >g (a )或f (x )max <g (a ). (2)若证f (a )>M 或f (a )<M (a ,M 是常数),只需证f (x )min >M 或f (x )max <M . 热点二 移项作差构造函数证明不等式【典例3】(辽宁·高考真题(文))设函数f (x )=x+a 2x +blnx ,曲线y=f (x )过P (1,0),且在P 点处的切斜线率为2. (I )求a ,b 的值; (II )证明:f(x)≤2x -2.【答案】(I )a =-1,b =3. (II )见解析【详解】试题分析: (1)f ′(x)=1+2ax +b x .由已知条件得(1)0{(1)2f f '==即10{122a ab +=++= 解得a =-1,b =3. (2)f(x)的定义域为(0,+∞), 由(1)知f(x)=x -x 2+3lnx.设g(x)=f(x)-(2x -2)=2-x -x 2+3lnx ,则 g′(x)=-1-2x +3x=-.当0<x<1时,g′(x)>0;当x>1时,g′(x)<0. 所以g(x)在(0,1)单调递增,在(1,+∞)单调递减. 而g(1)=0,故当x>0时,g(x)≤0,即f(x)≤2x -2.【典例4】(2022·青海·模拟预测(理))已知函数().(1)求()f x 的最小值;(2)若0x >,证明:()()2e 3f x x x ≥+-.【答案】(1)0; (2)证明见解析.【分析】(1)利用导数求出函数的单调区间即得解;(2)即证2e 1e 2x x x--≥-,设()()2e 10x x h x x x --=>,求出函数()h x 的最小值即得证.(1)解:由题意可得()e 1xf x '=-.由()0f x '>,得0x >;由()0f x '<,得0x <. 则()f x 在(),0∞-上单调递减,在()0,∞+上单调递增, 故()()min 00f x f ==. (2)证明:要证()()2e 3f x x x >+-,即证()2e 1e 3x x x x -->+-,即证2e 1e 2x x x--≥-.设()()2e 10x x h x x x --=>,则()()()21e 1x x x h x x---'=. 由(1)可知当0x >时,e 10x x -->.由()0h x '>,得1x >,由()0h x '<,得01x <<, 则()()1e 2h x h ≥=-,当且仅当1x =时,等号成立.即()()2e 3f x x x ≥+-.若证明f (x )>g (x ),x ∈(a ,b ),可以构造函数h (x )=f (x )-g (x ).如果能证明h (x )min >0,x ∈(a ,b ),即可证明f (x )>g (x ),x ∈(a ,b ).使用此法证明不等式的前提是h (x )=f (x )-g (x )易于用导数求最值.热点三 构造双函数证明不等式 【典例5】已知函数f (x )=e x 2-x ln x . 证明:当x >0时,f (x )<x e x +1e. 【答案】见解析 【解析】要证f (x )<x e x +1e ,只需证e x -ln x <e x +1ex ,即e x -e x <ln x +1ex. 令h (x )=ln x +1ex (x >0),则h ′(x )=21ex ex -,易知h (x )在(0,1e )上单调递减,在(1e ,+∞)上单调递增,则h (x )min =h (1e )=0,所以ln x +1ex≥0. 令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0. 因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1ex,故原不等式成立. 【典例6】(2023·全国·高三专题练习)已知函数()e 1xf x x =--.(1)求()f x 的最小值;(2)证明:()22e ln 3f x x x x >+-.【答案】(1)0 (2)证明见解析【分析】(1)用导数法直接求解即可;(2)要证()22ln 3f x e x x x >+-,即证221ln 3x e x e x x x -->+-,即证221ln 2x e x e x x x-->-.构造函数()2ln 2e x g x x =-与()()210x e x h x x x--=>,这问题可转化为()()min max h x g x >,利用导数法即可求解【详解】(1)由题意可得()1xf x e '=-.由()0f x '>,得0x >;由()0f x '<,得0x <.()f x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()min 00f x f ==. (2)证明:要证()22ln 3f x e x x x >+-,即证221ln 3x e x e x x x -->+-,即证221ln 2x e x e x x x-->-.设()2ln 2e xg x x =-,则()()221ln e x g x x-'=, 由()0g x '>,得0x e <<,由()0g x '<,得x e >, 则()()2g x g e e ≤=-,当且仅当x e =时,等号成立.设()()210x e x h x x x --=>,则()()()211xx e x h x x ---'=. 由(1)可知当0x >时,10x e x -->.由()0h x '>,得1x >,由()0h x '<,得01x <<, 则()()12h x h e ≥=-,当且仅当1x =时,等号成立.因为2ln 22e xe x-≤-与212x e x e x --≥-等号成立的条件不同,所以221ln 2x e x e x x x -->-,即()22ln 3f x e x x x >+-.(1)若证f (x )<g (x ),只需证f (x )max <g (x )min ; (2)若证f (x )>g (x ),只需证f (x )min >g (x )max . 热点四 适当放缩构造函数证明不等式【典例7】(2022·全国·模拟预测(文))已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【答案】(1)23π (2)证明见解析【分析】(1)利用导数的符号求出函数的单调区间,通过单调区间可求得结果. (2)将问题转化为证明e 1()33x x f x -<<,再分别证明1x e x ->及()3x f x <成立即可.(1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++'==++, 要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增, 令()0f x '>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k ππππ∈-++,(k Z ∈), 当0k =时满足题意,此时,在区间2(0,)3π上是单调递增的,故a 的最在值为23π.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x x f x -<<. 先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x '=-,,()0x ∈+∞时,()0F x '>,所以()F x 在(0,)+∞上递增,∴()e 1x F x x =--(0)0F >=,故1xe x ->,即e 133x x -<. 再证:()3x f x <,(0x >) 令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x '--+=-=++, 故对于0x ∀>,都有()0'<G x ,因而()G x 在(0,)∞+上递减, 对于0x ∀>,都有()(0)0G x G <=, 因此对于0x ∀>,都有()3xf x <. 所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.【点睛】关键点点睛:本题第二问的关键利用不等式1x e x ->放缩,从而使得问题得以顺利解决. 通过适当放缩可将较复杂的函数变为简单的函数,一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x ≤x -1,e x ≥x +1,ln x <x <e x (x >0),1xx +≤ln(x +1)≤x (x >-1)等. 热点五 利用二阶导数(两次求导)证明不等式【典例8】(2018·全国·高考真题(文))已知函数()21xax x f x e+-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.【答案】(1)切线方程是210x y --=(2)证明见解析 【分析】(1)求导,由导数的几何意义求出切线方程.(2)当a 1≥时,()12f x e 1x x e x x e +-+≥++-(),令12gx 1x e x x +=++-,只需证明gx 0≥即可.【详解】(1)()()2212xax a x f x e-++'-=,()02f '=.因此曲线()y f x =在点()0,1-处的切线方程是210x y --=.(2)当1a ≥时,()()211x xf x e x x e e +-+≥+-+.令()211x g x x x e +=+-+,则()121x g x x e +=++',()120x g x e +''=+>当1x <-时,()()10g x g '-'<=,()g x 单调递减;当1x >-时,()()10g x g '-'>=,()g x 单调递增;所以()g x ()1=0g ≥-.因此()0f x e +≥.【典例9】(2023·全国·高三专题练习)已知函数()()ln 0f x ax x a =≠. (1)讨论函数()f x 的单调性;(2)当1a =时,证明:()e sin 1xf x x <+-.【答案】(1)答案见解析 (2)证明见解析【分析】(1)求导可得()()ln 1f x x '=+,再分0a >和0a <两种情况讨论即可;(2)当01x <≤根据函数的正负证明,当1x >时,转证ln sin 1e 0x x x x --+<,构造函数求导分析单调性与最值即可 (1)依题意知()0,x ∈+∞,()()ln ln 1f x a x a a x '=+=+, 令()0f x '=得1ex =,当0a >时,在10,e ⎛⎫⎪⎝⎭上()0f x '<,()f x 单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增;当0a <时,在10,e ⎛⎫⎪⎝⎭上()0f x '>,()f x 单调递增,在1,e ⎛⎫+∞ ⎪⎝⎭单调递减.(2)依题意,要证ln e sin 1x x x x <+-,①当01x <≤时,ln 0x x ≤,1sin 0e x x -+>,故原不等式成立, ②当1x >时,要证:ln e sin 1x x x x <+-,即证:ln sin 1e 0x x x x --+<,令()()e ln sin 11x h x x x x x =--+>,则()e ln cos 1xh x x x '=--+,()e 1sin 0xh x x x''=-+<, ∴()h x '在()1,+∞单调递减,∴()()11e cos10h x h ''<=--<,∴()h x 在()1,+∞单调递减,∴()()11e sin10h x h <=--<,即ln sin 1e 0x x x x --+<,故原不等式成立.2()(42)4ln ()=-++∈g x mx m x x a R .(1)当1m =时,求()g x 在点(1,(1))g 处的切线方程;(2)当0m =时,证明:()24e 8x g x x +<-(其中e 为自然对数的底数). 【答案】(1)5y =-(2)证明见解析【分析】(1)求出函数的导函数,即可求切线的斜率,从而求出切线方程;(2)依题意只需证明e ln 2x x >+,令()e ln 2x h x x =--,(0)x >,利用导数说明函数的单调性,即可得到函数的最小值,再利用基本不等式计算可得; (1)解:当1m =时,2()64ln g x x x x =-+, 所以4()26g x x x=-+',(1)0g '=,(1)5g =- 故()g x 在点(1,(1))g 处的切线方程是5y =-; (2)解:当0m =时,要证明()24e 8x g x x +<-, 只需证明e ln 2x x >+,令()e ln 2x h x x =--,(0)x >,则1()e x h x x '=-,令()1()e xu x h x x ='=-()21e 0x u x x'=+>,故()h x '在(0,)+∞上单调递增, 又(1)e 10h '=->,1e 202h ⎛⎫'=-< ⎪⎝⎭,故存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00h x '=,即001e 0x x -=,当()00,x x ∈时,()0h x '<,即()h x 单调递减,当()0,x x ∈+∞时,()0h x '>,即()h x 单调递增, 故0x x =时,()h x 取得唯一的极小值,也是最小值,即()0000min 0011e ln 22220xh x x x x x x =--=+->⋅-=. 