配合物的结构及异构现象
2012-第二章 配合物的结构及异构现象
六配位 化合物
八面体 几何异构体数目
例
MA2B2C2
5
[Pt(NH3)2(OH2)2Cl2]
八面体配合物几何异构体数目 类型 MA6 MA5B MA4B2 MA3B3 MA4BC 数目 1 1 2 2 2
类型 MA3B2C
数目 3
MA2B2C2
5
MABCDEF
15
几何异构体的鉴别方法 (1) 偶极矩
量研究工作,随着各种现代结构测定方法的建立,配合
物的结构和异构现象更成为配位化学的重要方面。 配位多面体:把围绕中心原子的配位原子看作点,以线 按一定的方式连接各点就得到配位多面体。 用来描述中心离子的配位环境。
早在1893年维尔纳(瑞士)建立配位理论时,
就已经提出了使中心离子周围配体之间的静电斥力 最小,配合物最稳定,即配体间应尽力远离,从而 采取对称性分布,而实际测定结构的结果证实了这 种设想。 配合物的配位数与其空间结构有一定的联系,
例:Pt(II)配合物的偶极矩(Debye):
顺式 [Pt(PPr3n)2Cl2] 11.5 反式 0
[Pt(PEt3)2Cl2]
(2) X射线衍射法
10.7
0
该方法可确定原子在空间的确切位置(三维坐 标),因此可用来鉴定几何异构体。 例:trans-[Cu(py)2Cl2] (平面正方形)。
如:[HgI3]-、[Pt(PPh3)3]
N C Cu C N Cu C N C
N C Cu C N Cu C
KCu(CN)2
已经确认的如 KCu(CN)2, 它是一个聚合的阴离子, 其中每个Cu (I)原子与两个C原子和一个N原子键合。
化学式为 ML3 化合物并不一定都是三配位. 如 AlCl3、AuCl3为四配位(确切的分子式为Au2Cl6);
配位化学-配合物异构现象
一般可分为非对映异构和对映异构两类
非对映异构 和对映异构
非对应异构
构造式相同,构型不同,但不是实物与镜象关系的化合 物互称非对应体。
多形异构:分子式相同,立体结构不同的异构体。如 [Ni(P)2Cl2] 存在以下两种异构体(P代表二苯基苄基膦)
构造异构: 5、键合异构
同一种多原子配体与金属离子配位时,由于 键合原子的不同而造成的异构现象称为键合构体。
如:NO2-作为配体时 可用O原子配位亚硝酸根配合物。 可用N原子配位硝基配合物。
[Cr(H2O)5SCN]2+和[Cr(H2O)5NCS]2+
如[Co(NH3)5NO2]2+黄色, [Co(NH3)5(ONO )]2+红色 硝基·五氨合钴(Ⅲ)离子 亚硝酸根·五氨合钴(Ⅲ)离子
O
O
12O. 8
119 . 6N
H3N
191 . 9NH 3
195 . 6 Co 195 . 7
H3N
197. 7 NH 3 NH 3
O N 125 . 3
131 . 5O
H3N
193. 7 NH 3
196. 8 Co 191. 3
H3N
194. 9 NH 3 NH 3
二、立体异构
实验式相同,成键原子的联结方式也相 同,但空间排列不同。
第一章 配合物的异构现象
异构现象 :
配合物中原子间的联结方式及配体在空间的位置不同 而产生的异构现象。
如1:[Pt(NH3)2Cl2]
Cl Pt
Cl
NH3 NH3
Cl Pt
H3N
NH3 Cl
顺式
无机化学 第十一章配合物结构
配合物是具有空的价层轨道的原子或离子(统称中 心原子)和一组能够给予孤对电子或π电子的分子或离 子(统称配体)以配位键结合而形成的具有一定稳定性和 空间结构的化合物。 配合物不一定是离子,也可以是中性分子。 配体中只有一个配位原子叫单齿配体,有多个配 位原子的叫多齿配体(又分双齿、三齿、四齿等等)。由 多齿配体形成的配合物又被形象地叫做螯合物。
顺反异构:平面四边形和八面体的配合物中配位体不
止一种时,相同配体处于对位(180°)则为“反式”, 相同配体处于邻位(90°)则为“顺式”。(p339) 组成为[MX2Y2]、[MX2YZ]的平面四边形和组成为 [MX4Y2]、[MX4YZ]、[M(XX)2YZ]、[M(XX)2Y2]、 [MABCDX2] 的八面体配合物有顺反异构体。
配合物的异构现象
11.2.1 构造异构
构造异构(structural isomerism)是由原子间连 接方式不同引起的异构现象。
1)溶剂异构 溶剂分子在配合物内外界分布不同而引起的异构现 象叫溶剂异构。溶剂为水,则叫水合异构。 例如: [Cr(H2O)6]Cl3、 [Cr(H2O)5Cl]Cl2· 2O 和 H [Cr(H2O)4 Cl2]Cl· 2O 2H
..
