高中数学必修第一册复习课件
合集下载
人教A版高中数学选择性必修第一册精品课件 复习课 第1课时 空间向量与立体几何
(
)
(12)若向量n与直线l的方向向量垂直,A∈l,P∉l,则点P到直线l的距离可以
看成是 在n上的投影向量的长度.(
)
(13)设直线l与平面α所成的角为θ,直线l的方向向量为u,平面α的法向量为
n,则cos θ=|cos<u,n>|. ( × )
专题归纳 核心突破
专题一
空间向量的线性运算
提示:空间向量共线的充要条件:对任意两个空间向量a,b(b≠0),a∥b的充
要条件是存在实数λ,使a=λb.
空间向量共面的充要条件:如果两个向量a,b不共线,那么向量p与向量a,b
共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
2.空间向量基本定理与空间向量的坐标表示的内容是什么?
模就越大.(
)
(3)不论λ取什么实数,λa与a一定共线.(
)
(4)若a·b=0,则a,b中至少有一个为0.( × )
(5)若 a·b=k,则
a= 或
b= .
( × )
(6)对于三个不共面向量a1,a2,a3,不存在实数组(λ1,λ2,λ3),使
λ1a1+λ2a2+λ3a3=0.( × )
(7)已知 A,B,M,N 是空间四点,若{, , }是空间的一个基底,则
(2)平面PAD内是否存在一点N,使MN⊥平面PBD?若存
在,确定N的位置;若不存在,说明理由.
分析:(1)证明向量垂直于平面 PAD 的一个法向量即可;
(2)假设存在点 N,设出其坐标,利用 ⊥ , ⊥ ,
列方程求其坐标即可.
解:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴,建立空间直角
)
(12)若向量n与直线l的方向向量垂直,A∈l,P∉l,则点P到直线l的距离可以
看成是 在n上的投影向量的长度.(
)
(13)设直线l与平面α所成的角为θ,直线l的方向向量为u,平面α的法向量为
n,则cos θ=|cos<u,n>|. ( × )
专题归纳 核心突破
专题一
空间向量的线性运算
提示:空间向量共线的充要条件:对任意两个空间向量a,b(b≠0),a∥b的充
要条件是存在实数λ,使a=λb.
空间向量共面的充要条件:如果两个向量a,b不共线,那么向量p与向量a,b
共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
2.空间向量基本定理与空间向量的坐标表示的内容是什么?
模就越大.(
)
(3)不论λ取什么实数,λa与a一定共线.(
)
(4)若a·b=0,则a,b中至少有一个为0.( × )
(5)若 a·b=k,则
a= 或
b= .
( × )
(6)对于三个不共面向量a1,a2,a3,不存在实数组(λ1,λ2,λ3),使
λ1a1+λ2a2+λ3a3=0.( × )
(7)已知 A,B,M,N 是空间四点,若{, , }是空间的一个基底,则
(2)平面PAD内是否存在一点N,使MN⊥平面PBD?若存
在,确定N的位置;若不存在,说明理由.
分析:(1)证明向量垂直于平面 PAD 的一个法向量即可;
(2)假设存在点 N,设出其坐标,利用 ⊥ , ⊥ ,
列方程求其坐标即可.
解:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴,建立空间直角
北师版高中数学选择性必修第一册精品课件 复习课 第4课时 计数原理
种.(用数字作答)
(2)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝
色卡片,从这8张卡片中取出4张卡片排成一行.若取出的4张卡片所标的数
字之和等于10,则不同的排法共有多少种?
分析:(1)根据老队员入选人数分为2类,按照先选再排的方法求解.
(2)取出4张卡片的数字之和为10的共有:1,2,3,4;1,1,4,4;2,2,3,3三类,按照先
选再排的方法求解.
(1)解析:①只有 1 名老队员入选的排法有C21 C32 A33 =36 种.②有 2 名老队员入选
的排法有C22 C31 C21 A22 =12 种.所以共有 36+12=48 种.
答案:48
(2)解:分为 3 类:
第 1 类,当取出的 4 张卡片分别标有数字 1,2,3,4 时,不同的排法有C21 C21 C21 C21 A44
分类加法
……在第n类办法中有mn种方法,那么,完成
计数原理
这件事共有N=m1+m2+…+mn种方法(也称“
加法原理”)
完成一件事需要经过n个步骤,缺一不可,做
第1步有m1种不同的方法,做第2步有m2种不
分步乘法
同的方法……做第n步有mn种不同的方法,
计数原理
那么,完成这件事共有N=m1·m2·…·mn种方
由分类加法计数原理,得共有3+6+1=10种不同排法,即这样的三位数共有
10个.故选C.