所以e ln 2x x >+,即()24e 8x g x x +<-. 两种做法,一是对函数直接两次求导,求导函数的最值;二是令导函数为一“新函数”,通过对其求导,进一步研究函数的最值. 热点六 构造“形似”函数证明不等式【典例11】(2022·河南·高三开学考试(理))设0.01a =,ln1.01b =,3log 0.01c =,则( )A .a c b <<B .c a b <<C .b c a <<D .c b a <<【答案】D【分析】构造()()()ln 10f x x x x =+-≥,并利用导数、对数的性质研究大小关系即可. 【详解】设函数()()()ln 10f x x x x =+-≥,则()01xf x x '=-≤+,所以()f x 为减函数,则()()0.0100f f <=,即ln1.010.01<,又0c b <<, 所以c b a <<. 故选:D【典例12】(2021·黑龙江·大庆实验中学高三开学考试(理))若08a <<且88a a =,032b <<且3232b b =,03c <<且33c c =,则( ) A .a b c << B .c b a << C .b a c << D .a c b <<【答案】A【分析】构造函数()ln xf x x=,求导,根据函数的单调性比大小即可. 【详解】由88a a =,两边同时以e 为底取对数得ln ln 88a a =, 同理可得ln ln 3232b b =,ln ln 33c c =, 设()ln xf x x=,0x >,则()()8f a f =,()()32f b f =,()()3f c f =, ()21ln xf x x-'=,令()0f x '=,解得e x =, 当()0,e x ∈时,()0f x '>,函数()f x 单调递增, 当()e,x ∈+∞时,()0f x '<,函数()f x 单调递减, 则(),,0,e a b c ∈,且()()()3832f f f >>, 所以()()()f c f a f b >>, 故c a b >>, 故选:A. 根据条件构造“形似”函数,再判断此函数的单调性,最后根据函数的单调性证明不等式. 热点七 “放缩”“赋值”证明与数列有关的不等式【典例13】(2022·全国·高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N 2221ln(1)1122n n n+>++++.【答案】(1)()f x 的减区间为(),0-∞,增区间为()0,+∞. (2)12a ≤(3)见解析【分析】(1)求出()f x ',讨论其符号后可得()f x 的单调性.(2)设()e e 1ax x h x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围. (3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()21ln 1ln n n n n+-<+对任意的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x '<,当0x >时,()0f x '>,故()f x 的减区间为(),0∞-,增区间为()0,∞+.(2)设()e e 1ax x h x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x '>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,∞+上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,∞+上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x ax h x ax '=-+<-+=, 所以()h x 在()0,∞+上为减函数,所以()()01h x h <=-.综上,12a ≤. (3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有112ln 1n n nn n n ++<-+,整理得到:()21ln 1ln n n n n +-<+,故()222111ln 2ln1ln 3ln 2ln 1ln 1122n n n n+++>-+-+++-+++()ln 1n =+,故不等式成立.【典例14】(2022·广东·高三开学考试)已知函数()ln 1f x x x =++,0x >.(1)当4k =时,比较()f x 与2的大小; (2)求证:2222ln(1)35721n n ++++<++,*n ∈N . 【答案】(1)答案见解析 (2)证明见解析【分析】(1)当4k =时,求得()f x 导函数()f x ',再根据()12f =,分不同范围讨论即可. (2)由(1)中结论可知,当1x >时,4ln 21x x +>+,然后换元,即可得21ln 21n n n +<+, 结合对数运算从而可证得结论. (1)当4k =时,4()ln 1f x x x =++,,()0x ∈+∞, 所以2222214(1)4(1)()0(1)(1)(1)x x x f x x x x x x x +--'=-==≥+++,所以()f x 在(0,)+∞上单调递增,又因为4(1)ln1211f =+=+,所以当01x <<时,()2f x ,当1x =时,()2f x =,当1x >时,()2f x > (2)由(1)知,当1x >时,4ln 21x x +>+,即2(1)ln 1x x x ->+,令11x n =+,*n ∈N ,则有12ln 121n n ⎛⎫+> ⎪+⎝⎭,即21ln 21n n n +<+, 所以222223412341ln ln ln lnln ln(1)35721123123n n n n n n ++⎛⎫++++<++++=⨯⨯⨯⨯=+ ⎪+⎝⎭,即2222ln(1)35721n n ++++<++,*n ∈N . 证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的.此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式(或与指数有关的不等式),还要注意指、对数式的互化,如e x >x +1可化为ln(x +1)<x 等.【精选精练】一、单选题1.(2022·广东·高三开学考试)设2ea =2b =24ln 4e c -=,则( ) A .a b c <<B .c b a <<C .a c b <<D .b c a <<【答案】A【分析】构造函数ln ()xf x x=,求导得其单调性,再利用()f x 单调性,即可判断出,,a b c 的大小关系. 【详解】设ln ()xf x x=,,()0x ∈+∞, 因为21ln ()xf x x -'=,令()0f x '>,得0e x <<; 令()0f x '<,得e x >.所以()f x 在(0,e)上单调递增,在(e,)+∞上单调递减, 而1(e)2ea f ==,12ln 2ln 4ln 2(2)(4)24b f f =====, 22222e ln 4ln 42ln 2e 2e e e 222c f ⎛⎫--==== ⎪⎝⎭, 因为0e 2e <<<<2e 42<,所以a b c <<. 故选:A .2.(2022·福建省福安市第一中学高三阶段练习)设2,,ln 2e ea b c ===,则,,a b c 的大小关系为( ) A .a b c << B .b a c <<C .a c b <<D .c a b <<【答案】D【分析】设ln ()(0)xf x x x =>,利用导数求得()f x 的单调性和最值,化简可得2e 2a f ⎛⎫= ⎪⎝⎭,(e)b f =,(2)c f =,根据函数解析式,可得ln 4(4)(2)4f f ==且2e e 42<<,根据函数的单调性,分析比较,即可得答案. 【详解】设ln ()(0)xf x x x=>, 则221ln 1ln ()x xx x f x x x ⋅--'==, 当(0,e)x ∈时,()0f x '>,则()f x 为单调递增函数, 当(e,)x ∈+∞时,()0f x '<,则()f x 为单调递减函数,所以max 1()(e)ef x f ==,又222222e ln 4ln42(ln e e 2e e e 22ln 2)a f ⎛⎫-==-== ⎪⎝⎭,1(e)e b f ==,1ln 2ln 2(2)2c f ===, 又2ln 4ln 2ln 2(4)(2)442f f ====,2e e 42<<,且()f x 在(e,)+∞上单调递减,所以2e (2)(4)2f f f ⎛⎫=< ⎪⎝⎭,所以b a c >>. 故选:D 3.(2021·山东·高三开学考试)已知定义在π02⎡⎫⎪⎢⎣⎭,上的函数()f x 的导函数为()'f x ,且(0)0f =,()cos ()sin 0f x x f x x '+<,则下列判断中正确的是( ) A .π6f ⎛⎫ ⎪⎝⎭6π4f ⎛⎫⎪⎝⎭B .πln 3f ⎛⎫⎪⎝⎭>0C .π6f ⎛⎫ ⎪⎝⎭π33⎛⎫ ⎪⎝⎭D .π4f ⎛⎫ ⎪⎝⎭π23⎛⎫ ⎪⎝⎭【答案】CD【分析】根据题干中的条件,构造出新函数:()()π,0,cos 2f x g x x x ⎡⎫=∈⎪⎢⎣⎭,利用新函数的单调性逐一检查每个选项是否正确. 【详解】令()()π,0,cos 2f x g x x x ⎡⎫=∈⎪⎢⎣⎭,则()()()2cos sin cos f x x f x x g x x +''=, 因为()()cos sin 0f x x f x x '+<,所以()()()2cos sin 0cos f x x f x xg x x+='<'在π0,2⎡⎫⎪⎢⎣⎭上恒成立,因此函数()()cos f x g x x =在π0,2⎡⎫⎪⎢⎣⎭上单调递减,故ππ64g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即ππ64ππcos cos 64f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,即π6π624f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故A 错; 又()00=f ,所以()()000cos0f g ==,所以()()0cos f x g x x=≤在π0,2⎡⎫⎪⎢⎣⎭上恒成立,因为ππ0ln1lnln e 132=<<=<,所以πln 03f ⎛⎫< ⎪⎝⎭,故B 错;又ππ63g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以ππ63ππcos cos63f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,即ππ363f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 正确; 又ππ43g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以ππ43ππcos cos43f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,即ππ243f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故D 正确. 故选:CD 4.(2023·全国·高三专题练习)已知a ,b 是实数,且e a b <<,其中e 是自然对数的底数,则b a 与a b 的大小关系是__. 【答案】b a a b >##a b b a < 【分析】构造函数()ln xf x x=,0x >,利用导数判断单调性,即得. 【详解】构造函数()ln x f x x =,0x >,则()21ln xf x x -'=, 当e x >时,()0f x '<,()f x 单调递减, ∵e a b <<, ∴ln ln a ba b>,即b ln a >a ln b , 即ln ln b a a b >, 所以b a a b >. 故答案为:b a a b >. 5.(2023·全国·高三专题练习)设函数()e 1xf x a x =--,a R ∈.