N
.. ..
N N
..
2
NOH
+ Ni2+
NOH ..
H3C 镍试剂 (双齿配体) 氮是配位原子(电子对给予体)
镍离子与镍试剂形成的配合物
Ni(CN)42-、CuCl42-也是平面四边形的配离子。
镍和铜也形成四面体形的配合物,例如它们的
四氨合物、NiCl42-这时配原子的电子对进入中心原
子的一个s轨道和3个p轨道,形成sp3杂化轨道。锌的
无机化学-配位化学基础-配合物的同分异构现象
violet
green
八面体配合物MA3B3异构体
经式
meridional (mer-)
面式
facial (fac-)
八面体配合物MA2B2C2
PtCl2(OH)2(NH3)2 [二氯•二羟•二氨合铂(IV))], 5 种异构体
C A| B
╲╱
M ╱╲ B| A
C 全反
C A|C
╲╱
M ╱╲ B| A
紫色 亮绿色 暗绿色
(4) 配位异构:
[Co(en)3][Cr(ox)3] [Cr(en)3][Co(o在空间排列位置不同引起的异构现象 ➢空间几何异构
➢旋光异构(光学异构)
9.2.2.1 空间几何异构
• 顺反异构
顺式 cis - PtCl2(NH3)2
极性
0
水中溶解度 0.2577 / 100 g H2O
1. 两种异构体互为镜象,但永远不能完全重叠(类 似左、右手关系),称为一对“对映体”, 也称 “手性分子”。 2. 平面偏振光通过这两种异构体时,发生相反方向 的偏转(右旋 d, 左旋 l )。
[Co(en)3]3+
[Co(C2O4)3]4-
l-尼古丁(天然)毒性大 d-尼古丁(人工)毒性小
(1) 键合异构
[Co(NO2)(NH3)5]Cl2 硝基, nitro 黄褐色, 酸中稳定
[Co(ONO)(NH3)5]Cl2 亚硝酸根, nitrito 红褐色, 酸中不稳定
(2) 电离异构
[Co(SO4)(NH3)5]Br [CoBr(NH3)5] SO4
(3) 水合异构
• [Cr(H2O)6]Cl3 • [CrCl(H2O)5]Cl2 ·H2O • [CrCl2(H2O)4]Cl ·2H2O
4配合物的空间构型
实例
d2sp3
6
八面体形
sp3d2
[Fe(CN)6]3ˉ [Cr(NH3)6]3+
实例
平面四边形 dsp2
4
四面体形
sp3
[AuCl4][Cu(NH3)4]2+
[Zn(NH3)4]2+ [Ni(CO)4]
PPT编号13-2-1-4
配位数 空间构型 杂化方式 空间构型
ห้องสมุดไป่ตู้
实例
三角双锥
dsp3
5
四方锥形 d2sp2
[Fe(CO)5] [SbCl5]2-
PPT编号13-2-1-5
配位数 空间构型 杂化方式 空间构型
PPT编号13-2-1-2
配合物的空间几何构型不仅与配位数有关,还与中心 离子(原子)的杂化方式有关。
配合物常见的空间几何构型有以下几种:
配位数 空间构型 杂化方式 空间构型
实例
2
直线型
sp
[Ag(NH3)2]+
3
平面三角形
sp2
[HgI3]-
PPT编号13-2-1-3
配位数 空间构型 杂化方式 空间构型
PPT编号13-2-1-1
13.2 配合物的空间构型和异构现象
一、配合物的空间构型
配合物的空间构型是指配体围绕中心离子(或原子) 排布的几何构型。
当配体在中心离子(或原子)周围配位时,为了减小配 体(尤其是阴离子配体)之间的静电排斥作用(或成键电子 对之间的斥力),以达到能量上的稳定状态,配体要相互尽 量远离,因而在中心离子(或原子)周围采取对称分布状态。
第 5 章 配合物结构
配位数为六配合物
配位数为六的配合物绝大多数是八面体构型,
d区过渡金属一般均为该配位构型
配位数为七及以上的配合物
高配位数的配合物一般中心离子为稀土金属离子
配位数 2
4
6
空 间 构 型
直线形 3
四面体 平面正方形 八面体 5
配位数 空 间 构 型
三角形
四方锥
三角双锥
配合物的异构现象
结构异构
原子间连接方式不同引起的异构现象
若H和H’反向,即κ<0(~-10-6)的物质称为反磁 性或抗磁性物质; 若H和H’同向,即κ>0(~10-3),顺磁性物质;
κ=103~104,铁磁性物质