答案:C
专题二
排列与组合的综合应用
【例2】 (1)已知在5名乒乓球队员中,有2名老队员和3名新队员.现从中选
出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队
人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课
【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2
高中数学必修第一册3.1函数的概念及其表示课件
那么你认为该怎样确定一个工人每周的工资?一个工人的工资w
(单位:元)是他工作天数d的函数吗?
对于任一个给定的天数d,都有唯一确
定的工资w与之对应;
= 350
变量w和d之间是否是函数关系?它们各自的变化范围是什么 ?
试用集合 A,B 表示?
= 350
集合A
集合B
一一对应
1
2
3
4
5
6
350
记作:y=f(x) , x∈A
注意:
(1)x 叫做自变量,x的取值范围构成的集合A叫做函
数的定义域;
(2)与x的值相对应的 y值 叫做函数值;函数值组成的
集合
叫做函数的值域。
C={y|y=f(x), x∈A}
深化概念
高中和初中函数概念的区分和联系
①
定义的扩大:初中强调变量之间的关系;高中是在映射概念和集合的概念的基础上进
∈ , , , , , , , . ,
∈ . , . , . , . , . , . , . , . , . , .
集合B
集合A
(3)对于集合A中的任意一个元素 x,在集合B
中都有唯一确定的元素 y 与之对应。
不同点
分别通过解析式、图象、表格刻画变量之间的对
应关系
函
数
的
概
念
设A、B是非空数集,如果按照某种确定的
对应关系 f,使对于集合A中的任意一个数 x,
在集合B中都有唯一确定的数 f(x) 和它对应,
就称f : A→B 为从集合A到集合B的一个函数,
700
1050
1400
1750
2100
解析法
实例2:
(单位:元)是他工作天数d的函数吗?
对于任一个给定的天数d,都有唯一确
定的工资w与之对应;
= 350
变量w和d之间是否是函数关系?它们各自的变化范围是什么 ?
试用集合 A,B 表示?
= 350
集合A
集合B
一一对应
1
2
3
4
5
6
350
记作:y=f(x) , x∈A
注意:
(1)x 叫做自变量,x的取值范围构成的集合A叫做函
数的定义域;
(2)与x的值相对应的 y值 叫做函数值;函数值组成的
集合
叫做函数的值域。
C={y|y=f(x), x∈A}
深化概念
高中和初中函数概念的区分和联系
①
定义的扩大:初中强调变量之间的关系;高中是在映射概念和集合的概念的基础上进
∈ , , , , , , , . ,
∈ . , . , . , . , . , . , . , . , . , .
集合B
集合A
(3)对于集合A中的任意一个元素 x,在集合B
中都有唯一确定的元素 y 与之对应。
不同点
分别通过解析式、图象、表格刻画变量之间的对
应关系
函
数
的
概
念
设A、B是非空数集,如果按照某种确定的
对应关系 f,使对于集合A中的任意一个数 x,
在集合B中都有唯一确定的数 f(x) 和它对应,
就称f : A→B 为从集合A到集合B的一个函数,
700
1050
1400
1750
2100
解析法
实例2:
高中数学必修1复习 PPT课件 图文
x4 x0
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
高中数学必修第一册人教A版《3.3幂函数》名师课件
2
1
(-1,1)
-6
-4
-2
(1,1)
2
4
6
-1
(-1,-1)
-2
-3
-4
-3 -2 -1 0
= 2 9 4 1 0
1
1
2
4
3
9
探究新知
(-2,4)
(2,4)
y=x2
4
3
y=x
2
1
(-1,1)
-6
-4
(1,1)
-2
2
4
6
-1
(-1,-1)
-2
-3
-4
= 3
-2
-1
0
1
2
3
-27 -8
在(-∞,0]上减,
(1,1)
探究新知
(-2,4)
4
在第一象限内,函数
图象的变化趋势与
指数有什么关系?
y=x
1
y=x 2
2
(4,2)
(-1,1)
-4
(2,4)
y=x2
3
1
-6
y=x3
(1,1)
2
-2
-1
(-1,-1)
-2
-3
-4
y=x0
y=x-1
4
6
在第一象限内,
当α>0时,图象随增大而上升
当α<0时,图象随增大而下降
,∴ =
,
=
−
−
2、已知函数(ሻ = − −
解析
,
= .