(1)当1a =时,求()f x 在点()()0,0f 处的切线方程; (2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围;(3)求证:当()0,x ∈+∞时,2e 1e xx x->. 【答案】(1)0y = (2)1a ≥ (3)证明见解析【分析】(1)利用导数的几何意义求解即可. (2)首先将问题转化为1e x a x +≥恒成立,设()1e xx g x +=,再利用导数求出其最大值即可得到答案.(3)首先将问题转化为()0,x ∈+∞,2e e 10xx x -->,设()2=e e 1xx h x x --,利用导数求出()()00h x h >=,即可得到答案.(1)()e 1x f x x =--,()00e 010f =--=,即切线()0,0. ()e 1x f x '=-,()00e 10k f '==-=,则切线方程为:0y =.(2)x ∈R ,0e 1x a x --≥恒成立等价于x ∈R ,1e xa x +≥恒成立. 设()1e x x g x +=,()ex xg x -'=, (),0∈-∞x ,()0g x '>,()g x 为增函数, ()0,x ∈+∞,()0g x '<,()g x 为减函数,所以()()max 01g x g ==,即1a ≥. (3)()0,x ∈+∞,2e 1e xx x->等价于()0,x ∈+∞,2e e 10x x x -->.设()2=e e 1xx h x x --,()0,x ∈+∞,()221=e e 12x x h x x ⎛⎫'-- ⎪⎝⎭,设()21=e 12xk x x --,()0,x ∈+∞,()21=e 102xk x ⎛⎫'-> ⎪⎝⎭,所以()k x 在()0,+∞为增函数,即()()00k x k >=,所以()221=e e 102xx h x x ⎛⎫'--> ⎪⎝⎭,即()h x 在()0,+∞为增函数,即()()00h x h >=,即证:2e 1e xx x->. 6.(2022·全国·长垣市第一中学高三开学考试(理))已知函数(). (1)若函数()f x 在(),a +∞上单调递增,求实数a 的取值范围;(2)证明:()21e x f x x -≥.【答案】(1)1,e ∞⎡⎫+⎪⎢⎣⎭(2)证明见解析【分析】(1)利用导数求得()f x 的单调区间,从而求得a 的取值范围.(2)将()21xf x x e -≥转化为11ln e x x x x-+≥,对不等式的两边分别构造函数,然后结合导数来证得不等式成立.(1)()f x 的定义域为()()0,,ln 1f x x ∞='++.令()0f x '=,可得1e x =.当10ex <<时,()()0,f x f x '<单调递减;当1e x >时,()()0,f x f x '>单调递增,所以()f x 的单调递增区间为1,e ∞⎡⎫+⎪⎢⎣⎭.因为函数()f x 在(),a +∞上单调递增,所以()1,,e a ∞∞⎡⎫+⊆+⎪⎢⎣⎭.所以1e a ≥.故实数a 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.(2)因为0x >,所以要证21ln 1e x x x x -+≥,只需证明11ln e x x x x-+≥成立.令()1ln g x x x =+,则()22111x g x x x x-'=-=.令()0g x '=,得1x =,当01x <<时,()()0,g x g x '<单调递减;当1x >时,()()0,g x g x '>单调递增,所以()min ()11g x g ==.令()1e xh x x -=,则()()11e x h x x -=-',令()0h x '=,得1x =,当01x <<时,()()0,h x h x '>单调递增;当1x >时,()()0,h x h x '<单调递减,所以()max ()11h x h ==.因此()()g x h x ≥,即()21e xf x x -≥,当且仅当1x =时等号成立.(1)讨论函数()f x 的单调性;(2)证明:当1a ≤ 时,e ()0x f x -> . 【答案】(1)答案见解析 (2)证明见解析【分析】(1)求出函数的导数,分类讨论导数的正负,即可求得答案;(2)当1a ≤时,要证e ()0x f x ->,即证e ()x f x >,只需证明e ln 2x x >+ ;构造函数()e ln x h x x =﹣,利用其导数,只需证明min ()()h x h x ≥,即证明min ()2h x >即可.(1)函数()ln (1)1()f x x a x a a =+-++∈R ,定义域:0,+∞(),11(1)()1a xf x a x x+-'==+- ,①当1a ≥ 时,()0()f x f x '>, 单调递增,②当1a <时,由()0f x '=,得x 11a=-,当x ∈(0,11a -)时,()0()f x f x '>,单调递增;当x ∈(11a -,+∞)时,()0()f x f x '<,单调递减;综上讨论得:①当1a ≥时,()f x 在0,+∞()单调递增;②当1a <时, 当x ∈(0,11a-)时,()f x 单调递增;当x ∈(11a-,+∞)时,()f x 单调递减;(2)证明:当1a ≤时,要证e ()0x f x ->,即证e ()x f x >,只需证e ln 2x x >+ ; 令()e ln x h x x =﹣ ,则1()e x h x x '=- ,令()e 1x m x x =- ,则2e 0()1xx m x '+=>,∴()h x '在0,+∞()单调递增,而1()e 20,(1)e 102h h ''=-<=->故方程1e 0xx -=有唯一解0x ,即000011e 0,e x x x x -=∴=,则0000e ,ln x x x x -=∴-=,且0(0,)x x ∈ 时,()0h x '<,()h x 在0(0,)x 单调递减;0(,)x x ∈+∞时,()0h x '>,()h x 在0(,)x +∞单调递增;∴000001()()e ln 2x x h x x h x x ≥=-=+>,∴e ln 2x x >+,故当1a ≤ 时,e ()0x f x ->. 8.(2022·吉林·东北师大附中模拟预测(文))已知函数ln 1xf x x ,()1,x ∈+∞, (1)判断函数()f x 的单调性; (2)证明:()211f x x <<+. 【答案】(1)在(1,)∞+上单调递减 (2)证明见解析【分析】(1)求出函数的导数,判断导数的正负,从而判断原函数的单调性; (2)将不等式()2()1,11,f x x x <<∈++∞等价转化为2(1)ln 11x x x x -<<-+,然后构造函数,利用导数判断函数的单调性,从而证明不等式. (1)因为ln ()1xf x x =-,()1,x ∈+∞,所以21ln ()1x xxf x x --'=-(), 设1()ln x g x x x -=-,则22111()xg x x x x-=-=', 因为(1)x ∈+∞,,故()0g x '<,()g x 在区间(1)+∞,上单调递减, 故()(1)0g x g <=,即()0f x '<, 所以函数()f x 在区间(1)+∞,上单调递减. (2) 证明:()22(1)()11,ln 111,x f x x x x x x -<<⇔<++∞<∈-+; 设()()ln 1,1,p x x x x =-+∈+∞,1()10p x x'=-<,()p x 在区间(1)+∞,上单调递减,(1)x ∈+∞,,()(1)0p x p <=,即ln 1x x <-,即()1f x <;设2(1)()ln 1x q x x x -=-+,()1,x ∈+∞,22214(1)()0(1)(1)x q x x x x x -'=-=≥++,则()q x 在(1)+∞,上单调递增,(1)x ∈+∞,,()(1)0q x q >=,即2(1)ln 1x x x ->+,所以ln 2()11x f x x x =>-+. 综上,2()11f x x <<+. 【点睛】本题考查了利用导数判断函数的单调性以及证明函数不等式的问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是对不等式进行合理变形,从而构造函数,利用导数判断单调性,从而证明不等式.9.(2023·全国·高三专题练习)已知函数()f x a =-.(1)若函数f (x )的图象与直线y =x -1相切,求a 的值; (2)若a ≤2,证明f (x )>ln x . 【答案】(1)a =2 (2)证明见解析【分析】(1)求导函数,令f ′(x )=1,得x =0,继而有f (0)=-1,代入可求得答案; (2)由已知得f (x )=e x -a ≥e x -2,令φ(x )=e x -x -1,运用导函数分析所令函数的单调性得φ(x )≥0,可证得e x -2≥x -1,当且仅当x =0时等号成立,令h (x )=ln x -x +1,运用导函数分析所令函数的单调性得()()10h x h ≤=,证得ln 1≤-x x ,当且仅当x =1时等号成立,从而有e x -2≥x -1≥ln x ,两等号不能同时成立,由此可得证. (1)解:f (x )=e x -a ,∴f ′(x )=e x ,令f ′(x )=1,得x =0,而当x =0时,y =-1,即f (0)=-1,所以()00e 1f a =-=-,解得a =2.(2)证明 ∵a ≤2,∴f (x )=e x -a ≥e x -2,令φ(x )=e x -x -1,则φ′(x )=e x -1,令φ′(x )=0⇒x =0, ∴当x ∈(0,+∞)时,φ′(x )>0;当x ∈(-∞,0)时,φ′(x )<0, ∴φ(x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴φ(x )min =φ(0)=0,即φ(x )≥0,即e x ≥x +1, ∴e x -2≥x -1,当且仅当x =0时等号成立,令h (x )=ln x -x +1,则()111xh x x x-'==-,令h ′(x )=0⇒x =1,∴当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0, ∴h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴h(x )max =h (1)=0,即()()10h x h ≤=,即ln 1≤-x x , ∴ln 1≤-x x ,当且仅当x =1时等号成立,∴e x -2≥x -1≥ln x ,两等号不能同时成立, ∴e x -2>ln x ,即证f (x )>ln x .10.(2022·新疆·三模(理))已知函数()sin cos f x x ax x =-,a ∈R (1)若()f x 在0x =处的切线为y x =,求实数a 的值; (2)当13a ≥,[0,)x ∈+∞时,求证:()2.f x ax ≤【答案】(1)0a = (2)证明见解析【分析】(1)由导数的几何意义有()01f '=,求解即可; (2)将()2f x ax ≤变形成sin 02cos x ax x-≤+,故只需证sin ()02cos xg x ax x =-≤+,用导数法证明max ()0g x ≤即可 (1)∵()cos cos sin f x x a x ax x '=-+,∴(0)11f a '=-=,∴0a = (2)要证()2f x ax ≤,即证sin cos 2x ax x ax -≤,只需证sin (2cos )x ax x ≤+,因为2cos 0x +>,也就是要证sin 02cos xax x-≤+,令sin ()2cos xg x ax x=-+,22cos (2cos )sin (sin )2cos 1()(2cos )(2cos )x x x x x g x a a x x +--+'=-=-++∵13a ≥,∴2222cos 11(cos 1)()0(2cos )33(2cos )x x g x x x +--'≤-=≤++ ∴()g x 在[0,)+∞为减函数,∴()(0)0g x g ≤=, ∴sin cos 2x ax x ax -≤,得证(1)若()f x 有两个极值点,求实数a 的取值范围; (2)当0a =时,证明:2()f x x x>-. 【答案】(1)10,2⎛⎫ ⎪⎝⎭(2)证明见解析【分析】(1)根据函数有两个极值点转化为导函数等于0有两不相等的根,分离参数后,转化为分析ln 1()(0)x g x x x+=>大致图象,根据数形结合求解即可;(2)不等式可转化为2ln 20x x x x+-+>,构造函数,求导后得到函数极小值,转化为求极小值大于0即可.(1)()f x 的定义域为(0,)+∞,()ln 21f x x ax '=-+,由题意()0f x '=在(0,)+∞上有两解,即ln 210x ax -+=,即ln 12x a x +=有两解.