抗磁性物质中全部电子均配对,无永久磁矩,如H2,He。 顺磁性原子或分子中有未成对电子存在,如O2,NO等, 存在永久磁矩,当无外磁场时,无规则的热运动使磁 矩随机取向,当有外磁场时,磁矩按一定方向排布, 呈现顺磁性。 铁磁性在金属铁或钴等材料中,每个原子都有几个有 未成对电子,原子磁矩较大,且有一定的相互作用, 使原子磁矩平行排列,是强磁性物质。
几何异构:配体对于中心离子的不同位置。
顺式(cis)异构体 棕黄色,极性分子
反式(cis)异构体 淡黄色,非极性分子
顺铂是已经临床使用的抗癌药物
配体处于相邻位置为顺式结构(cis isomer),配体处于 相对位置,称为反式结构(trans isomer)。配位数为2的 配合物,配位数为3与配位数为4的四面体配合物, 配体 只有相对位置,因而不存在反式异构体;在平面四边 形和八面体配位化合物中,顺-反异构是很常见的。
在八面体配合物中,MA6和MA5B显然没有异构体。 在MA4B2型八面体配合物有顺式和反式两种异构体:
配位化学(第二章)
有三种水合异构体。 [ Cr Cl (H2O)5 ] Cl2 · H2O
蓝绿色
[ Cr Cl2 (H2O)4 ] Cl · 2H2O
绿色
(6)聚合异构 具有相同的化学式,各个聚合异构体的化学 式是最简式的 n 倍。例如: [ Co(NH3)3(NO2)3 ] n =1 [ Co(NH3)6 ] [ Co(NO2)6 ] n =2 [ Co(NH3)4(NO2)2 ] [ Co(NH3)2(NO2)4 ] n =2 [ Co(NH3)5(NO2) ] [ Co(NH3)2(NO2)4 ] 2 n =3 [ Co(NH3)6 ] [ Co(NH3)2(NO2)4 ] 3 n =4 [ Co(NH3)4(NO2) 2 ] 3 [ Co(NO2)6] [ Co(NH3)5(NO2) ] 3 [ Co(NO2)6] 2 n =4 n =5
可见,多原子配体分别以不同种 配位原子与中心离子键合的现象称为 键合异构。
[ CoBr (NH3)5 ]SO4 → [ CoBr (NH3)5]2+ + SO42暗紫色
[ Co SO4(NH3)5 ] Br → [ Co SO4(NH3)5]+ + Br紫红色
(5)水合异构 凡是化学组成相同,但水分子在内界和外界 分布不同的配合物,互为水合异构。 例如:CrCl3· 6H2O [ Cr(H2O)6 ] Cl3
Co
Cl
H3 N H3 N
NH3
Co
Cl
NH3
面式-三氯· 三氨合钴(Ⅲ) fac-[ Co(NH3)3Cl3
Cl
经式-三氯· 三氨合钴(Ⅲ) mer-[ Co(NH3)3Cl3 ]
2.2.2 旋光异构现象
旋光异构又叫对映异构。 对映异构:组成相同,空间构型相同,互为不 可重叠的镜像关系,就象人的左右手一样,这样的 异构体叫对映异构体。 例如: Ma2b2 c2型八面体配合物有一对对映 异构体。
配位化学第4章 配合物的立体化学与异构现象
迄今为止, 罕有五配位化合物异构体的实例报道, 无 疑这与TBP←→SP两种构型容易互变有关, 因为互 变将使得配体可以无差别的分布于所有可能出现的 位置.
尽管X-射线衍射和红外光谱结果显示, 在[Fe(CO)5] 和PF5中, 处于轴向(z轴)的配体和处于赤道平面(xy 平面)的配体, 其环境是不等价的, 但NMR研究却证 实, [Fe(CO)5]或PF5中所有五个配位位置的配体都 是完全等价的, 这些结果揭示出这些分子在溶液中 具有流变性(fluxional molecules), 即分子结构在溶 液中的不确定性.
217 pm 187 187
Ni
187 184
199 pm 183
190 Ni
185 191
四方锥
变形三角双锥
图 4–3 在配合物[Cr(en)3][Ni(CN)5]1.5H2O中, 配阴离 子[Ni(CN)5]3–的两种结构
b) 三角双锥结构
五配位的非金属化合物如PF5具有三角双锥结构, 轴向 和赤道平面的P–F键键长是非等价的. 一般说来, 在PX5 分子中, 轴向键长比赤道平面的键长要稍长些. 但在配 合物[CuCl5]3−中赤道平面的键长反而比轴向键长稍微长 一些, 见图 4–2.
欲从四方锥(SP)构型转变成三角双锥(TBP)构型的话, 结构上看, 只需要挪动其中一个配体的位置即可, 反之 亦然.