−−
−或
是幂函数,则实数=_________.
人教高中 数学必修一必修二的总复习(共32张PPT)
4、若
1 a log 1 3 b 3 2
0.2
c2
1 3
,则它们的大小关系为 c>b>a
5、不等式 log2 ( x 7) 4 的解集为———————— 6、若函数 y f ( x) 在(-1,1)上是减函数,且 f (1 a) f (2a 1) , 则a的取值范围为 0 a 2
3、 判断f(-x)与f(x)之间的关系。 类型题:必修一课本:P35例5 ;P75第4题 综合题: 必修一课本: P82 第10题;P83第3题
例:已知函数
f ( x) loga
x 1 (a 0且a 1) 【必修一优化方案P52例3】 x 1
(1)求函数的定义域 (2)判断函数的奇偶性和单调性
高中数学必修一 【复习重点】
(1)基本特性:确定性、互异性、无序性 1、集合: (2)元素和集合的关系: a A, a B (3)子集、真子集、集合相等:
A B
(子集)
A
B(真子集)
A B
(4)交集、并集、补集: A B A B CU A B {x 2k 1 x 2k 1} 例:1、设集合 A {x 3 x 2}
x2 2 x 则 x 0 时, f ( x) ———————
(3)判断函数的单调性:
证明步骤:1、取点; 2、列差式; 3、化简后与0比较大小; 4、下结论。
类型题:必修一课本:P29例2 P31例4 P78例1
(4) 判断函数的奇偶性:
判断步骤:1、求定义域; 2、判断定义域是否关于原点对称;
平行x轴的线段平行于x’ 轴; (3)确定线段长度
平行x轴的线段长度保持不变; (4)成图
人教A版高一数学必修一第一章综合复习 PPT课件 图文
必修1 第一章 集合与函数的概念
栏目导引
2.函数及其表示
(1)本节是函数部分的起始部分,以考查函数的概念 、三要素及表示法为主,同时考查实际问题中的建 模能力.
(2)以多种题型出现在高考试题中,要求相对较低, 但很重要.特别是函数的表达式,对以后函数应用 起非常重要的作用.
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的 子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集 合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定 子集的补集.
B.{x|x≥0}
C.{x|x≥1 或 x≤0} D.{x|0≤x≤1}
解析:
1-x≥0, x≥0
⇔0≤x≤1.故选 D.
答案: D
必修1 第一章 集合与函数的概念
栏目导引
3.若定义在R上的函数f(x)满足:对任意x1,x2∈R 有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确 的是( )
当 x<0 时,函数 f(x)=(x+1)2-2 的最小值为-2,
最大值为 f(-3)=2.故函数 f(x)的值域为[-2,2].
必修1 第一章 集合与函数的概念
栏目导引
1.已知集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是( )
A.a≥2
B.a<1
C.a≤2
解析: 假设存在x,使得B∪(∁AB)=A, 即B A.
①若x+2=3,则x=1,此时A={1,3,-1},B= {1,3},符合题意.
人教版(新教材)高中数学第一册(必修1)精品课件1:5.2.1 三角函数的概念(一)
答案
(1)34或-34
(2) -1123
5 13
-152
[方法总结] 求任意角的三角函数值的两种方法 方法一:根据定义,寻求角的终边与单位圆的交点 P 的坐标,然后利用定义得出 该角的正弦、余弦、正切值. 方法二:第一步,取点:在角 α 的终边上任取一点 P(x,y),(点 P 与原点不重合); 第二步,计算 r:r=|OP|= x2+y2; 第三步,求值:由 sin α=yr,cos α=xr,tan α=xy(x≠0)求值. 在运用上述方法解题时,要注意分类讨论思想的运用.
第五章 三角函数
5.2 三角函数的概念
5.2.1 三角函数的概念(一)
课程标准
核心素养
通过对三角函数概念的学
借助单位圆理解三角函数(正 习,提升“直观想象”、
弦、余弦、正切)的定义.
“逻辑推理”、“数学运
算”的核心素养.
Байду номын сангаас目索引
课前自主预习 课堂互动探究 随堂本课小结
课前自主预习
知识点 三角函数的定义
3 3
课堂互动探究
探究一 已知角的终边上一点求三角函数值
例 1 (1)在平面直角坐标系中,角 α 的终边与单位圆交于点 A,点 A 的纵坐标为35,则 tan α=________. (2)若角 α 的终边经过点 P(5,-12),则 sin α=________,cos α= ________,tan α=________.