令ln 1()(0)x g x x x+=>,即()g x 的图象与直线2y a =有两个交点.2ln ()0xg x x'-==,得1x =,当(0,1)x ∈时,()0g x '>,()g x 递增;当(1,)x ∈+∞时,()0g x '<,()g x 递减,max ()(1)1g x g ∴==,10g e ⎛⎫= ⎪⎝⎭,0x →时,()g x →-∞;x →+∞时,()0g x →,021a ∴<<,102a ∴<<,∴a 的取值范围是10,2⎛⎫ ⎪⎝⎭. (2)当0a =时,()ln 2f x x x =+,即证2ln 2x x x x+>-,即证2ln 20x x x x+-+>,令2()ln 2(0)h x x x x x x =+-+>,22()ln h x x x ='-,令22()ln m x x x =-,则314()m x x x '=+,当0x >时,()0m x '>,()h x '∴在(0,)+∞递增.(1)20h =-<',22(e)10e h '=->,∴存在唯一的0(1,e)x ∈,使得00202()ln 0h x x x '=-=,当00(0,)x x ∈时,()0h x '<,()h x 递减;当0(,)x x ∈+∞时,()0h x '>,()h x 递增,min 0()()h x h x ∴=.又0(1,e)x ∈,0()0h x '=,0202ln 0x x ∴-=,000000000022244()ln 2222e 0e h x x x x x x x x x x ∴=+-+=+-+=-+>-+>,()0h x ∴>,2()f x x x∴>-. 12.(2023·全国·高三专题练习)已知函数()f x ax =-(e 为自然对数的底数,为常数)的图像在(0,1)处的切线斜率为1-. (1)求a 的值及函数()f x 的极值; (2)证明:当0x >时,2e x x <.【答案】(1)2a =,()f x 极小值22ln 2-,()f x 无极大值 (2)证明见解析【分析】(1)对函数()f x 求导得到()f x ',由导数的几何意义得到()01f '=-,解得a ,再利用导数研究其单调性和极值,即可得出;(2)令()2e x g x x =-,对其求导,结合(1)可得:()0g x '>,得到()g x 的单调性,即可证明. (1)由()e x f x ax =-,得()e xf x a '=-.由题意得,()00e 1f a '=-=-,即2a =,所以()e 2x f x x =-,()e 2xf x '=-.令()0f x '=,得ln 2x =,当ln 2x <时,()0f x '<,则()f x 在(),ln 2-∞上单调递减; 当ln 2x >时,()0f x '>,则()f x 在()ln 2,+∞上单调递增.所以当ln 2x =时,()f x 取得极小值,且极小值为()ln2ln 2e 2ln 222ln 2f =-=-,()f x 无极大值.(2)证明:令()2e x g x x =-,则()e 2xg x x '=-.由(1)知,()()()()ln 222ln 221ln 20g x f x f '=≥=-=->, 故()g x 在R 上单调递增.所以当0x >时,()()010g x g >=>, 即2e x x <.【点睛】本题考查不等式的恒成立问题,常用到以下两个结论: (1)()()f x g x ≥恒成立()()()0F x f x g x ⇔=-≥恒成立()min 0F x ⇔≥; (2)()()f x g x ≤恒成立()()()0F x f x g x ⇔=-≤恒成立()max 0F x ⇔≤. 13.(2023·全国·高三专题练习)已知()sin 2f x k x x =+. (1)当2k =时,判断函数()f x 零点的个数; (2)求证:()sin 2ln 1,(0,)2x x x x π-+>+∈.【答案】(1)1; (2)证明见解析.【分析】(1)把2k =代入,求导得函数()f x 的单调性,再由(0)0f =作答. (2)构造函数()2sin ln(1)g x x x x =--+,利用导数借助单调性证明作答. (1)当2k =时,()2sin 2f x x x =+,()2cos 20f x x '=+≥,当且仅当(21)π,Z x k k =-∈时取“=”, 所以()f x 在R 上单调递增,而(0)0f =,即0是()f x 的唯一零点, 所以函数()f x 零点的个数是1. (2)(0,)2x π∈,令()2sin ln(1)g x x x x =--+,则()12cos 1g x x x =-'-+,因1cos 1,11x x <<+,则()0g x '>,因此,函数()g x 在(0,)2π上单调递增,(0,)2x π∀∈,()(0)0g x g >=,所以当(0,)2x π∈时,()sin 2ln 1x x x -+>+成立..(全国高三专题练习(文))已知函数()e e f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N 2221ln(1)1122n n n+>++++.【答案】(1)()f x 的减区间为(),0-∞,增区间为()0,+∞. (2)12a ≤(3)见解析【分析】(1)求出()f x ',讨论其符号后可得()f x 的单调性.(2)设()e e 1ax x h x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围. (3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()21ln 1ln n n n n+-<+对任意的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x '<,当0x >时,()0f x '>,故()f x 的减区间为(),0∞-,增区间为()0,∞+.(2)设()e e 1ax x h x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x '>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,∞+上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,∞+上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x ax h x ax '=-+<-+=, 所以()h x 在()0,∞+上为减函数,所以()()01h x h <=-.综上,12a ≤.。
高考数学中不等式的证明方法和技巧有哪些
![高考数学中不等式的证明方法和技巧有哪些](https://img.taocdn.com/s3/m/af6e6f6f3868011ca300a6c30c2259010202f3ed.png)
高考数学中不等式的证明方法和技巧有哪些在高考数学中,不等式的证明是一个重要的考点,也是很多同学感到头疼的问题。
不等式的证明方法多种多样,需要我们灵活运用数学知识和思维方法。
下面,我们就来详细探讨一下高考数学中不等式的证明的一些常见方法和技巧。
一、比较法比较法是证明不等式最基本的方法之一,分为作差比较法和作商比较法。
作差比较法的基本步骤是:将两个式子作差,然后对差进行变形,判断差的正负性。
如果差大于零,则被减数大于减数;如果差小于零,则被减数小于减数。
例如,要证明 a > b ,我们可以计算 a b ,然后通过因式分解、配方等方法将其变形为易于判断正负的形式。
作商比较法适用于两个正数比较大小。
将两个正数作商,然后与 1比较大小。
如果商大于 1,则被除数大于除数;如果商小于 1,则被除数小于除数。
比如,要证明 a > b (a、b 均为正数),计算 a/b ,若 a/b > 1 ,则 a > b 。
二、综合法综合法是从已知条件出发,利用已知的定理、公式、性质等,经过逐步的逻辑推理,最后推导出所要证明的不等式。
例如,已知 a > 0 ,b > 0 ,且 a + b = 1 ,要证明 a^2 +b^2 ≥1/2 。
因为 a + b = 1 ,所以(a + b)^2 = 1 ,即 a^2 + 2ab + b^2 =1 。
又因为2ab ≤ a^2 + b^2 ,所以 a^2 + b^2 +2ab ≤ 2(a^2 + b^2) ,即1 ≤ 2(a^2 + b^2) ,从而得出 a^2 +b^2 ≥ 1/2 。
三、分析法分析法是从要证明的不等式出发,逐步寻求使不等式成立的充分条件,直到所需条件为已知条件或明显成立的事实。
比如,要证明√a +√b <√(a + b) (a > 0 ,b > 0 )。
先将不等式移项得到√a +√b √(a + b) < 0 ,然后对其进行分析,逐步转化为易于证明的形式。
分析法的书写格式通常是“要证……,只需证……”。
高考数学考点归纳之利用导数证明不等式
![高考数学考点归纳之利用导数证明不等式](https://img.taocdn.com/s3/m/5658b9a77c1cfad6185fa704.png)
高考数学考点归纳之利用导数证明不等式考点一 单变量不等式的证明 方法一 移项作差构造法证明不等式[例1] 已知函数f (x )=1-ln x x ,g (x )=a e e x +1x -bx (e 为自然对数的底数),若曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)求证:当x ≥1时,f (x )+g (x )≥2x .[解] (1)因为f (x )=1-ln xx ,所以f ′(x )=ln x -1x 2,f ′(1)=-1.因为g (x )=a e e x +1x -bx ,所以g ′(x )=-a e e x -1x2-b .因为曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直, 所以g (1)=1,且f ′(1)·g ′(1)=-1, 即g (1)=a +1-b =1,g ′(1)=-a -1-b =1, 解得a =-1,b =-1.(2)证明:由(1)知,g (x )=-e e x +1x +x ,则f (x )+g (x )≥2x ⇔1-ln x x -e e x -1x +x ≥0.令h (x )=1-ln x x -e e x -1x+x (x ≥1),则h ′(x )=-1-ln x x 2+e e x +1x 2+1=ln x x 2+ee x +1. 因为x ≥1,所以h ′(x )=ln x x 2+eex +1>0,所以h (x )在[1,+∞)上单调递增,所以h (x )≥h (1)=0, 即1-ln x x -e e x -1x +x ≥0,所以当x ≥1时,f (x )+g (x )≥2x .[解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.方法二 隔离审查分析法证明不等式[例2] (2019·长沙模拟)已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e .[证明] 要证f (x )<x e x +1e ,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x .令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x2,易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x ,故原不等式成立.[解题技法]若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.方法三、放缩法证明不等式[例3] 已知函数f (x )=ax -ln x -1. (1)若f (x )≥0恒成立,求a 的最小值; (2)求证:e -xx+x +ln x -1≥0;(3)已知k (e -x +x 2)≥x -x ln x 恒成立,求k 的取值范围. [解] (1)f (x )≥0等价于a ≥ln x +1x .令g (x )=ln x +1x (x >0),则g ′(x )=-ln xx2,所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1, 即t ≥ln t +1(t >0).令e -xx =t ,则-x -ln x =ln t , 所以e -xx ≥-x -ln x +1,即e -xx+x +ln x -1≥0. (3)因为k (e -x+x 2)≥x -x ln x 恒成立,即k ⎝⎛⎭⎫e-xx +x ≥1-ln x 恒成立,所以k ≥1-ln xe -x x +x =-e -xx +x +ln x -1e -xx +x +1, 由(2)知e -xx +x +ln x -1≥0恒成立,所以-e -xx+x +ln x -1e -xx +x +1≤1,所以k ≥1. 