在图 4–3中列出了[Ni(CN)5]3−既可以采取四方锥结构也 可以采取歪曲的三角双锥结构. 将四方锥底的两个对位 配体向下弯曲可转变成三角双锥结构的两个赤道配体, 在这个扭变的三角双锥结构中, 赤道平面的另一个配体 源于原先的锥顶配体, 赤道平面上的其中一个C–Ni–C 夹角(142°)要明显大于另外两个C–Ni–C的夹角 (107.3°和111
配合物的结构
6 2g
t 26g e1g
3 3
1 2
d8
t
e 6 2
2g g
3
d9
t
e 6 3
2g g
4
3 4
-12Dq -6 Dq
t 26g eg2 t 26g eg3
3 4
3 4
d10 t36geg4
5
5
0 Dq t26geg4
5
5
CFSE
-4Dq -8Dq -12Dq -16 Dq+P -20 Dq+2P -24 Dq+2P -18 Dq+P -12Dq -6 Dq 0 Dq
4 5.62 高 外轨型 sp3d2
晶体场稳定化能(CFSE)
1.晶体场稳定化能(CFSE)的定义
d电子从未分 裂的d轨道进入分 裂后的d轨道,所 产生的总能量下降 值。
2.CFSE的计算
n1:t 2
n2:e
轨道中的电子数
g
轨道中的电子数
g
mm12::八球面形体体场场中中,,dd轨轨道道中中的的成成对对电电子子数数
排布原则:(1)能量最低原理 (2)Hund规则 (3)Pauli不相容原理
电子成对能(P):两个电子进入同一轨 道时需要消耗的能量。
强场:o > P 弱场:o < P
八面体场中电子在t2g和eg轨道中的分布
八面体场中电子在t2g和eg轨道中的分布
高自旋
低自旋
例:
o /J
P/J 场
Co3+的价电子构型
八面体场中 d 电子排布
未成对电子数 实测磁矩/B.M
自旋状态 价键理论 杂化方式
[Co(CN)6]367.524 ×10-20 35.250 ×10-20
配合物的结构及异构现象
[Ni(CN)4]2- (d8) , [PdCl4]2- (d8), [Pt(NH3)4]2+ (d8), [Cu(NH3)4]2+ (d9)
一般地,当4个配体与不含有d8电子构型的过渡金属离子或原子配位时可形成四面体构型配合物。
而d8组态的过渡金属离子或原子一般是形成平面正方形配合物, 但具有d8组态的金属若因原子太小, 或配位体原子太大, 以致不可能形成平面正方形时, 也可能形成四面体的构型。
双帽四方反棱柱体 双帽12面体
配位数为10的配位多面体是复杂的, 通常遇到的有双帽四方反棱柱体和双帽12面体。
十一配位的化合物极少, 理论上计算表明, 配位数为11的配合物很难具有某个理想的配位多面体。 可能为单帽五角棱柱体或 单帽五角反棱柱体, 常见于 大环配位体和体积很小的 双齿硝酸根组成的配合物中。
早在1893年维尔纳(瑞士)建立配位理论时,就已经提出了使中心离子周围配体之间的静电斥力最小,配合物最稳定,即配体间应尽力远离,从而采取对称性分布,而实际测定结构的结果证实了这种设想。
配合物的配位数与其空间结构有一定的联系,但配位数相同时,由于配体的不同,与中心离子的作用不同,而空间结构也会不同。
配位数3 (D3h)三角形
配位数5 (D3h,T4v )主要为三角双锥和四方锥
配位数8 (D4d , D2d )四方反棱柱和十二面体
配合物的配位数与几何构形
价键理论顺利地解释了配合物的分子构型。
显然, 分子构型决定于杂化轨道的类型:
配 位 数 2 3 4 4 杂化轨道 sp sp2 sp3 dsp2 分子构型 直线 三角形 正四面体 正方形 配 位 数 5 5 6 杂化轨道 sp3d d2sp2, d4s sp3d2, d2sp3 分子构型 三角双锥 四方锥 正八面体
配合物的结构及异构现象
第二章配合物的结构及异构现象第一节配位数与配位多面体配位多面体:把围绕中心原子的配位原子看作点,以线按一定的方式连接各点就得到配位多面体。
用来描述中心离子的配位环境。
1、配位数为2理想构型为直线型结构,大多限于Cu(I)、Ag(I)、Au(I)和Hg(II)的配合物。
如:[Ag(NH3)2]+2、配位数为3理想构型为等边三角形结构。
如:[HgI3]−3、配位数为41)四面体构型 2) 平面正方形构型[NiCl4]2−[Ni(CN)4]2−[Zn(NH3)4]2+[Pt(NH3)4]2+4、配位数为51)三角双锥构型 2) 四方锥构型[Fe(CO)5] [InCl5]2−[CuCl5]3−5、配位数为6八面体构型三棱柱构型[Co(NH3)6]3+Re(S2C2Ph2)36、配位数为71)五角双锥构型如 [ZrF7]3−2)单面心三棱柱构型3)单面心八面体构型7、配位数为81)四方反棱柱。
如 [Sr(H2O)8]2+2)三角十二面体。
如 [Co(NO3)4]2-8、配位数大于8的情况多出现在镧系及锕系金属配合物中。