[跟踪训练 1] 如果 α 的终边过点 P(2sin 30°,-2cos 30°),那么
sin α 的值等于( )
A.12
B.-12
C.-
3 2
D.-
3 3
人教版(新教材)高中数学第一册(必修1)精品课件:第五章三角函数章末复习课
(2)由题意知,cos α=xr≤0,sin α=yr>0, 即x≤0,y>0, 所以3mm+-29>≤0,0, 所以-2<m≤3,即实数m的取值范围为(-2,3].
【训练 1】 已知角 α 的终边过点 P(-8m,-6sin 30°),且 cos α=-45,则 m
的值为( )
A.-12
B.12
(3)正切曲线:
6.三角函数的性质(表中k∈Z)
y=sin x
定义域
R
y=cos x R
y=tan x {x|x∈R,且 x≠π2+kπ}
增区间:[-π2+2kπ,π2+2kπ], 单调性
减区间:[π2+2kπ,32π+2kπ]
增减区区间间::[[2-kππ,+π2+kπ,2kπ2]kπ],增区间:(-π2+kπ,π2+kπ)
章末复习课
[网络构建]
[核心归纳] 1.任意角与弧度制 (1)与角 α 终边相同的角的集合为 S={β|β=α+2kπ,k∈Z}. (2)角度与弧度的互化:1°=1π80 rad,1 rad=(1π80)°. (3)弧长公式:l=|α|r, 扇形面积公式:S=12lr=12|α|r2.
2.任意角的三角函数 设任意角 α 的终边上任意一点 P(x,y),r= x2+y2,则 sin α=yr,cos α=xr,tan α=yx(x≠0).
C.-
3 2
D.
3 2
解析 由题意知 P(-8m,-3)且 cos α=-45,∴r= 64m2+9,∴cos α=
6-4m82m+9=-45,且 m>0,∴m2=14,∴m=12.故选 B.
答案 B
要点二 同角三角函数基本关系式的应用 同角三角函数基本关系式的应用方法 (1)利用 sin2α+cos2α=1 可以实现 α 的正弦、余弦的转化,利用csoins αα=tan α 可 以实现角 α 弦切互化. (2)关系式的逆用与变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1- sin2α,(sin α+cos α)2=(sin α-cos α)2+4sin αcos α. (3)sin α,cos α 的齐次式的应用:分式中分子与分母是关于 sin α,cos α 的齐次 式或含有 sin2α,cos2α 及 sin αcos α 的式子求值时,可将所求式子的分母看作“1”, 利用“sin2α+cos2α=1”代换后转化为“切”求解.
北师版高中数学必修第一册精品课件 复习课 第3课时 指数运算与指数函数
)
解析:∵a=40.9=(22)0.9=21.8,
b=(23)0.48=21.44,c=
-.
=(2-1)-1.5=21.5,
且指数函数y=2x在R上是增函数,
∴21.8>21.5>21.44,因此,a>c>b,故选D.
答案:D
比较指数式大小的策略:
(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;
(3)若函数f(x)是指数函数,且f(1)>1,则f(x)是增函数.( √ )
(4)若函数g(x)=af(x)(a>0,且a≠1),则g(x)与f(x)的定义域与值域
相同.( × )
(5)函数y=4-|x|的单调递增区间是(0,+∞),单调递减区间是(-∞,0).
( × )
(6)若a>1,则当f(x)有最大值时,g(x)=af(x)也有最大值.( √ )
第3课时
指数运算与指数函数
知 识 网 络
要 点 梳 理
专题归纳·核心突破
指数概念
· = + ( > )
指数运算 ( ) = ( > )
() = ( > , > )
指数函数 =
( > ,且 ≠ )
指数函数概念
指数函数图象
- -
解析:∵f(-x)= =-f(x),
∴f(x)为奇函数,排除 A,令 x=10,则
排除 C,D,故选 B.
)
-
f(10)=
>1,
答案:B
考点二
指数函数的性质及应用
f(x)=
,则对任意实数
人教A版高中数学选择性必修第一册第二章_章末复习课2_课件
①若所求直线的斜率存在,
设切线斜率为k,则切线方程为y+3=k(x-4),
因为圆心C(3,1)到切线的距离等于半径1,
|3k-1-3-4k|
所以
k2+1 =1,解得
k=-185,
所以切线方程为 y+3=-185(x-4),即 15x+8y-36=0.
②若切线斜率不存在,圆心C(3,1)到直线x=4的距离也为1,
于是所求圆的方程为(x-1)2+(y+4)2=8.