故k 的取值范围为[1,+∞). [解题技法]导数的综合应用题中,最常见就是e x 和ln x 与其他代数式结合的难题,对于这类问题,可以先对e x 和ln x 进行放缩,使问题简化,便于化简或判断导数的正负.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号; (2)e x ≥e x ,当且仅当x =1时取等号;(3)当x ≥0时,e x ≥1+x +12x 2, 当且仅当x =0时取等号;(4)当x ≥0时,e x ≥e2x 2+1, 当且仅当x =0时取等号;(5)x -1x≤ln x ≤x -1≤x 2-x ,当且仅当x =1时取等号;(6)当x ≥1时,2(x -1)x +1≤ln x ≤x -1x ,当且仅当x =1时取等号.考点二 双变量不等式的证明[典例] 已知函数f (x )=ln x -12ax 2+x ,a ∈R.(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12.[解] (1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1) =2,故切线方程为y -1=2(x -1),即2x -y -1=0. (2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0). 由f (x 1)+f (x 2)+x 1x 2=0,即ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2), 令t =x 1x 2,设φ(t )=t -ln t (t >0), 则φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1, 所以(x 1+x 2)2+(x 1+x 2)≥1, 因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. [解题技法]破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. [题组训练]已知函数f (x )=ln x +ax .(1)求f (x )的最小值;(2)若方程f (x )=a 有两个根x 1,x 2(x 1<x 2),求证:x 1+x 2>2a . 解:(1)因为f ′(x )=1x -a x 2=x -ax2(x >0),所以当a ≤0时,f (x )在(0,+∞)上单调递增,函数无最小值. 当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 函数f (x )在x =a 处取最小值f (a )=ln a +1.(2)证明:若函数y =f (x )的两个零点为x 1,x 2(x 1<x 2), 由(1)可得0<x 1<a <x 2.令g (x )=f (x )-f (2a -x )(0<x <a ),则g ′(x )=(x -a )⎣⎡⎦⎤1x 2-1(2a -x )2=-4a (x -a )2x 2(2a -x )2<0,所以g (x )在(0,a )上单调递减,g (x )>g (a )=0, 即f (x )>f (2a -x ).令x =x 1<a ,则f (x 1)>f (2a -x 1),所以f (x 2)=f (x 1)>f (2a -x 1), 由(1)可得f (x )在(a ,+∞)上单调递增,所以x 2>2a -x 1, 故x 1+x 2>2a .考点三 证明与数列有关的不等式[典例] 已知函数f (x )=ln(x +1)+ax +2.(1)若x >0时,f (x )>1恒成立,求a 的取值范围; (2)求证:ln(n +1)>13+15+17+…+12n +1(n ∈N *).[解] (1)由ln(x +1)+ax +2>1,得 a >(x +2)-(x +2)ln(x +1). 令g (x )=(x +2)[1-ln(x +1)],则g ′(x )=1-ln(x +1)-x +2x +1=-ln(x +1)-1x +1.当x >0时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减. 所以g (x )<g (0)=2,故a 的取值范围为[2,+∞). (2)证明:由(1)知ln(x +1)+2x +2>1(x >0), 所以ln(x +1)>xx +2.令x =1k(k >0),得ln ⎝⎛⎭⎫1k +1>1k1k +2, 即ln k +1k >12k +1.所以ln 21+ln 32+ln 43+…+ln n +1n >13+15+17+…+12n +1,即ln(n +1)>13+15+17+…+12n +1(n ∈N *).[解题技法]证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的.此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式(或与指数有关的不等式),还要注意指、对数式的互化,如e x >x +1可化为ln(x +1)<x 等.[题组训练](2019·长春质检)已知函数f (x )=e x ,g (x )= ln(x +a )+b .(1)若函数f (x )与g (x )的图象在点(0,1)处有相同的切线,求a ,b 的值; (2)当b =0时,f (x )-g (x )>0恒成立,求整数a 的最大值;(3)求证:ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1(n ∈N *).解:(1)因为函数f (x )和g (x )的图象在点(0,1)处有相同的切线,所以f (0)=g (0)且f ′(0)=g ′(0),又因为f ′(x )=e x ,g ′(x )=1x +a,所以1=ln a +b,1=1a ,解得a =1,b =1.(2)现证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,当x ∈(0,+∞)时,F ′(x )>0,当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立,即e x ≥x +1.同理可得ln(x +2)≤x +1,即e x >ln(x +2), 当a ≤2时,ln(x +a )≤ln(x +2)<e x , 所以当a ≤2时,f (x )-g (x )>0恒成立.当a ≥3时,e 0<ln a ,即e x -ln(x +a )>0不恒成立. 故整数a 的最大值为2.(3)证明:由(2)知e x >ln(x +2),令x =-n +1n ,则e -n +1n >ln ⎝⎛⎭⎫-n +1n +2, 即e-n +1>⎣⎡⎦⎤ln ⎝⎛⎭⎫-n +1n +2n=[ln(n +1)-ln n ]n ,所以e 0+e -1+e -2+…+e -n +1>ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n ,又因为e 0+e -1+e -2+…+e -n +1=1-1e n1-1e <11-1e=e e -1,所以ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1.[课时跟踪检测]1.(2019·唐山模拟)已知f (x )=12x 2-a 2ln x ,a >0.(1)求函数f (x )的最小值;(2)当x >2a 时,证明:f (x )-f (2a )x -2a >32a .解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=x -a 2x =(x +a )(x -a )x.当x ∈(0,a )时,f ′(x )<0,f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )单调递增.所以当x =a 时,f (x )取得极小值,也是最小值,且f (a )=12a 2-a 2ln a .(2)证明:由(1)知,f (x )在(2a ,+∞)上单调递增, 则所证不等式等价于f (x )-f (2a )-32a (x -2a )>0.设g (x )=f (x )-f (2a )-32a (x -2a ),则当x >2a 时,g ′(x )=f ′(x )-32a =x -a 2x -32a=(2x +a )(x -2a )2x>0,所以g (x )在(2a ,+∞)上单调递增, 当x >2a 时,g (x )>g (2a )=0, 即f (x )-f (2a )-32a (x -2a )>0,故f (x )-f (2a )x -2a>32a . 2.(2018·黄冈模拟)已知函数f (x )=λln x -e -x (λ∈R). (1)若函数f (x )是单调函数,求λ的取值范围; (2)求证:当0<x 1<x 2时,e1-x 2-e1-x 1>1-x 2x 1.解:(1)函数f (x )的定义域为(0,+∞), ∵f (x )=λln x -e -x , ∴f ′(x )=λx +e -x =λ+x e -xx,∵函数f (x )是单调函数,∴f ′(x )≤0或f ′(x )≥0在(0,+∞)上恒成立,①当函数f (x )是单调递减函数时,f ′(x )≤0,∴λ+x e -x x ≤0,即λ+x e -x ≤0,λ≤-x e -x=-x ex .令φ(x )=-xe x ,则φ′(x )=x -1ex ,当0<x <1时,φ′(x )<0;当x >1时,φ′(x )>0,则φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x >0时,φ(x )min =φ(1)=-1e ,∴λ≤-1e.②当函数f (x )是单调递增函数时,f ′(x )≥0,∴λ+x e -x x ≥0,即λ+x e -x ≥0,λ≥-x e -x=-x ex ,由①得φ(x )=-xe x 在(0,1)上单调递减,在(1,+∞)上单调递增,又∵φ(0)=0,当x ―→+∞时,φ(x )<0,∴λ≥0.综上,λ的取值范围为⎝⎛⎦⎤-∞,-1e ∪[0,+∞). (2)证明:由(1)可知,当λ=-1e 时,f (x )=-1e ln x -e -x 在(0,+∞)上单调递减,∵0<x 1<x 2,∴f (x 1)>f (x 2),即-1e ln x 1-e -x 1>-1e ln x 2-e -x 2,∴e1-x 2-e1-x 1>ln x 1-ln x 2.要证e1-x 2-e1-x 1>1-x 2x 1,只需证ln x 1-ln x 2>1-x 2x 1,即证ln x 1x 2>1-x 2x 1,令t =x 1x 2,t ∈(0,1),则只需证ln t >1-1t,令h (t )=ln t +1t -1,则当0<t <1时,h ′(t )=t -1t2<0,∴h (t )在(0,1)上单调递减,又∵h (1)=0,∴h (t )>0,即ln t >1-1t ,故原不等式得证.3.(2019·贵阳模拟)已知函数f (x )=kx -ln x -1(k >0). (1)若函数f (x )有且只有一个零点,求实数k 的值; (2)求证:当n ∈N *时,1+12+13+…+1n>ln(n +1).解:(1)∵f (x )=kx -ln x -1,∴f ′(x )=k -1x =kx -1x (x >0,k >0);当0<x <1k时,f ′(x )<0;当x >1k时,f ′(x )>0.∴f (x )在⎝⎛⎭⎫0,1k 上单调递减,在⎝⎛⎭⎫1k ,+∞上单调递增, ∴f (x )min =f ⎝⎛⎭⎫1k =ln k , ∵f (x )有且只有一个零点, ∴ln k =0,∴k =1.(2)证明:由(1)知x -ln x -1≥0,即x -1≥ln x ,当且仅当x =1时取等号, ∵n ∈N *,令x =n +1n ,得1n >ln n +1n,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n =ln(n +1),故1+12+13+…+1n >ln(n +1).第三课时 导数与函数的零点问题 考点一 判断函数零点的个数[典例] 设函数f (x )=ln x +m x ,m ∈R.讨论函数g (x )=f ′(x )-x3零点的个数.[解] 由题设,g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. 所以x =1是φ(x )的极大值点,也是φ(x )的最大值点. 所以φ(x )的最大值为φ(1)=23.由φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.[题组训练]1.已知函数f (x )=3ln x -12x 2+2x -3ln 3-32,求方程f (x )=0的解的个数.