为什么?N H N NNNNHN H NNNHNOOOONHNNNHNLa第二节几何异构现象 (geometrical isomerism)几何异构:由于配体在空间的位置不同而产生的异构现象。
1.平面正方形配合物 1)[Pt(NH 3)2Cl 2]PtCl ClH 3NH 3NPtNH 3ClClH 3N顺式反式ClNH 3H 3N Cl2)[Pt(NH 3)(py)ClBr]PtPy BrClH 3NPt PyNH 3ClBrH平面正方形配合物几何异构体数目配合物类型 MA 4 MA 3B MA 2B 2 MA 2BC MABCD异构体数目 1 1 2 2 32.八面体构型的配合物[Co(NH3)4Cl2]+的几何异构体:有两种几何异构体:NH3NH3Cl NH3ClNH3NH3NH3H3NNH3ClCl顺式(绿色)反式(紫色)[Rh(py)3Cl3]:Py PyCl ClClPyPyPyCl PyClCl面式(facial)经式(meridional))[Co(en)2Cl2]+ (en = H2NCH2CH2NH2):N H2H2 NN H2NH2ClClNH2NH2Cl ClH2NH2N反式顺式八面体配合物几何异构体数目类型MA6 MA5B MA4B2 MA3B3 MA4BC数目 1 1 2 2 2类型MA3B2C MA2B2C2 MABCDEF数目 3 5 153、几何异构体的鉴别方法1)偶极矩偶极矩:μ= q x l如:例:Pt(II)配合物的偶极矩(Debye): 顺式NH 3NH 3ClPtCl反式[Pt(NH3)2Cl2] 8.7 02)红外光谱cis-[PtCl2(NH3)2]trans-[PtCl2(NH3)2]cis-[PtCl2(NH3)2]trans-[PtCl2(NH3)2] 3)紫外-可见光谱法cis-和trans-[Co(en)2Cl(NO2)]+的紫外-可见光谱4) X射线衍射法可确定原子在空间的三维坐标。
配合物的结构和异构现象
三角双锥 (trigonal bipyramid, TBP) D3h 四方锥 (square pyramid, SP) C4v
[Fe(CO)5]
D3h
BiF5
C4v
1.三角双锥 三角双锥 d8、d9、d10 和 d0构型金属离子较常见。 构型金属离子较常见。 如:[Fe(CO)5]、[CuCl5]3-、[CdCl5]3-、 ( ) 、 [Co(H)(N2)(PPh3)3] ( ) 组成的5齿化合物中, MX5组成的5齿化合物中,SbCl5无论是固态 或气态都是三角双锥结构。 或气态都是三角双锥结构 。 而 SbBr5 、 Taቤተ መጻሕፍቲ ባይዱl5 则在 气态是5 配位三角双锥结构, 气态是 5 配位三角双锥结构 , 固态是二聚体具有 共棱边的6配位八面体结构。 共棱边的6配位八面体结构。 中心离子是以dsp3杂化轨道与相适合的配体 中心离子是以 轨道成键。 轨道成键。
d0和d10以外的第一过渡系列金属离子的 以外的第一过渡系列金属离子的Cl 基配合物等很多也是四面体结构。 和OH-基配合物等很多也是四面体结构。 如:[CoCl4]2-、[FeCl4]-、[NiCl4]2-、 [CuCl4]2- 、[Co(OH)4]2( )
中心离子是以sp 中心离子是以sp3或d3s杂化轨道与合适 的配体轨道成键。 的配体轨道成键。 (2)、配体的特点: )、配体的特点: 配体的特点 (a)、从空间效应:配体的体积大有利于形 a)、从空间效应: 成四面体。 成四面体。 (b)、带负电荷的配体有利于形成四面体。 b)、带负电荷的配体有利于形成四面体。 (c)、弱场的配体有利于形成四面体。 c)、弱场的配体有利于形成四面体
多核配合物确正为3 多核配合物确正为3配位的情形稍多一 如组成式像2配位而实际是三配位的。 些,如组成式像2配位而实际是三配位的。 例如:二氰合铜 酸钾 酸钾KCu(CN)2, 例如:二氰合铜(I)酸钾 ( ) 其结构见下图2.1 其结构见下图
第二章 配合物的结构和异构现象
配位数为5的配合物具有以下特点:
(1)、具有不稳定性,因为以静电力起主要 作用,则配合物容易岐化,形成配位数为4 和配位数为6的配合物。 (2)、配位数为5的配合物对热敏感也容易 转化。 2. 四方锥结构
如:[VO(acac) 2](CH3CO-CH=COCH3)
底面的4顶点为2个乙酰丙酮基(acac)的O 占据,锥顶为钒酰(VO)的O2-占据。
中心离子是以sp3或d3s杂化轨道与合适
的配体轨道成键。 (2)、配体的特点: (a)、从空间效应:配体的体积大有利于形 成四面体。
(b)、带负电荷的配体有利于形成四面体。
(c)、弱场的配体有利于形成四面体。