类型二 直线与圆、圆与圆的位置关系 例2 已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.若直线l过点P,且 被圆C截得的线段长为 4 3 ,求l的方程.
解 如图所示,|AB|= 4 3 ,设D是线段AB的中点,则CD⊥AB, ∴|AD|=2 3,|AC|=4.
所以圆 C 的标准方程为(x-1)2+(y- 2)2=2.
(2)圆C在点B处的切线在x轴上的截距为_-__1_-___2_.
解析 令x=0得:B(0, 2+1).
设圆 C 在点 B 处的切线方程为 y-( 2+1)=kx,
|k- 2+ 2+1|
则圆心 C 到其距离为:d=
k2+1 = 2,
解之得 k=1.
3.直线与圆的位置关系 设直线l与圆C的圆心之间的距离为 d,圆的半径为r,则d_>_r→相离; d_=_r→相切;d_<_r→相交. 4.圆与圆的位置关系 设C1与C2的圆心距为d,半径分别为r1与r2,则
位置关系 外离
外切
相交
内切
内含
图示
d与r1,r2 的关系
d>r1+r2
d=r1+r2
|r1-r2|<d<r1 +r2
在Rt△ACD中,可得|CD|=2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合应用
1 已知函数 f (x) ax2 2x 在区间
[0,4]上是增函数,求实数 a 的取值
范围.
[ 1 , ) 4
2.证明函数f x 2x 在(1, )上为增函数
x 1
函数奇偶性的定义:
如果对于函数f(x)的定义域内任意的一 个x,都有:
(1) f (x) f (x) ,则称 y =f(x)为奇函数
2、A B {x | x A且x B}
3、CU A {x | x U且x A}
全集:某集合含有我们所研究的各个集合的全
部元素,用U表示
考查集合的运算
例4 已知 I 0,1, 2,3, 4, A 0,1, 2,3, B=2,3
求CI B ,CAB
例5、设全集为R,集合A {x | 1 x 3}, B {x | 2x 4 x 2},
变式 y= 5 lg(8 x2 )的定义域是
4.已知3lg(x-3)<1,求x的范围.
5.
设f(x)=
log
a
1 1
x x
a>0 ,
且a≠1
(1) 求f(x)的定义域;
(2) 当a>1时,求使f(x)>0的
x的取值范围.
指数函数与对数函数
如图是指数函数(1) y ax , (2) y bx , (3) y cx ,
A.0<a<b<1<c<d
B.0<b<a<1<d<c
C.0<d<c<1<b<a
D.0<c<d<1<a<b
y
C1 C2
o1
x C3
C4
3.填空题:
(1)y=log(5x-1)(7x-2)的定义域是
(2) y lg(8 x2 )的定义域是
5
变式y lg(8 x2 )的定义域是
方程的根与函数的零点的关系
y=f(x)的图像与x轴的交点的横坐标叫 做该函数的零点。即f(x)=0的解。
方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点
零点存在定理
若y=f(x)的图像在[a,b]上是连续曲线, 且f(a)f(b)<0,则在(a,b)内至少有一个零点, 即f(x)=0在 (a,b)内至少有一个实数解。
(4) y d x的图象,则a,b, c, d与1的大小关系是( B ).
A.a b 1 c d B.b a 1 d c
C.1 a b d
D.a b 1 d c.
y
(1) (2)
(3) (4)
O
X
指数函数与对数函数
若图象C1,C2,C3,C4对应
y=logax, y=logbx, y=logcx, y=logdx,则(D )
(2) f (x) f (x) ,则称 y =f(x)为偶函数
注:要判断函数的奇偶性,首先要看其定
义域区间是否关于原点对称!
例12 判断下列函数的奇偶性
(1) f x x 1 x 1
(2) f x 3
x2
(3) f x x 1
x
(4) f x x2 , x 2,3
整数指数幂 有理指数幂 无理指数幂
例2、已知集合A {x | ax2 2x 1 0, a R}, 若A中元素至多只有一个,求a的取值范围
二、集合间的基本关系
1、子集:对于两个集合A,B如果集合A中的任何
一个元素都是集合B的元素,我们称A为B的子集.
若集合中元素有n个,则其子集个数为 2n
真子集个数为 2n-1 非空真子集个数为2n-2
(2) 0.8-0.1 ,0.8-0.2 (3) 2.13.4 ,0.42.8
2.比较下列各组数中两个值的 大小:
(1) log0.31.8 , log0.32.7;
(2) log3 , log20.8.