解:因为f (x )=3ln x -12x 2+2x -3ln 3-32(x >0),所以f ′(x )=3x -x +2=-x 2+2x +3x =-(x -3)(x +1)x ,当x ∈(0,3)时,f ′(x )>0,f (x )单调递增; 当x ∈(3,+∞)时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (3)=3ln 3-92+6-3ln 3-32=0,因为当x →0时,f (x )→-∞;当x →+∞时,f (x )→-∞, 所以方程f (x )=0只有一个解. 2.设f (x )=x -1x-2ln x .(1)求证:当x ≥1时,f (x )≥0恒成立;(2)讨论关于x 的方程x -1x -f (x )=x 3-2e x 2+tx 根的个数.解:(1)证明:f (x )=x -1x -2ln x 的定义域为(0,+∞).∵f ′(x )=1+1x 2-2x =x 2-2x +1x 2=(x -1)2x 2≥0,∴f (x )在[1,+∞)上是单调增函数,∴f (x )≥f (1)=1-1-2ln 1=0对于x ∈[1,+∞)恒成立. 故当x ≥1时,f (x )≥0恒成立得证. (2)化简方程得2ln x =x 3-2e x 2+tx . 注意到x >0,则方程可变为2ln x x=x 2-2e x +t .令L (x )=2ln x x,H (x )=x 2-2e x +t , 则L ′(x )=2(1-ln x )x 2. 当x ∈(0,e)时,L ′(x )>0,∴L (x )在(0,e)上为增函数;当x ∈(e ,+∞)时,L ′(x )<0,∴L (x )在(e ,+∞)上为减函数.∴当x =e 时,L (x )max =L (e)=2e. 函数L (x )=2ln x x,H (x )=(x -e)2+t -e 2在同一坐标系内的大致图象如图所示.由图象可知,①当t -e 2>2e ,即t >e 2+2e时,方程无实数根; ②当t -e 2=2e ,即t =e 2+2e时,方程有一个实数根; ③当t -e 2<2e ,即t <e 2+2e时,方程有两个实数根. 考点二 由函数零点个数求参数[典例] (2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .[解] (1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0. 设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增.故h (2)=1-4a e 2是h (x )在(0,+∞)上的最小值. ①当h (2)>0,即a <e 24时,h (x )在(0,+∞)上没有零点. ②当h (2)=0,即a =e 24时,h (x )在(0,+∞)上只有一个零点. ③当h (2)<0,即a >e 24时,因为h (0)=1,所以h (x )在(0,2)上有一个零点. 由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e 24. [解题技法]根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x 轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.[题组训练]1.(2019·安阳一模)已知函数f (x )=x 33+x 22与g (x )=6x +a 的图象有3个不同的交点,则a 的取值范围是________.解析:原问题等价于函数h (x )=x 33+x 22-6x 与函数y =a 的图象有3个不同的交点, 由h ′(x )=x 2+x -6=(x -2)(x +3),得x =2或x =-3,当x ∈(-∞,-3)时,h ′(x )>0,h (x )单调递增;当x ∈(-3,2)时,h ′(x )<0,h (x )单调递减;当x ∈(2,+∞)时,h ′(x )>0,h (x )单调递增.且h (-3)=272,h (2)=-223, 数形结合可得a 的取值范围是⎝⎛⎭⎫-223,272. 答案:⎝⎛⎭⎫-223,272 2.(2019·赣州模拟)若函数f (x )=a e x -x -2a 有两个零点,则实数a 的取值范围是________.解析:∵f (x )=a e x -x -2a ,∴f ′(x )=a e x -1.当a ≤0时,f ′(x )≤0恒成立,函数f (x )在R 上单调递减,不可能有两个零点;当a >0时,令f ′(x )=0,得x =ln 1a,函数f (x )在⎝⎛⎭⎫ -∞,ln 1a 上单调递减,在⎝⎛⎭⎫ ln 1a ,+∞上单调递增,∴f (x )的最小值为f ⎝⎛⎭⎫ ln 1a =1-ln 1a-2a =1+ln a -2a . 令g (a )=1+ln a -2a (a >0),则g ′(a )=1a-2. 当a ∈⎝⎛⎭⎫ 0,12时,g (a )单调递增;当a ∈⎝⎛⎭⎫ 12,+∞时,g (a )单调递减, ∴g (a )max =g ⎝⎛⎭⎫ 12=-ln 2<0, ∴f (x )的最小值为f ⎝⎛⎭⎫ ln 1a <0,函数f (x )=a e x -x -2a 有两个零点. 综上所述,实数a 的取值范围是(0,+∞).答案:(0,+∞)[课时跟踪检测]1.设a 为实数,函数f (x )=-x 3+3x +a .(1)求f (x )的极值;(2)是否存在实数a ,使得方程f (x )=0恰好有两个实数根?若存在,求出实数a 的值;若不存在,请说明理由.解:(1)f ′(x )=-3x 2+3,令f ′(x )=0,得x =-1或x =1.∵当x ∈(-∞,-1)时,f ′(x )<0;当x ∈(-1,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0,∴f (x )在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.∴f (x )的极小值为f (-1)=a -2,极大值为f (1)=a +2.(2)方程f (x )=0恰好有两个实数根,等价于直线y =a 与函数y =x 3-3x 的图象有两个交点.∵y =x 3-3x ,∴y ′=3x 2-3.令y ′>0,解得x >1或x <-1;令y ′<0,解得-1<x <1.∴y =x 3-3x 在(-1,1)上为减函数,在(1,+∞)和(-∞,-1)上为增函数.∴当x =-1时,y极大值=2;当x =1时,y 极小值=-2.∴y =x 3-3x的大致图象如图所示.y =a 表示平行于x 轴的一条直线,由图象知,当a =2或a =-2时,y =a 与y =x 3-3x 有两个交点.故当a =2或a =-2时,方程f (x )=0恰好有两个实数根.2.(2019·锦州联考)已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解:(1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1.∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0;当x <0时,取x =-1a,则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0,∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0 ,f (x )单调递增,∴当x =ln(-a )时,f (x )取得极小值,也是最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).3.(2018·郑州第一次质量预测)已知函数f (x )=ln x +1ax -1a(a ∈R 且a ≠0). (1)讨论函数f (x )的单调性;(2)当x ∈⎣⎡⎦⎤1e ,e 时,试判断函数g (x )=(ln x -1)e x +x -m 的零点个数.解:(1)f ′(x )=ax -1ax 2(x >0), 当a <0时,f ′(x )>0恒成立,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )=ax -1ax 2>0,得x >1a, 由f ′(x )=ax -1ax 2<0,得0<x <1a, 函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减. 综上所述,当a <0时,函数f (x )在(0,+∞)上单调递增;当a >0时,函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减.(2)当x ∈⎣⎡⎦⎤1e ,e 时,函数g (x )=(ln x -1)e x +x -m 的零点个数,等价于方程(ln x -1)e x +x =m 的根的个数.令h (x )=(ln x -1)e x +x ,则h ′(x )=⎝⎛⎭⎫1x +ln x -1e x +1.由(1)知当a =1时,f (x )=ln x +1x-1在⎝⎛⎭⎫1e ,1上单调递减,在(1,e)上单调递增, ∴当x ∈⎣⎡⎦⎤1e ,e 时,f (x )≥f (1)=0.∴1x+ln x -1≥0在x ∈⎣⎡⎦⎤1e ,e 上恒成立. ∴h ′(x )=⎝⎛⎭⎫1x +ln x -1e x +1≥0+1>0, ∴h (x )=(ln x -1)e x +x 在x ∈⎣⎡⎦⎤1e ,e 上单调递增,∴h (x )min =h ⎝⎛⎭⎫1e =-2e 1e +1e,h (x )max =h (e)=e. ∴当m <-2e 1e +1e或 m >e 时,函数g (x )在⎣⎡⎦⎤1e ,e 上没有零点; 当-2e 1e +1e≤m ≤e 时,函数g (x )在⎣⎡⎦⎤1e ,e 上有一个零点. 4.(2019·益阳、湘潭调研)已知函数f (x )=ln x -ax 2+x ,a ∈R.(1)当a =0时,求曲线y =f (x )在点(e ,f (e))处的切线方程;(2)讨论f (x )的单调性;(3)若f (x )有两个零点,求a 的取值范围.解:(1)当a =0时,f (x )=ln x +x ,f (e)=e +1,f ′(x )=1x +1,f ′(e)=1+1e,∴曲线y =f (x )在点(e ,f (e))处的切线方程为y -(e +1)=⎝⎛⎭⎫1+1e (x -e),即y =⎝⎛⎭⎫1e +1x . (2)f ′(x )=-2ax 2+x +1x(x >0), ①当a ≤0时,显然f ′(x )>0,f (x )在(0,+∞)上单调递增;②当a >0时,令f ′(x )=-2ax 2+x +1x=0,则-2ax 2+x +1=0,易知Δ>0恒成立. 设方程的两根分别为x 1,x 2(x 1<x 2),则x 1x 2=-12a<0,∴x 1<0<x 2, ∴f ′(x )=-2ax 2+x +1x =-2a (x -x 1)(x -x 2)x (x >0).由f ′(x )>0得x ∈(0,x 2),由f ′(x )<0得x ∈(x 2,+∞),其中x 2=1+8a +14a, ∴函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增,在⎝ ⎛⎭⎪⎫1+8a +14a ,+∞上单调递减. (3)函数f (x )有两个零点,等价于方程a =ln x +x x 2有两解. 令g (x )=ln x +x x 2(x >0),则g ′(x )=1-2ln x -x x 3. 由g ′(x )=1-2ln x -x x 3>0,得2ln x +x <1,解得0<x <1, ∴g (x )在(0,1)单调递增,在(1,+∞)单调递减,又∵当x ≥1时,g (x )>0,当x →0时,g (x )→-∞,当x →+∞时,g (x )→0,∴作出函数g (x )的大致图象如图,结合函数值的变化趋势猜想:当a ∈(0,1)时符合题意.下面给出证明:当a ≥1时,a ≥g (x )max ,方程至多一解,不符合题意;当a ≤0时,方程至多一解,不符合题意;当a ∈(0,1)时,g ⎝⎛⎭⎫1e <0,∴g ⎝⎛⎭⎫1e -a <0, g ⎝⎛⎭⎫2a =a 24⎝⎛⎭⎫ln 2a +2a <a 24⎝⎛⎭⎫2a +2a =a , ∴g ⎝⎛⎭⎫2a -a <0.∴方程在⎝⎛⎭⎫1e ,1与⎝⎛⎭⎫1,2a 上各有一个根,∴若f (x )有两个零点,a 的取值范围为(0,1).。
专题四 不等式证明的五大方法
![专题四 不等式证明的五大方法](https://img.taocdn.com/s3/m/7febdf333169a4517723a3c8.png)
2π -A)] 3
=2R(sin A+ c=2Rsin
3 1 π cos A+ sin A)=2 3 Rsin (A+ )≤2 3 R, 2 6 2
π = 3 R,所以 a+b≤2c. 3
数学
(2)已知a2+b2=1,x2+y2=4,求证:|ax+by|≤2. 思路点拨:(2)三角换元后,利用三角函数的有界性放缩.