2、平面正方形(D4h ) 如: [Ni(CN)4]2- (d8) , [Pt(NH3)4]2+ (d8), [Cu(NH3)4]2学式相同,但原子和原子间的键合顺序 不同。 立体异构:两种和多种化合物的化 学式相同,原子和原子间的键合顺序也 相同,但原子在空间的分布情况有所不 同。 配合物的异构现象不仅影响其物理 和化学性质,而且与配合物的稳定性和 键性质也有密切关系。其中最重要的是 几何异构现象和光学异构现象。本节首 先讨论几何异构现象。
直线形,D∞h 如 : [CuCl2]-, [Ag ( NH3 ) 2]+, [HgCl2]Cu(NH3)2+, AgCl2, Au(CN)2,HgCl2– [Ag(NH3)2]+,HgX2
S Ag C N Ag S
AgSCN晶体
S Ag N C
二、配位数3
配位数为3的配合物,其空间结构一 般为平面三角形. 原因:当三个配体配位于没有非键电子 的中心原了,只有在配体占等边三角形的三 个角即键角为120°,配体之间的斥力最小。 中心原子是以 sp2、dp2、或ds2杂化 轨道与配体的合适轨道成键。单核的平面3 配位的配合物不多。 如:[HgI3]- 、[Pt0(PPh3)3]
第二章 配合物的结构及异构现象
第一节 配位数与配位多面体
配位数: 配合物中心原子的配位数:2-16,4和6最常见
配位多面体:把围绕中心原子的配位原子看作点,以线按 一定 的方式连接各点就得到配位多面体。
用来描述中心离子的配位环境。
1、配位数为1 一般为气相中存在的离子,极为罕见 数量很少。直至最近才得到两个含一个单齿配体的配合
三帽三角棱柱体
单帽四方反棱柱体
配位数为10的配位多面体是复杂
的, 通常遇到的有双帽四方反棱柱体 和双帽12面体。
十一配位的化合物极少,
理论上计算表明, 配位数为十
双帽四方反棱柱体
一的配合物很难具有某个理想 的配位多面体。可能为单帽五 角棱柱体或单帽五角反棱柱体, 常见于大环配位体和体积很小 的双齿硝酸根组成的络合物 中。
H2O 经常做为配体,也经常在外界。由于 H2O
分子在内外界不同造成的电离异构,称为水合异构。
[Cr ( H2O ) 6 ] Cl3 、 [Cr Cl ( H2O ) 5 ] Cl2 H2O、 [Cr Cl2 ( H2O ) 4 ] Cl 2H2O
蓝紫
浅绿
鲜绿
⑵ 配位异构
在阳离子和阴离子都是配离子的化合物中, 配体的分布是可以变 化的, 这种异构现象叫配位异构。如:
[Co(NH3)6][Cr(CN)6]和 [Cr(NH3)6][Co(CN)6]
[Cr(NH3)6][Cr(SCN)6]和[Cr(SCN)2(NH3)4][Cr(SCN)4(NH3)2]
[PtII(NH3)4][PtⅣCl6]和[PtⅣ(NH3)4Cl2][PtIICl4]
可见, 其中的配位体的种类、数目可以进行任意的组合, 中心离 子可以相同, 也可以不同, 氧化态可以相同也可以不同。
第二章-配位化合物的立体结构
(2)若以a式配位,其可能有的异构体情况如何?
二、化学结构异构
结构异构是因为配合物分子中原子与原子间成键的顺序 不同而造成的, 常见的结构异构包括电离异构, 键合异构, 配 位体异构和聚合异构。
1 电离异构:在溶液中产生不同离子的异构体。 [Co(NH3)5Br]SO4紫红色和[Co(NH3)5SO4]Br(红色), 它们在溶液中分别能产生SO42-和Br-。 2 溶剂合异构 当溶剂分子取代配位基团而进入配离子的内界所产 生的溶剂合异构现象。与电离异构极为相似, 如: 它们各含有6、5、4个配位水分子, 这些异构体在 物理和化学性质上有显著的差异,如它们的颜色分别为 绿、蓝绿、蓝紫。
[MA3(BC)D](其中BC为不对称 二齿配体)也有面式和经式的区别。 在面式的情况下三个A处于一个三 角面的三个顶点, 在经式中, 三个A 在一个四方平面的三个顶点之上。
A A A D C 面式 B A D A A B C 经式
A A
面式
B A A B
B A A B A A
ห้องสมุดไป่ตู้
对称经式
不对称经式
[MABCDEF]型配合物应该有15 种几何异构体, 有兴趣的同学可以自 己画一下。
NO2 en Co NO2 en en en NO2 O2N Co NO2 O2N en Co en
反式-[Co(en)2(NO2)2], 无旋光对映体
顺式-[Co(en)2(NO2)2] 有旋光对映体
旋光异构体的拆分
定义:从两个旋光异构体的混合物中分离出单一异构体的过程。
1)自然拆分法:
若混合物从溶液中析出结晶时,d体和l体的晶体分别结晶出来, 且两种结晶外形不同,则可将其分开。
沿三重轴向左旋转
无机化学教研室《无机化学》(上)笔记和课后习题(含真题)详解(配合物)
第4章配合物4.1 复习笔记一、配合物的基本概念1.配合物的定义配位化合物简称配合物,又称络合物,是一大类化合物的总称。