3.填空题:
(1)y=log(5x-1)(7x-2)的定义域是 (2)y= lg(8 x2 ) 的定义域是
x 3, 2
5 4 3 2 1
-8
-6
-4
-2
01
2
3
4
6
8
10
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已知f (x) x2 4x 3,求f (x 1)
(2)已知f (x 1) x2 2x,求f (x)
x2 3
(3)已知f
a , a 0
4.分数指数幂
(1)正数的分数指数幂: a>0
m
a n n am
m
,a n
1
n am
(2)零的正分数指数幂为零,零的负 分数指数幂没有意义
5.对数
一般地,如果 ax Na 0,且a 1,那么
数x叫做以a为底N的对数,N叫做真数。
ax N x log a N.
负数和零没有对数;
(
x)
1
x
4
x0 x 0 ,求f [ f (4)] x0
(4)已知幂函数f (2) 8,求函数f (x)的解析式
函数单调性
y
f(x2)
f(x1)
O
x1 x2 x
在给定区间上任取 x1, x2,
x1 x2
f(x1) f(x 2 )
函数f (x)在给定区间 上为增函数。
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
底数(a>0且a≠1) 常数
指数函数与对数函数
函数 y = ax ( a>0 且 a≠1 ) y = log a x ( a>0 且 a≠1 )
a>1 0<a<1
a>1
0<a<1
图
y
y
y
y
象
1
1
1
o
1
x
o
x
0
x
0
x
定义域 R
单调性
定义域 (0, ) 相同
性 值域 (0, )
值域 R
定点 (0, 1)
3、元素的特性:确定性、互异性、无序性
4、常用数集:N 、N、Z、Q、R
二、集合的表示
1、列举法:把集合中的元素一一列举出 来,并放在{ }内
2、描述法:用文字或公式等描述出元素 的特性,并放在{ }内
3.图示法 Venn图
题型示例
考查集合的含义
例1 已知x {1, 2, x2},则x 0或2
几个重要公式
(1)
loga
b
logc logc
b a
lg lg
b a
(2)
log
a
b
1 logb
a
(换底公式)
(3) logam
bn
n m
loga
b
指数函数的概念
指数 自变量
函数 y = a x 叫作指数函数
底数(a>0且a≠1) 常数
对数函数的概念
真数 自变量
函数 y=logax 叫作指数函数
指数
对数
定义 运算性质
定义 图象与性质
定义
指数函数 对数函数
幂函数
图象与性质
返回
指数幂与根式运算
1.指数幂的运算性质
(1)am • an amn
(2)(am )n amn
am (3) an
amn
(4)(ab)n an • bn
2. a的n次方根
如果 xn a,(n>1,且n N ),那么x就叫
y
在给定区间上任取 x1, x2,
f(x1) f(x2)
x1 x2
f(x1) f(x 2 )
函数f (x)在给定区间
O x1 x2 x 上为减函数。
用定义证明函数单调性的步骤:
(1) 取值:设x1,x2是区间上任意两个实数,且x1<x2; (2) 作差: f(x1)-f(x2) ; (3)变形:通过因式分解、通分等方法转化为易于判 断符号的形式 (4)判号: 判断 f(x1)-f(x2) 的符号; (5)下结论.
常用关系式:
log a1 0, log aa 1, aloga N N
log a ax x
对数运算性质如下:
如果a>0,且a≠1,M>0,N>0 ,那么:
(1) log a (M N) log a M log a N;
(2)
log
a
M N
log a M
log
a N;
(3) log a Mn n log a M(n R).
求: A∪B,CR(A∩B);
一、知识结构
三要素
函数
图像
定义域 对应关系
值域
单调性
性质
奇偶性 最值
(一)函数的定义域
例3 求下列函数的定义域
1) f (x) 3 4 x (x 4)0 x 1 log 2 (x 1) 3
(二)二次函数给定区间值域问题
例4 已知函数 y x2 4x 3,求x2,4时的值域
数学必修第一册 期中备考知识点
第一章 集合与常用逻辑
第二章 一元二次函数 方程 和不等式 第三章 函数的概念与性质
集合知识结构
集合
含义与表示
基本关系
基本运算
列举法 描述法 图示法 包含 相等 并集 交集 补集
一、集合的概念
1、集合:把研究对象称为元素, 把一些元素组成的总体叫做集合
2、元素与集合的关系: 或
2、集合相等: A B, B A A B
3、空集:规定空集是任何集合的子集,是任