数学
方法总结 使用不等式的性质放缩不等式中项,使之能够产生裂项相 消的部分是证明与正整数的和式有关的不等式的基本思考途径.
数学
方法四
反证法
1 【例 6】 已知 a,b,c∈(0,1).求证:(1-a)b,(1-b)c,(1-c)a 不能同时大于 . 4 1 思路点拨:不能同时大于 ,是以否定形式给出的命题,采取反证法. 4 1 1 1 1 证明:假设三式同时大于 ,即(1-a)b> ,(1-b)c> ,(1-c)a> , 4 4 4 4
三式同向相乘,得(1-a)a(1-b)b(1-c)c> 又(1-a)a≤(
1 .① 64
1 a a 2 1 1 1 ) = ,同理(1-b)b≤ ,(1-c)c≤ . 2 4 4 4
所以(1-a)a(1-b)b(1-c)c≤
1 ,与①式矛盾,即假设不成立,故结论正确. 64
数学
方法总结 反证法对已知条件较少、结论情况较多,或者结论是否定 形式给出、结论是唯一性等命题的证明非常有效.
a c sin A sin B = , b sin A sin C
求证:a+b≤2c; 思路点拨:(1)使用正弦定理把求证目标化为三角函数的不等式; π a 2 b2 c 2 1 2 2 2 证明:(1)化简得 a +b -ab=c ,所以 cos C= = ,C= . 2 3 2ab
构造函数法证明不等式的八种方法
![构造函数法证明不等式的八种方法](https://img.taocdn.com/s3/m/db16bd2858fb770bf78a5561.png)
构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
高考热点之证明数列不等式
![高考热点之证明数列不等式](https://img.taocdn.com/s3/m/01fb0b458bd63186bcebbcbb.png)
高考热点之证明数列不等式证明数列不等式作为高考题的压轴题,综合性强,难度较大,是区分度较大的一道题目。
证明数列不等式的方法除了放缩法、利用单调性和数学归纳法证明之外,下面重点介绍利用绝对值不等式、作差证明数列不等式、作商证明数列不等式。
1、利用绝对值不等式a b a b a b -≤±≤+ 例、(2016年浙江省,理)设数列}{n a 满足1||12n n a a +-≤, (Ⅰ)求证:11||2(||2)(*)n n a a n N -≥-∈(Ⅱ)若3||()2n n a ≤,*n N ∈,证明:||2n a ≤,*n N ∈.解:(I )由112n n a a +-≤得1112n n a a +-≤,故111222n n nn n a a ++-≤,n *∈N , 所以11223111223122222222nn n n n n a a a a a a a a --⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121111222n -≤++⋅⋅⋅+1<,因此()1122n n a a -≥-.(II )任取n *∈N ,由(I )知,对于任意m n >,1121112122222222n mn n n n m m nm n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11111222n n m +-≤++⋅⋅⋅+112n -<,所以11222m nn n m a a -⎛⎫<+⋅ ⎪⎝⎭ 11132222mn n m-⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn ⎛⎫=+⋅ ⎪⎝⎭.所以对于任意m n >,均有3224mn n a ⎛⎫<+⋅ ⎪⎝⎭.由m 的任意性得2n a ≤. ① 否则,存在0n *∈N ,有02n a >,取正整数000342log 2n n a m ->且00m n >,则003402log 23322244n n a m m n n a -⎛⎫⎛⎫⋅<⋅=- ⎪⎪⎝⎭⎝⎭,与①式矛盾.综上所述,对于任意n *∈N ,均有2n a ≤. 2、利用作差法 已知函数)(x f =ax +c xb+)0(>a 的图象在点(1,f (1))处的切线方程为y =x -1.(1)用a 表示出b ,c ;(2)若)(x f …ln x 在[1,+∞)上恒成立,求a 的取值范围; (3)证明:11123+++…+>n 1ln(1)(1)2(1)n n n n +++…. 解:(1)()f x '=a -2x b,则有(1)0(1)1f a b c f a b =++=⎧⎨'=-=⎩,解得112b a c a=-⎧⎨=-⎩(步骤1)(2)由(1)知,f (x )=ax +x a 1-+1-2a (步骤2) 令()()ln()g x f x x =-= ax +xa 1-+1-2a -ln x ,x ∈[1,+∞],则(1)g =0,()g x '= a -21x a --x 1=22)1(x a x ax ---=2)1)(1(x a ax x a ---(步骤2) 1)当0<a <21时,a a -1>1.若1<x <aa-1,则()g x '<0,()g x 是减函数,所以()g x <(1)g =0,即()ln f x x >, 故f (x )…㏑x 在[1,+∞)上不恒成立.(步骤3)2)当a (21)时,11,a a-…若1>x ,则()g x '>0,g (x )是增函数,所以g (x )>g (1)=0,即f (x )>ln x .故当x …1时,f (x )…ln x .综上所述,所求a 的取值范围是1,+2⎡⎫∞⎪⎢⎣⎭.(步骤3)3).当a …21时,有f (x )…ln x (x 1…),令a =21,有f (x )= 21(x -x1)…ln x ,令x =k k 1+,有ln k k 1+<⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡+-+11111211121k k k k k k 即 ln(k +1)-ln k <111,1,2,321k n k k ⎛⎫+= ⎪+⎝⎭… 上述n 个不等式依次相加得到结果,即得到11123+++…n 1>ln(1)(1)2(1)n n n n +++…(步骤4) 3、利用作商法例、等比数列{n a }的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值; (11)当b=2时,记22(log 1)()n n b a n N +=+∈证明:对任意的n N +∈,不等式1212111·······n nb b b b b b +++>解:(I )根据题意得:nn S b r =+.当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,由于0>b 且1≠b ,所以当2n ≥时,{n a }是以b 为公比的等比数列,又11a S b r ==+)1(2-=b b a b a a =12,,即b rb b b =+-)1(,解得1r =-. (II)Θ12-=n n S ∴当2n ≥时,1112)12()12(---=---=-=n n n n n n S S a ,又当1n =时,112111=-==S a ,适合上式,∴12-=n n a ,1222(log 1)2(log 21)2n n n b a n -=+=+=∴121211135721·······2462n n b b b n b b b n++++=⋅⋅L , 下面有数学归纳法来证明不等式:121211135721·······2462n n b b b n b b b n++++=⋅⋅>L 证明:(1)当1n =时,左边=>==24923右边,不等式成立. (2)假设当*)(N k k n ∈=时,不等式成立,即121211135721.......2462k k b b b k b b b k ++++=⋅⋅>L ,当1n k =+时,左边11212111113572123. (246222)k k k k b b b b k k b b b b k k ++++++++=⋅⋅⋅⋅⋅+L,2322k k +==+所以当1n k =+时,不等式也成立.由(1)、(2)可得当n N +∈时,不等式1321212753+>⨯⨯⨯⋅+⨯⨯⨯⨯n nn n ΛΛ)(恒成立,所以对任意的n N +∈,不等式1212111·······n nb b b b b b +++>.。
高考数学复习:利用导数证明不等式
![高考数学复习:利用导数证明不等式](https://img.taocdn.com/s3/m/e1f9b156bb1aa8114431b90d6c85ec3a87c28bd6.png)
3
f(-1)=e,f(1)=e,f(2)=0,
∴函数 f(x)在区间[-1,2]的最大值为 e,最小值为 0. ....................................... 5 分
(2)证明 令
1 2
x 1 2
g(x)=f(x)-2x +x-2e=(2-x)e -2x +x-2e,则
解得x=2,当x∈(2,+∞)时,g'(x)<0;
当x∈(0,2)时,g'(x)>0,
∴g(x)在(2,+∞)内单调递减,在(0,2)内单调递增,可得g(x)max=f(2)=e2+2.
由于12>e2+2,即f(x)min>g(x)max,所以f(x)>g(x),
故当x>0时,f(x)>-x3+3x2+(3-x)ex.
3(3 -1)
=
3(-1)(2 ++1)
.
令f'(x)=0可得x=1,当x∈(1,+∞)时,f'(x)>0;当x∈(0,1)时,f'(x)<0,
∴f(x)在(1,+∞)内单调递增,在(0,1)内单调递减.
(2)证明 由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex,则g'(x)=-3x2+6x-ex+(3-x)ex=(2-x)(ex+3x),由g'(x)=0,
所以g(a)的单调递减区间是(1,+∞),单调递增区间是(0,1),
所以g(a)≤g(1)=0,即ln a≤a-1.