2.配合物的组成(1)形成体①中心离子(或中心原子)称为配合物的形成体;②中心离子大多数是带正电荷的金属阳离子,以过渡金属离子居多,如Mn2+、Fe3+、Co2+、Ni2+、Cu2+、Ag+等;少数高氧化态的非金属元素也可作中心离子,如[BF4]-、[SiF6]2-中的B(Ⅲ)、Si(Ⅳ)等;③中心原子如[Ni(CO)4]、[Fe(CO)5]中的Ni、Fe原子。
(2)配位个体、配体及配位原子①由形成体结合一定数目的配体所形成的结构单元称为配位个体,即配合物的核心部分;②在配合物中与形成体结合的离子或中性分子称为配体;③在配体中提供孤电子对与形成体形成配位键的原子称为配位原子。
(3)配体分类根据配体中所含配位原子数目的不同,可分为单齿配体和多齿配体。
①单齿配体:一个配体中只有一个配位原子,如NH3、OH-、X-、CN-、SCN-等;②多齿配体:一个配体中有两个或两个以上的配位原子。
(4)配位数①定义配位数是指在配位个体中与一个形成体形成配位键的配位原子的总数。
②配位数与配体的关系a.由单齿配体形成的配合物,中心离子的配位数等于配体的数目;b.若配体是多齿的,那么配体的数目不等于中心离子的配位数。
③形成体和配体的性质对配位数的影响a.中心离子正电荷越多,配位数越大;b.中心离子半径较大时,其周围可容纳较多的配体,易形成高配位的配合物,但是中心离子半径若过大时,有时配位数反而减小;c.配体的负电荷越多,配位数减小;d.配体的半径增大时,中心离子周围可容纳的配体数减少,配位数减小;e.配体浓度大、反应温度低,易形成高配位配合物。
(5)配离子的电荷配离子的电荷为形成体和配体电荷的代数和。
3.配合物的化学式及命名(1)配合物的化学式①含配离子的配合物,其化学式中阳离子写在前,阴离子写在后;②配位个体中,先列出形成体的元素符号,再依次列出阴离子和中性配体;③无机配体列在前面,有机配体列在后面,将整个配位个体的化学式括在方括号内;④在括号内同类配体的次序,以配位原子元素符号的英文字母次序为准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章配合物的结构及异构现象第一节配位数与配位多面体配位多面体:把围绕中心原子的配位原子看作点,以线按一定的方式连接各点就得到配位多面体。
用来描述中心离子的配位环境。
1、配位数为2理想构型为直线型结构,大多限于Cu(I)、Ag(I)、Au(I)和Hg(II)的配合物。
如:[Ag(NH3)2]+2、配位数为3理想构型为等边三角形结构。
如:[HgI3]−3、配位数为41)四面体构型 2) 平面正方形构型[NiCl4]2−[Ni(CN)4]2−[Zn(NH3)4]2+[Pt(NH3)4]2+4、配位数为51)三角双锥构型2) 四方锥构型[Fe(CO)5][InCl5]2−[CuCl5]3−5、配位数为6八面体构型三棱柱构型[Co(NH3)6]3+Re(S2C2Ph2)36、配位数为71)五角双锥构型如[ZrF7]3−2)单面心三棱柱构型3)单面心八面体构型7、配位数为81)四方反棱柱。
如[Sr(H2O)8]2+2)三角十二面体。
如[Co(NO3)4]2-8、配位数大于8的情况多出现在镧系及锕系金属配合物中。
为什么?N H N NNNNHN H NNNHNOOOONHNNNHNLa第二节几何异构现象(geometrical isomerism)几何异构:由于配体在空间的位置不同而产生的异构现象。
1.平面正方形配合物 1)[Pt(NH 3)2Cl 2]PtCl ClH 3NH 3NPtNH 3ClClH 3N顺式反式ClNH 3H 3N Cl2)[Pt(NH 3)(py)ClBr]PtPyBrClH 3NPtPyNH 3ClBrH平面正方形配合物几何异构体数目配合物类型MA4MA3B MA2B2 MA2BC MABCD异构体数目 1 1 2 2 32.八面体构型的配合物[Co(NH3)4Cl2]+的几何异构体:有两种几何异构体:NH3NH3Cl NH3ClNH3NH3NH3H3N NH3ClCl顺式(绿色)反式(紫色)[Rh(py)3Cl3]:Py PyCl ClClPyPyPyClPyClCl面式(facial)经式(meridional))[Co(en)2Cl2]+ (en = H2NCH2CH2NH2):N H2H2 NN H2NH2ClClNH2NH2Cl ClH2NH2N反式顺式八面体配合物几何异构体数目类型MA6MA5B MA4B2 MA3B3MA4BC数目 1 1 2 2 2类型MA3B2C MA2B2C2 MABCDEF数目 3 5 153、几何异构体的鉴别方法1)偶极矩偶极矩:μ= q x l如:例:Pt(II)配合物的偶极矩(Debye): 顺式反式[Pt(NH 3)2Cl 2] 8.7 02)红外光谱cis-[PtCl 2(NH 3)2]NH 3NH 3ClPtCltrans-[PtCl2(NH3)2]cis-[PtCl2(NH3)2]trans-[PtCl2(NH3)2] 3)紫外-可见光谱法cis-和trans-[Co(en)2Cl(NO2)]+的紫外-可见光谱4) X射线衍射法可确定原子在空间的三维坐标。