选修4-5_高考不等式证明的基本方法(good)
![选修4-5_高考不等式证明的基本方法(good)](https://img.taocdn.com/s3/m/626caa80cc22bcd126ff0c90.png)
选修4-5 等式证明的基本方法不等式的证明方法: ①作差法②作商法 ③综合法:由因到果 ④分析法:执果索因 ⑤放缩法:常见类型有⑴nn n n n n n n n 111)1(11)1(11112--=-<<+=+- (放缩程度较大);⑵)1111(2111122+--=-<n n n n(放缩程度较小);⑶1(212221--=-+<=n n n n nn )⑥数学归纳法:常用于数列类的不等式 ⑦利用函数单调性法1.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+(1a +1b +1c )2≥63,并确定a ,b ,c 为何值时,等号成立. 证明:法一:因为a ,b ,c 均为正数,由平均值不等式得a 2+b 2+c 2≥3(abc )23,① 1a +1b +1c ≥3(abc )31-,② 所以(1a +1b +1c )2≥9(abc ) 23-.故a 2+b 2+c 2+(1a +1b +1c)2≥3(abc )23+9(abc )23-. 又3(abc )23+9(abc )23-≥227=63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc ) 23=9(abc )23-时,③式等号成立.即当且仅当a =b =c =314时,原式等号成立.法二:因为a ,b ,c 均为正数,由基本不等式得 a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac . 所以a 2+b 2+c 2≥ab +bc +ac ,① 同理1a 2+1b 2+1c 2≥1ab +1bc +1ac ,②故a 2+b 2+c 2+(1a +1b +1c )2≥ab +bc +ac +31ab +31bc +31ac ≥6 3.③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立. 即当且仅当a =b =c =314时,原式等号成立. 2.已知x ,y 均为正数,且x >y ,求证:2x +1x 2-2xy +y 2≥2y +3.解:因为x >0,y >0,x -y >0,2x +1x 2-2xy +y 2-2y =2(x -y )+1(x -y )2=(x -y )+(x -y )+1(x -y )2≥33(x -y )21(x -y )2=3, 所以2x +1x 2-2xy +y 2≥2y +3.3.已知正实数a ,b ,c 满足1a +2b +3c =1,求证:a +b 2+c 3≥9.证明:因为a ,b ,c 均为正实数,所以1a +2b +3c ≥331a ·2b ·3c .同理可证:a +b 2+c 3≥33a ·b 2·c 3. 所以(a +b 2+c 3)(1a +2b +3c )≥33a ·b 2·c 3·331a ·2b ·3c =9. 因为1a +2b +3c =1,所以a +b 2+c 3≥9,当且仅当a =3,b =6,c =9时,等号成立.4.已知x 、y 、z ∈R, 且2x +3y +3z =1,求x 2+y 2+z 2的最小值.解:由柯西不等式得,(2x +3y +3z )2≤(22+32+32)(x 2+y 2+z 2). ∵2x +3y +3z =1,∴x 2+y 2+z 2≥122,当且仅当x 2=y 3=z 3,即x =111,y =z =322时,等号成立, ∴x 2+y 2+z 2的最小值为122.5.设f (x )=2x 2-2x +2 010,若实数a 满足|x -a |<1 ,求证:|f (x )-f (a )|<4(|a |+1). 证明:∵f (x )=2x 2-2x +2 010,∴|f (x )-f (a )|=2|x 2-x -a 2+a |=2|x -a |·|x +a -1|<2|x +a -1|,又∵2|x +a -1|=2|(x -a )+2a -1|≤2(|x -a |+|2a -1|)<2(1+|2a |+1)=4(|a |+1). 6.求证:1n +1+1n +2+…+13n >12(n ≥2,n ∈N *).证明:法一:利用数学归纳法:(1)当n =2时,左边=13+14+15+16>12,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时不等式成立.即1k +1+1k +2+…+13k >12.则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13k +3=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1)>12+(3×13k +3-1k +1)=12. 所以当n =k +1时不等式也成立, 由(1),(2)知原不等式对一切n ≥2,n ∈N *均成立. 法二:利用放缩法: ∵n ≥2,∴1n +1+1n +2+…+13n >13n +13n +…+13n =23>12.即1n +1+1n +2+…+13n >12(n ≥2,n ∈N *).7.已知a ,b ,c 为实数,且a +b +c +2-2m =0,a 2+14b 2+19c 2+m -1=0.(1)求证:a 2+14b 2+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解:(1)由柯西不等式得[a 2+(12b )2+(13c )2]()12+22+32≥(a +b +c )2,即(a 2+14b 2+19c 2)×14≥(a +b +c )2. ∴a 2+14b 2+19c 2≥(a +b +c )214. 当且仅当|a |=14|b |=19|c |取得等号.(2)由已知得a +b +c =2m -2,a 2+14b 2+19c 2=1-m ,∴14(1-m )≥(2m -2)2.即2m 2+3m -5≤0.∴-52≤m ≤1. 又∵a 2+14b 2+19c 2=1-m ≥0,∴m ≤1,∴-52≤m ≤1.一.函数思想例1已知b a ,是两个不相等的正数, 求证:22233)())((b a b a b a +>++证明:构造二次函数)()(2)()(33222b a x b a x b a x f +++++=,0)()()(22>+++=b x b a x a x f ,0))((4)(43322<++-+=∆∴b a b a b a从而,22233)())((b a b a b a +>++例2 求证||1||||||1||||b a b a b a b a +++≥+++ 证明:设xx x x x x f +-=+-+=+=1111111)(,所以,函数f(x)的定义域为)1,|{≠∈x R x x 且,且函数f(x)在定义域上单调递增,0||||||≥+≥+b a b a ||1||||||1|||||)(||)||(|b a b a b a b a b a f b a f +++≥++++≥+∴即 二、数形结合思想例3 (课本P 23例3)已知 |a| < 1, | b |< 1 ,求证:11<++abb a分析:因为a+ b = 1/2[(1+ a)( 1+ b )-(1- a)(1 – b)], 1 + ab = 1/2[ (1+ a)( 1+ b )+(1- a)(1 – b)] 所以ab b a ++1=)1)(1()1)(1()1)(1()1)(1(b a b a b a b a --+++---++,这与过两点的斜率公式1212x x y y k --=相同,因此,可用比较斜率大小的方法来证明。
专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数
![专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数](https://img.taocdn.com/s3/m/d3c28992db38376baf1ffc4ffe4733687f21fc50.png)
专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考热点不等式的证明方法
热点一比较法证明不等式
【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b).【证明】因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=
a a(a-b)+
b b(b-a)=(a-b)(a a-b b)=(a 1
2
-
b 1
2
)(a
3
2
-b
3
2
),因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,
都有a 1
2
-b
1
2
与a
3
2
-b
3
2
同号,所以(a
1
2
-b
1
2
)(a
3
2
-b
3
2
)≥0,
所以a2+b2≥ab(a+b).
设不等式|2x-1|<1的解集为M.
(1)求集合M;
(2)若a,b∈M,试比较ab+1与a+b的大小.
解:(1)由|2x-1|<1,得-1<2x-1<1,解得0<x<1,所以M={x|0<x<1}.
(2)由(1)和a,b∈M可知0<a<1,0<b<1.所以(ab+1)-(a+b)=(a -1)(b-1)>0,故ab+1>a+b.
热点二 1.
热点三 放缩法证明不等式
【例3】 设a ,b ,c 均为正实数,求证:12a +12b +12c ≥1b +c +1c +a
+1a +b
. 【证明】 ∵a ,b ,c 均为正实数,
∴12⎝ ⎛⎭⎪⎫12a +12b ≥12ab ≥1a +b
,当且仅当a =b 时等号成立; 12⎝ ⎛⎭⎪⎫12b +12c ≥12bc ≥1b +c ,当且仅当b =c 时等号成立;
12⎝ ⎛⎭⎪⎫12c +12a ≥12ca ≥1c +a ,当且仅当c =a 时等号成立;
三个不等式相加即得12a +12b +12c ≥1b +c +1c +a +1a +b
, 当且仅当a =b =c 时等号成立.
设s =1×2+2×3+3×4+…+n (n +1),求证:12n (n +
1)<s <12n (n +2).
证明:由已知条件可知s >1×1+2×2+3×3+…+n ×n
=1+2+3+…+n =12n (n +1),s <1+22+2+32+3+42+…+n +(n +1)2
=12[3+5+7+…+(2n +1)]=12n (n +2),∴12n (n +1)<s <12n (n +2). 热点四 柯西不等式的应用
【例4】 已知x ,y ,z 均为实数.
(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33;
(2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.
【解】 (1)证明:因为(3x +1+3y +2+3z +3)2≤(12+12+
12)(3x +1+3y +2+3z +3)=27.所以3x +1+3y +2+3z +3≤3 3.
当且仅当x =23,y =13,z =0时取等号.
(2)因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2
≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.
(1)设x ,y ,z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,则x +y +z =________.
(2)已知x 、y 、z ∈R +,且x +y +z =1,则1x +4y +9z 的最小值为
________.
解析:(1)由柯西不等式,得(x 2+y 2+z 2)(12+22+32)≥(x +2y +3z )2,
∴(x +2y +3z )2≤14,则x +2y +3z ≤14,又x +2y +3z =14,∴x =y 2=z 3,因此x =1414,y =147,z =31414,于是x +y +z =3147.
(2)法1:利用柯西不等式.
由于(x +y +z )⎝ ⎛⎭
⎪⎫1x +4y +9z ≥ ⎝
⎛⎭⎪⎫x ·1x +y ·2y +z ·3z 2=36. 所以1x +4y +9z ≥36.
当且仅当x 2=14y 2=19z 2,即x =16,y =13,z =12时,等号成立.
法2:1x +4y +9z =1x (x +y +z )+4y (x +y +z )+9z (x +y +z )=14+
⎝ ⎛⎭⎪⎫y x +4x y +⎝ ⎛⎭⎪⎫z x +9x z +⎝ ⎛⎭⎪⎫4z y
+9y z ≥14+4+6+12=36,当且仅当y =2x ,z =3x ,即x =16,y =13,z =12时,等号成立.
答案:(1)3147 (2)36。