N N CO2N第三节旋光异构现象(optical isomerism)1、旋光异构及其与对称性的关系1)旋光异构体(对映异构体):CHClBrI。
CHBrClICHBrClI四面体型NH3PyCl BrNH3PyClBrPtPt平面正方形2)分子具有旋光异构体的对称性判据可以证明:分子具有旋光异构体的充分必要条件是该分子不具备任意次的旋转反映轴(非真轴)S n。
例:CCl4具有S4轴。
CCl ClClClS4ClClClClS4ClClClCl ClClClClc4特例:S1=σ(对称面)S2=i (对称中心)因此具有对称面或对称中心的分子不存在旋光异构体。
2、旋光异构体实例* 平面正方形配合物不存在旋光异构体。
1)[Co(NH3)2(H2O)2Cl2]+:共有5个几何异构体,其中4个无旋光异构体H2O H2OH3N ClClNH3NH3ClOH2H2OClNH 3H2OH2OClNH3ClNH3旋转180度2)[Rh(en)2Cl2]+:N H2H2 NN H2NH2ClClCl NH2H2NNH2NH2ClNH 2NH 2ClClH 2NH 2NClNH 2H 2NNH 2NH 2ClClN H 2H 2NNH 2NH 2Cl旋转180度3)[Co(en)3]3+:NH 2NH 2N H 2NH 2H 2NH 2NNH 2NH 2H 2NNH 2NH 2H 2NNH 2N H 2H 2NNH 2NH 2H 2N旋转180度3、旋光异构体的拆分定义:从两个旋光异构体的混合物中分离出单一异构体的过程。
1)自然拆分法:D D D D D DD D D D D DD D D D D DL L L L L L L L L L L L L L L2)化学拆分法D L D L D L L D L D L D D L D L D LD L D L D L L D L D L D D L D L D L D L D L D L L D L D L DD L D L D LD L D L D L L D L D L D D L D L D L D L D L D L L D L D L D D L D L D LD_J L_J D_J L_J D_J L_J L_J D_J L_J D_J L_J D_J D_J L_J D_J L_J D_J L_J D_J D_J D_J D_J D_J D_J D_J D_J D_J D_J D_J D_J D_J D_J D_J D_J D_J D_JD_J L_J D_J L_J D_J L_J L_J D_J L_J D_J L_J D_J D_J L_J D_J L_J D_J L_JD_J L_J D_J L_J D_J L_J L_J D_J L_J D_J L_J D_J D_J L_J D_J L_J D_J L_JL_J L_J L_J L_J L_J L_J L_J L_J L_J L_J L_J L_J L_J L_J L_J L_J L_J L_JD D D D D D D D D D D D D D D D D DL L L L L L L L L L L L L L L L L LJJ+J例:拆分[Rh(en)3]3+的两种异构体(Werner的工作):A、拆分试剂:硝基樟脑磺酸钠(NaL)d,l-[Rh(en)3]3++NaL →l-[Rh(en)3]L3↓+d-[Rh(en)3]L3(aq)B、除去拆分试剂:l-[Rh(en)3]L3+NaI→l-[Rh(en)3]I3+NaLC、溶解度较大的d—异构体可从溶液中回收。
第四节其他异构现象1、电离异构由于阴离子处于内界或外界不同而引起的异构现象。
例:[Co(NH3)5Br]SO4═[Co(NH3)5Br]2++SO42−[Co(NH3)5SO4]Br ═[Co(NH3)5SO4]++Br−2、水合异构由于水分子处于内界或外界不同而引起的异构现象。
例:[Cr(H2O)4Cl2]Cl.2H2O[Cr(H2O)5Cl]Cl2.H2O3、键合异构配体用不同的配位原子与中心原子键合而产生的异构。
例:[(NH3)5Co-NO2] Cl2、[(NH3)5Co-O-N=O] Cl2[(H2O)5Cr-SCN]2+、[(H2O)5Cr-NCS]2+4、配合异构由于配体在配阳离子和配阴离子之间分配不同而引起的异构。
例:[Co(NH3)6] [Cr(CN)6][Cr(NH3)6] [Co(CN)6]5、配体异构若配体为异构体,则其相应的配合物亦为异构体。
例:[Co(1,2-pn)2Cl2]Cl [Co(1,3-pn)2Cl2]Cl1,2-pn= 1, 2-丙二胺1,3-pn= 1, 3-丙二胺。